research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of manganese(I) carbonyl complexes bearing ester-substituted α-di­imine ligands

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and bDepartment of Natural Sciences and Informatics, Fukushima University, 1, Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 13 July 2020; accepted 4 August 2020; online 11 August 2020)

The crystal structures of two manganese(I) complexes with ester-substituted bi­pyridine or bi­quinoline supporting ligands are reported, namely, fac-bromido­tricarbon­yl(diethyl 2,2′-bi­pyridine-4,4′-di­carboxyl­ate-κ2N,N′)mangan­ese(I), [MnBr(C16H16N2O4)(CO)3], I, and fac-bromido­tricarbon­yl(diethyl 2,2′-bi­quinoline-4,4′-di­carboxyl­ate-κ2N,N′)manganese(I), [MnBr(C24H20N2O4)(CO)3], II. In both complexes, the manganese(I) atom adopts a distorted octa­hedral coordination sphere defined by three carbonyl C atoms, a Br anion and two N atoms from the chelating α-di­imine ligand. Both complexes show fac configurations of the carbonyl ligands. In I, the complex mol­ecules are linked by C—H⋯Br hydrogen bonds and aromatic ππ contacts. In II, intra­molecular C—H⋯O hydrogen bonds are present as well as inter­molecular C—H⋯O and C—H⋯Br hydrogen bonds and ππ inter­actions.

1. Chemical context

Similar to carbonyl complexes of precious metals, such as ruthenium and rhenium, those with less expensive manganese are attracting attention for their application in CO2 reduction catalysts (Bourrez et al., 2011[Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903-9906.]) and as CO-releasing mol­ecules (CORMs) under external stimuli (Chakraborty et al., 2014a[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014a). ChemMedChem, 9, 1266-1274.]). For example, CORMs using manganese(I) carbonyl complexes controllably release CO by photoirradiation (Motterlini et al., 2002[Motterlini, R., Clark, J. E., Foresti, R., Sarathchandra, P., Mann, B. E. & Green, C. J. (2002). Circ. Res. 90, e17-e24.]). Considering their application in vivo, photo-CORMs are expected to utilize light at lower energy. In general, extended π-conjugation systems in organic ligands lead to redshifts of charge-transfer (CT) transition bands of manganese(I) carbonyl complexes (Chakraborty et al., 2014b[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014b). Acc. Chem. Res. 47, 2603-2611.]). Therefore, it is essential to investigate the relationship between mol­ecular structures including π-conjugation systems and photophysical properties.

[Scheme 1]

Thus, we focused on the comparison of bi­pyridines, which are prototypes of the α-di­imine ligand, and bi­quinolines with a more extended π-conjugation system. In addition, the introduction of ester groups into these ligands allows chemical adsorption with various metal oxides (Ardo & Meyer, 2009[Ardo, S. & Meyer, G. J. (2009). Chem. Soc. Rev. 38, 115-164.]; Zhang et al., 2006[Zhang, L., He, R. & Gu, H. C. (2006). Appl. Surf. Sci. 253, 2611-2617.]). In this study, we synthesized manganese(I) tricarbonyl complexes bearing two types of α-di­imine compounds, which contain both an ester substituent and different π-conjugation systems, viz. diethyl 2,2′-bi­pyridine-4,4′-dicarboxylate (debpy) and diethyl 2,2′-bi­quinoline-4,4′-di­dicarboxylate (debqn): fac-[MnBr(CO)3(debpy)] (I) and fac-[MnBr(CO)3(debqn)] (II). We successfully compared their crystal structures and photophysical properties. As expected, a CT band shift in the visible region was confirmed, depending on the size of the π-conjugation system in α-di­imine ligands. This finding will provide information in the future design of suitable complexes for a variety of photoreactions (Chakraborty et al., 2014b[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014b). Acc. Chem. Res. 47, 2603-2611.]).

2. Structural commentary

The mol­ecular structures of compounds I and II are shown in Figs. 1[link] and 2[link], respectively. In both complexes, the manganese(I) atoms exhibit distorted octa­hedral coordination geometries and display primary coordination spheres that are similar to those reported for other structurally related complexes (Chakraborty et al., 2014a[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014a). ChemMedChem, 9, 1266-1274.]; Walsh et al., 2015[Walsh, J. J., Smith, C. L., Neri, G., Whitehead, G. F. S., Robertson, C. M. & Cowan, A. J. (2015). Faraday Discuss. 183, 147-160.]). The metal–ligand bond lengths are similar to those previously reported for compounds of this type; in I, the Mn—N bond lengths are 2.046 (3) and 2.047 (2) Å, while in II, the Mn—N bond lengths are 2.063 (2) and 2.068 (2) Å. In I and II, the fac configuration of three CO ligands around the central manganese(I) atom is in agreement with their IR data. On the basis of their bond parameters, all CO ligands have typical triple-bond characters.

[Figure 1]
Figure 1
Mol­ecular structure of I with atom labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of II with atom labeling and displacement ellipsoids drawn at the 50% probability level.

The torsion angles between the equatorial plane and the debpy pyridyl ring in I (C3—Mn1—N1—C8 and C2—Mn1—N2—C9) are −169.17 (15) and 168.81 (14)°, respectively; the corresponding torsion angles in II (C3—Mn1—N1—C12 and C2—Mn1—N2—C13) are −147.52 (16) and 147.08 (17)°, respectively (Fig. 3[link]). The large differences in torsion angles between I and II are mainly due to steric hindrance between H atoms (H1 and H10) in debqn, and the equatorial CO ligands (C3≡O3 and C2≡O2). On the basis of similar steric hindrance, comparable torsion angles [150.4 (15) and −150.7 (5)°] have been also observed in the related ReI complex (Hallett et al., 2011[Hallett, A. J. & Pope, J. A. (2011). Inorg. Chem. Commun. 14, 1606-1608.]).

[Figure 3]
Figure 3
Side-on views of I (left) and II (right). H atoms are omitted for clarity.

Despite similar mol­ecular skeletons, only II exhibits intra­molecular hydrogen bonds between the ester group and the quinolyl ring (Table 2[link]). The C—C bond lengths of the coord­inated pyridyl rings in I [C6—C7 = 1.395 (3) Å and C10—C11 = 1.392 (3) Å] are considerably longer than the corresponding one in II [C10—C11 = 1.364 (4) Å and C14—C15 = 1.368 (4) Å]. This difference in structural parameters may eventually affect the intra­molecular hydrogen-bond formation.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H4⋯O4 0.95 2.44 3.040 (4) 121
C11—H5⋯Br1i 0.95 2.92 3.789 (3) 153
C14—H6⋯O7 0.95 2.33 2.659 (3) 100
C18—H7⋯O6 0.95 2.25 2.883 (5) 124
C19—H8⋯O2ii 0.95 2.47 3.373 (4) 160
C20—H9⋯O6iii 0.95 2.51 3.383 (4) 153
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal structure of I, complex mol­ecules are linked by pairs of weak C—H⋯Br hydrogen bonds (Table 1[link]) and ππ inter­actions [Cg1⋯Cg2iii = 3.683 (1) Å; Cg1 and Cg2 are the centroids of the N1/C4–C8 and N2/C9–C13 rings, respectively; symmetry code: (iii) 1 − x, −y, 1 − z], forming a three-dimensional supra­molecular structure (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H2⋯Br1i 0.95 2.90 3.502 (3) 122
C13—H6⋯Br1ii 0.95 2.78 3.537 (3) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 4]
Figure 4
Crystal packing of I with C—H⋯Br hydrogen bonds (blue) and ππ contacts (green) shown as dashed lines; ring centroids are shown as red spheres.

In the crystal structure of II, there are weak C—H⋯O and C—H⋯Br hydrogen-bonding inter­actions (Table 2[link]) as well as the above-mentioned intra­molecular hydrogen bonds. Additional ππ contacts are observed [Cg3⋯Cg4iv = 3.732 (2) Å and Cg5⋯Cg6iv = 4.002 (2) Å; Cg3, Cg4, Cg5 and Cg6 are the centroids of the C4–C9, C16–C21, N1/C8–C12 and N2/C13–C17 rings, respectively; symmetry code: (iv) 1 − x, 1 − y, −z]. These inter­actions lead to the formation of a three-dimensional network structure (Fig. 5[link]).

[Figure 5]
Figure 5
Crystal packing of II with C—H⋯Br hydrogen bonds (blue) and ππ contacts (green) shown as dashed lines; ring centroids are shown as red spheres.

4. Database survey

With respect to manganese(I) complexes with a bidentate bi­pyridine derivative ligand (N-N) of the form fac-[MnBr(CO)3(N-N)], some structures have been reported (CSD refcode POKGAZ; Chakraborty et al., 2014a[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014a). ChemMedChem, 9, 1266-1274.], FUMKOQ and FUMKUW; Henke et al., 2020[Henke, W. C., Otolski, C. J., Moore, W. N. G., Elles, C. G. & Blakemore, J. D. (2020). Inorg. Chem. 59, 2178-2187.], NIBSOJ; Lense et al., 2018[Lense, S., Guzei, I. A., Andersen, J. & Thao, K. C. (2018). Acta Cryst. E74, 731-736.], XUVMUY and XUVNAF; Walsh et al., 2015[Walsh, J. J., Smith, C. L., Neri, G., Whitehead, G. F. S., Robertson, C. M. & Cowan, A. J. (2015). Faraday Discuss. 183, 147-160.]). However, no structures of bidentate bi­quinoline derivative–coordinated manganese(I) complexes have been reported; two structures of the corresponding rhenium(I) complexes have been determined by Hallett et al., 2011[Hallett, A. J. & Pope, J. A. (2011). Inorg. Chem. Commun. 14, 1606-1608.] (EBANEC) and Kurz et al., 2006[Kurz, P., Probst, B., Spingler, B. & Alberto, R. (2006). Eur. J. Inorg. Chem. pp. 2966-2974.] (XELXOC).

5. Synthesis and crystallization

The ligands, debpy and debqn, were prepared as described by Chandrasekharam et al. (2011[Chandrasekharam, M., Srinivasarao, C., Suresh, T., Reddy, S. M., Raghavender, M., Rajkumar, G., Srinivasu, M. & Reddy, P. Y. (2011). J. Chem. Sci. 123, 37-46.]) and Hoertz et al. (2006[Hoertz, P. G., Staniszewski, A., Marton, A., Higgins, G. T., Incarvito, C. D., Rheingold, A. L. & Meyer, G. J. (2006). J. Am. Chem. Soc. 128, 8234-8245.]). The ligands were confirmed to be spectroscopically pure (by IR and 1H NMR analyses).

Synthesis of I and II: Compounds I and II were handled and stored in the dark to minimize exposure to light. For the synthesis of I, [MnBr(CO)5] (31 mg, 0.11 mmol) and debpy (33 mg, 0.11 mmol) were dissolved in CHCl3 (10 ml). The reaction mixture was stirred at 313 K for 14 h under N2. After the solvent was evaporated under reduced pressure, an excess of Et2O (30 ml) was added to the solution; then, the solution was allowed to stand at 253 K overnight. The resultant precipitate was collected by filtration, washed with Et2O, and then dried under vacuum (37 mg yield, 64%). Red crystals, suitable for the X-ray diffraction experiment, were grown by diffusion of n-hexane into an acetone solution of I for one week. FTIR (KBr pellet): νCO /cm−1 = 2028, 1918 (br) (C≡O), 1730 (C=O). UV–vis (CHCl3): λ /nm ( /M−1 cm−1) = 483 (3700), 367 (4100), 318 (21000), 247 (24000).

A similar reaction between [MnBr(CO)5] (8 mg, 0.029 mmol) and debqn (10 mg, 0.026 mmol) for 20 h afforded II (11 mg yield, 66%). Purple crystals, suitable for the X-ray diffraction experiment, were grown by diffusion of n-hexane into an acetone solution of II for one week. FTIR (KBr pellet): νCO /cm−1 = 2016, 1942, 1926 (C≡O), 1725 (C=O). UV–vis (CHCl3): λ /nm ( /M−1 cm−1) = 548 (3200), 383 (19000), 276 (37000).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed at calculated positions (C—H = 0.95—0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  I II
Crystal data
Chemical formula [MnBr(C16H16N2O4)(CO)3] [MnBr(C24H20N2O4)(CO)3]
Mr 519.19 619.31
Crystal system, space group Monoclinic, P21/a Monoclinic, P21/c
Temperature (K) 93 93
a, b, c (Å) 11.7054 (7), 13.9151 (7), 13.3273 (8) 8.8953 (9), 12.0086 (13), 23.790 (3)
β (°) 110.347 (2) 95.794 (2)
V3) 2035.3 (2) 2528.3 (5)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.66 2.16
Crystal size (mm) 0.25 × 0.20 × 0.05 0.20 × 0.08 × 0.05
 
Data collection
Diffractometer Rigaku Saturn724 Rigaku Saturn70
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.730, 0.875 0.461, 0.898
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 20542, 4653, 4050 25401, 5757, 4100
Rint 0.029 0.080
(sin θ/λ)max−1) 0.650 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.07 0.046, 0.134, 1.05
No. of reflections 4653 5757
No. of parameters 273 345
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −0.56 0.79, −1.07
Computer programs: CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2015) for (I); PROCESS-AUTO (Rigaku, 1998) for (II). Cell refinement: CrystalClear (Rigaku, 2015) for (I); PROCESS-AUTO (Rigaku, 1998) for (II). Data reduction: CrystalClear (Rigaku, 2015) for (I); PROCESS-AUTO (Rigaku, 1998) for (II). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I); SHELXT2018/3 (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020), ORTEP-3 for Windows (Farrugia, 2012). Software used to prepare material for publication: CrystalStructure (Rigaku, 2019), PLATON (Spek, 2020), publCIF (Westrip, 2010) for (I); CrystalStructure Rigaku, 2019), PLATON (Spek, 2020), publCIF (Westrip, 2010) for (II).

fac-Bromidotricarbonyl(diethyl 2,2'-bipyridine-4,4'-dicarboxylate-κ2N,N')manganese(I) (I) top
Crystal data top
[MnBr(C16H16N2O4)(CO)3]F(000) = 1040.00
Mr = 519.19Dx = 1.694 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71075 Å
a = 11.7054 (7) ÅCell parameters from 5049 reflections
b = 13.9151 (7) Åθ = 3.2–27.5°
c = 13.3273 (8) ŵ = 2.66 mm1
β = 110.347 (2)°T = 93 K
V = 2035.3 (2) Å3Block, red
Z = 40.25 × 0.20 × 0.05 mm
Data collection top
Rigaku Saturn724
diffractometer
4050 reflections with F2 > 2.0σ(F2)
Detector resolution: 28.626 pixels mm-1Rint = 0.029
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1515
Tmin = 0.730, Tmax = 0.875k = 1818
20542 measured reflectionsl = 1617
4653 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 1.4779P]
where P = (Fo2 + 2Fc2)/3
4653 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.56 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61566 (2)0.30862 (2)0.74453 (2)0.02885 (10)
Mn10.59428 (3)0.13106 (3)0.76285 (3)0.02227 (11)
O10.56476 (18)0.07302 (16)0.80205 (17)0.0373 (5)
O20.4659 (2)0.17993 (16)0.91224 (17)0.0383 (5)
O30.82383 (19)0.14080 (17)0.94807 (17)0.0445 (6)
O40.9317 (2)0.0758 (2)0.4214 (2)0.0611 (8)
O50.74278 (19)0.0819 (2)0.30486 (17)0.0491 (6)
O60.06293 (17)0.21138 (15)0.31716 (16)0.0348 (5)
O70.18898 (17)0.15004 (15)0.23897 (15)0.0337 (5)
N10.67488 (18)0.10977 (15)0.65084 (17)0.0225 (4)
N20.44701 (18)0.13714 (14)0.62383 (16)0.0204 (4)
C10.57649 (19)0.00038 (19)0.78541 (18)0.0184 (5)
C20.5130 (2)0.1609 (2)0.8528 (2)0.0281 (6)
C30.7357 (2)0.1367 (2)0.8760 (2)0.0300 (6)
C40.7938 (2)0.09076 (19)0.6709 (2)0.0277 (6)
H10.8462900.0850510.7433140.033*
C50.8427 (2)0.07926 (19)0.5918 (2)0.0286 (6)
H20.9269420.0653800.6095370.034*
C60.7678 (2)0.08816 (17)0.4859 (2)0.0248 (5)
C70.6442 (2)0.10676 (17)0.4631 (2)0.0227 (5)
H30.5904640.1121420.3911160.027*
C80.6010 (2)0.11726 (17)0.5469 (2)0.0212 (5)
C90.4718 (2)0.13526 (16)0.53200 (19)0.0195 (5)
C100.3818 (2)0.14873 (17)0.4324 (2)0.0218 (5)
H40.4019000.1491950.3691860.026*
C110.2618 (2)0.16152 (17)0.42677 (19)0.0218 (5)
C120.2358 (2)0.16067 (18)0.5208 (2)0.0228 (5)
H50.1543990.1679110.5189460.027*
C130.3306 (2)0.14909 (17)0.6174 (2)0.0219 (5)
H60.3126560.1496090.6816030.026*
C140.8236 (2)0.08021 (19)0.4011 (2)0.0300 (6)
C150.7888 (3)0.0781 (3)0.2161 (3)0.0509 (9)
H70.8124290.1432920.2007410.061*
H80.8614580.0361130.2348730.061*
C160.6927 (3)0.0403 (3)0.1227 (3)0.0487 (8)
H90.7201960.0405320.0611860.058*
H100.6197990.0804930.1069640.058*
H110.6733580.0256460.1371980.058*
C170.1594 (2)0.17805 (19)0.3228 (2)0.0256 (5)
C180.0934 (3)0.1635 (3)0.1343 (2)0.0437 (8)
H120.0675160.2315760.1243670.052*
H130.0216240.1233380.1287910.052*
C190.1454 (4)0.1343 (3)0.0510 (2)0.0577 (11)
H140.1702490.0666770.0614560.069*
H150.2163240.1743890.0573230.069*
H160.0835900.1425790.0201970.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02690 (15)0.02926 (15)0.03069 (16)0.00070 (10)0.01041 (11)0.00024 (10)
Mn10.01673 (19)0.0283 (2)0.01915 (19)0.00051 (14)0.00286 (14)0.00025 (14)
O10.0297 (11)0.0444 (13)0.0364 (11)0.0040 (9)0.0096 (9)0.0013 (9)
O20.0380 (12)0.0490 (13)0.0330 (11)0.0006 (9)0.0187 (10)0.0064 (9)
O30.0273 (11)0.0608 (15)0.0333 (11)0.0066 (10)0.0047 (9)0.0106 (10)
O40.0359 (13)0.099 (2)0.0583 (16)0.0226 (13)0.0288 (12)0.0239 (15)
O50.0283 (11)0.0907 (19)0.0335 (11)0.0039 (11)0.0173 (9)0.0114 (12)
O60.0197 (9)0.0471 (12)0.0318 (11)0.0090 (8)0.0015 (8)0.0025 (9)
O70.0248 (10)0.0503 (12)0.0200 (9)0.0118 (8)0.0003 (7)0.0020 (8)
N10.0160 (9)0.0241 (10)0.0241 (10)0.0007 (8)0.0027 (8)0.0001 (8)
N20.0164 (9)0.0221 (10)0.0215 (10)0.0004 (7)0.0052 (8)0.0011 (8)
C10.0063 (9)0.0344 (14)0.0133 (10)0.0023 (9)0.0021 (8)0.0008 (9)
C20.0232 (13)0.0321 (13)0.0237 (13)0.0027 (10)0.0015 (11)0.0001 (10)
C30.0273 (13)0.0344 (14)0.0278 (13)0.0011 (11)0.0089 (11)0.0042 (11)
C40.0167 (11)0.0316 (13)0.0308 (13)0.0030 (10)0.0033 (10)0.0014 (11)
C50.0164 (11)0.0268 (13)0.0410 (15)0.0020 (9)0.0080 (11)0.0020 (11)
C60.0214 (12)0.0197 (12)0.0361 (14)0.0015 (9)0.0136 (11)0.0030 (10)
C70.0192 (11)0.0231 (12)0.0258 (12)0.0022 (9)0.0076 (10)0.0033 (9)
C80.0153 (11)0.0210 (11)0.0257 (12)0.0008 (9)0.0051 (9)0.0019 (9)
C90.0160 (11)0.0198 (11)0.0223 (11)0.0012 (8)0.0060 (9)0.0014 (9)
C100.0195 (11)0.0227 (12)0.0232 (12)0.0013 (9)0.0074 (10)0.0013 (9)
C110.0185 (11)0.0217 (11)0.0217 (12)0.0006 (9)0.0026 (9)0.0008 (9)
C120.0151 (11)0.0246 (12)0.0275 (13)0.0004 (9)0.0058 (10)0.0018 (10)
C130.0177 (11)0.0245 (12)0.0238 (12)0.0000 (9)0.0078 (9)0.0011 (9)
C140.0264 (14)0.0261 (13)0.0433 (16)0.0003 (10)0.0194 (12)0.0022 (11)
C150.0442 (19)0.076 (3)0.0455 (19)0.0077 (17)0.0318 (16)0.0074 (17)
C160.054 (2)0.065 (2)0.0344 (17)0.0040 (17)0.0246 (15)0.0039 (16)
C170.0202 (12)0.0275 (13)0.0252 (13)0.0000 (10)0.0028 (10)0.0001 (10)
C180.0335 (16)0.066 (2)0.0220 (14)0.0164 (15)0.0026 (12)0.0040 (14)
C190.056 (2)0.084 (3)0.0250 (15)0.034 (2)0.0043 (15)0.0070 (16)
Geometric parameters (Å, º) top
Br1—Mn12.5038 (5)C6—C141.493 (4)
Mn1—C31.812 (3)C7—C81.385 (4)
Mn1—C21.819 (3)C7—H30.9500
Mn1—C11.877 (3)C8—C91.477 (3)
Mn1—N12.046 (2)C9—C101.391 (3)
Mn1—N22.047 (2)C10—C111.392 (3)
O1—C11.054 (3)C10—H40.9500
O2—C21.142 (3)C11—C121.389 (4)
O3—C31.141 (3)C11—C171.502 (3)
O4—C141.200 (3)C12—C131.386 (3)
O5—C141.303 (4)C12—H50.9500
O5—C151.461 (4)C13—H60.9500
O6—C171.199 (3)C15—C161.455 (5)
O7—C171.337 (3)C15—H70.9900
O7—C181.466 (3)C15—H80.9900
N1—C41.350 (3)C16—H90.9800
N1—C81.358 (3)C16—H100.9800
N2—C131.345 (3)C16—H110.9800
N2—C91.353 (3)C18—C191.495 (5)
C4—C51.373 (4)C18—H120.9900
C4—H10.9500C18—H130.9900
C5—C61.384 (4)C19—H140.9800
C5—H20.9500C19—H150.9800
C6—C71.395 (3)C19—H160.9800
C3—Mn1—C288.72 (12)C10—C9—C8123.5 (2)
C3—Mn1—C191.66 (11)C9—C10—C11118.9 (2)
C2—Mn1—C190.24 (11)C9—C10—H4120.5
C3—Mn1—N195.38 (11)C11—C10—H4120.5
C2—Mn1—N1173.53 (10)C12—C11—C10119.0 (2)
C1—Mn1—N194.63 (9)C12—C11—C17118.6 (2)
C3—Mn1—N2171.65 (11)C10—C11—C17122.4 (2)
C2—Mn1—N296.79 (10)C13—C12—C11118.9 (2)
C1—Mn1—N294.58 (9)C13—C12—H5120.6
N1—Mn1—N278.60 (8)C11—C12—H5120.6
C3—Mn1—Br186.86 (9)N2—C13—C12122.7 (2)
C2—Mn1—Br186.10 (9)N2—C13—H6118.7
C1—Mn1—Br1176.08 (7)C12—C13—H6118.7
N1—Mn1—Br189.12 (6)O4—C14—O5124.8 (3)
N2—Mn1—Br187.26 (6)O4—C14—C6122.6 (3)
C14—O5—C15116.8 (2)O5—C14—C6112.6 (2)
C17—O7—C18115.1 (2)C16—C15—O5108.2 (3)
C4—N1—C8117.7 (2)C16—C15—H7110.1
C4—N1—Mn1126.13 (17)O5—C15—H7110.1
C8—N1—Mn1116.18 (16)C16—C15—H8110.1
C13—N2—C9118.4 (2)O5—C15—H8110.1
C13—N2—Mn1125.35 (17)H7—C15—H8108.4
C9—N2—Mn1116.12 (15)C15—C16—H9109.5
O1—C1—Mn1176.5 (2)C15—C16—H10109.5
O2—C2—Mn1177.5 (2)H9—C16—H10109.5
O3—C3—Mn1179.0 (3)C15—C16—H11109.5
N1—C4—C5123.2 (2)H9—C16—H11109.5
N1—C4—H1118.4H10—C16—H11109.5
C5—C4—H1118.4O6—C17—O7124.9 (2)
C4—C5—C6119.1 (2)O6—C17—C11123.3 (3)
C4—C5—H2120.4O7—C17—C11111.7 (2)
C6—C5—H2120.4O7—C18—C19107.4 (2)
C5—C6—C7118.7 (2)O7—C18—H12110.2
C5—C6—C14118.4 (2)C19—C18—H12110.2
C7—C6—C14122.9 (2)O7—C18—H13110.2
C8—C7—C6119.1 (2)C19—C18—H13110.2
C8—C7—H3120.5H12—C18—H13108.5
C6—C7—H3120.5C18—C19—H14109.5
N1—C8—C7122.2 (2)C18—C19—H15109.5
N1—C8—C9114.2 (2)H14—C19—H15109.5
C7—C8—C9123.6 (2)C18—C19—H16109.5
N2—C9—C10122.1 (2)H14—C19—H16109.5
N2—C9—C8114.4 (2)H15—C19—H16109.5
C8—N1—C4—C50.3 (4)C8—C9—C10—C11177.5 (2)
Mn1—N1—C4—C5178.5 (2)C9—C10—C11—C120.2 (4)
N1—C4—C5—C60.5 (4)C9—C10—C11—C17179.0 (2)
C4—C5—C6—C71.2 (4)C10—C11—C12—C131.3 (4)
C4—C5—C6—C14177.1 (2)C17—C11—C12—C13177.6 (2)
C5—C6—C7—C81.1 (4)C9—N2—C13—C120.8 (4)
C14—C6—C7—C8177.1 (2)Mn1—N2—C13—C12174.46 (18)
C4—N1—C8—C70.5 (4)C11—C12—C13—N21.0 (4)
Mn1—N1—C8—C7178.47 (18)C15—O5—C14—O40.0 (5)
C4—N1—C8—C9178.3 (2)C15—O5—C14—C6177.8 (3)
Mn1—N1—C8—C92.8 (3)C5—C6—C14—O47.4 (4)
C6—C7—C8—N10.2 (4)C7—C6—C14—O4170.8 (3)
C6—C7—C8—C9178.8 (2)C5—C6—C14—O5174.7 (2)
C13—N2—C9—C102.4 (3)C7—C6—C14—O57.1 (4)
Mn1—N2—C9—C10173.32 (18)C14—O5—C15—C16156.1 (3)
C13—N2—C9—C8177.2 (2)C18—O7—C17—O60.5 (4)
Mn1—N2—C9—C87.0 (3)C18—O7—C17—C11179.7 (2)
N1—C8—C9—N22.8 (3)C12—C11—C17—O617.2 (4)
C7—C8—C9—N2175.9 (2)C10—C11—C17—O6161.6 (3)
N1—C8—C9—C10177.6 (2)C12—C11—C17—O7162.0 (2)
C7—C8—C9—C103.7 (4)C10—C11—C17—O719.2 (3)
N2—C9—C10—C112.1 (4)C17—O7—C18—C19176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H2···Br1i0.952.903.502 (3)122
C13—H6···Br1ii0.952.783.537 (3)138
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z.
fac-Bromidotricarbonyl(diethyl 2,2'-biquinoline-4,4'-dicarboxylate-κ2N,N')manganese(I) (II) top
Crystal data top
[MnBr(C24H20N2O4)(CO)3]F(000) = 1248.00
Mr = 619.31Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 8.8953 (9) ÅCell parameters from 9084 reflections
b = 12.0086 (13) Åθ = 3.0–27.7°
c = 23.790 (3) ŵ = 2.16 mm1
β = 95.794 (2)°T = 93 K
V = 2528.3 (5) Å3Block, purple
Z = 40.20 × 0.08 × 0.05 mm
Data collection top
Rigaku Saturn70
diffractometer
4100 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.143 pixels mm-1Rint = 0.080
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1111
Tmin = 0.461, Tmax = 0.898k = 1515
25401 measured reflectionsl = 3030
5757 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.062P)2 + 0.6421P]
where P = (Fo2 + 2Fc2)/3
5757 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 1.07 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09534 (4)0.75013 (2)0.04399 (2)0.03365 (12)
Mn10.37395 (6)0.74975 (3)0.03376 (2)0.02720 (14)
O10.6977 (3)0.77263 (19)0.02409 (12)0.0455 (6)
O20.4042 (4)0.8863 (2)0.13644 (11)0.0659 (8)
O30.3198 (3)0.96864 (19)0.02110 (11)0.0478 (6)
O40.0202 (3)0.4693 (2)0.19464 (10)0.0522 (7)
O50.1200 (2)0.33393 (18)0.15029 (8)0.0358 (5)
O60.2414 (4)0.2443 (2)0.17911 (12)0.0616 (9)
O70.0767 (3)0.25994 (16)0.10327 (10)0.0372 (5)
N10.3222 (3)0.64858 (19)0.03560 (9)0.0255 (5)
N20.3736 (3)0.59349 (19)0.07024 (9)0.0265 (5)
C10.5744 (4)0.7601 (2)0.02755 (14)0.0331 (7)
C20.3926 (4)0.8304 (3)0.09774 (14)0.0400 (8)
C30.3401 (4)0.8825 (3)0.00119 (13)0.0342 (7)
C40.3949 (4)0.7704 (3)0.10815 (15)0.0380 (8)
H10.4594510.8096470.0807050.046*
C50.3815 (4)0.8050 (3)0.16335 (15)0.0468 (9)
H20.4374530.8677190.1738660.056*
C60.2868 (5)0.7494 (3)0.20404 (16)0.0489 (10)
H30.2736510.7771520.2416030.059*
C70.2124 (4)0.6553 (3)0.19061 (13)0.0417 (8)
H40.1513090.6161680.2191480.050*
C80.2262 (3)0.6154 (3)0.13391 (12)0.0308 (7)
C90.3148 (3)0.6779 (3)0.09197 (12)0.0301 (6)
C100.1627 (3)0.5137 (2)0.11728 (11)0.0283 (6)
C110.1841 (3)0.4822 (2)0.06195 (11)0.0273 (6)
H50.1463150.4126520.0505500.033*
C120.2616 (3)0.5524 (2)0.02203 (12)0.0251 (6)
C130.2867 (3)0.5228 (2)0.03829 (11)0.0253 (6)
C140.2265 (3)0.4258 (2)0.06018 (12)0.0284 (6)
H60.1619560.3790640.0362640.034*
C150.2605 (3)0.3983 (2)0.11581 (12)0.0276 (6)
C160.3641 (3)0.4668 (2)0.15020 (12)0.0290 (6)
C170.4186 (3)0.5636 (2)0.12506 (11)0.0271 (6)
C180.4134 (4)0.4435 (3)0.20761 (12)0.0348 (7)
H70.3735340.3811280.2257290.042*
C190.5173 (4)0.5101 (3)0.23671 (13)0.0392 (8)
H80.5509790.4929060.2748930.047*
C200.5755 (4)0.6038 (3)0.21124 (13)0.0369 (8)
H90.6485190.6493130.2321670.044*
C210.5280 (3)0.6298 (3)0.15676 (12)0.0322 (7)
H100.5687870.6930900.1397700.039*
C220.0748 (3)0.4380 (3)0.15902 (12)0.0342 (7)
C230.0446 (5)0.2485 (3)0.18631 (15)0.0476 (10)
H110.0437750.2694350.2265910.057*
H120.0611440.2389710.1775560.057*
C240.1315 (5)0.1432 (3)0.17463 (17)0.0592 (11)
H130.0818390.0824380.1968380.071*
H140.1352310.1253640.1343150.071*
H150.2345230.1528360.1850520.071*
C250.1941 (4)0.2929 (3)0.13743 (13)0.0324 (7)
C260.0195 (4)0.1492 (3)0.11252 (15)0.0412 (8)
H160.0881920.1446960.0974170.049*
H170.0267690.1333670.1535450.049*
C270.1078 (5)0.0658 (3)0.0841 (2)0.0663 (12)
H180.0596410.0073620.0858390.080*
H190.2106880.0622600.1030660.080*
H200.1115070.0871990.0445010.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0304 (2)0.03101 (19)0.0392 (2)0.00088 (13)0.00171 (14)0.00383 (12)
Mn10.0290 (3)0.0223 (2)0.0293 (2)0.00015 (18)0.0018 (2)0.00277 (17)
O10.0346 (15)0.0311 (13)0.0702 (17)0.0026 (10)0.0027 (13)0.0027 (11)
O20.085 (2)0.0514 (16)0.0556 (16)0.0189 (15)0.0224 (15)0.0289 (13)
O30.0572 (16)0.0252 (12)0.0606 (15)0.0045 (11)0.0037 (13)0.0056 (11)
O40.0465 (15)0.0670 (18)0.0383 (12)0.0050 (13)0.0198 (11)0.0010 (12)
O50.0377 (12)0.0377 (12)0.0302 (11)0.0082 (10)0.0056 (9)0.0087 (9)
O60.070 (2)0.0594 (18)0.0497 (16)0.0249 (14)0.0218 (15)0.0294 (12)
O70.0397 (14)0.0282 (12)0.0418 (13)0.0056 (10)0.0056 (11)0.0058 (9)
N10.0261 (13)0.0241 (12)0.0259 (12)0.0008 (10)0.0002 (10)0.0010 (9)
N20.0270 (13)0.0259 (12)0.0257 (12)0.0024 (10)0.0014 (10)0.0011 (10)
C10.045 (2)0.0181 (14)0.0350 (16)0.0033 (13)0.0036 (15)0.0017 (12)
C20.0393 (19)0.0360 (18)0.0423 (18)0.0075 (15)0.0079 (15)0.0064 (15)
C30.0329 (17)0.0296 (16)0.0394 (17)0.0005 (14)0.0002 (14)0.0057 (13)
C40.042 (2)0.0348 (18)0.0369 (17)0.0002 (14)0.0045 (15)0.0036 (13)
C50.055 (2)0.043 (2)0.044 (2)0.0002 (18)0.0138 (18)0.0119 (16)
C60.061 (3)0.051 (2)0.0350 (18)0.0026 (19)0.0100 (18)0.0139 (16)
C70.047 (2)0.050 (2)0.0285 (16)0.0056 (17)0.0015 (15)0.0047 (14)
C80.0326 (17)0.0323 (16)0.0268 (14)0.0072 (13)0.0000 (13)0.0004 (12)
C90.0298 (16)0.0298 (15)0.0301 (15)0.0060 (13)0.0009 (12)0.0057 (12)
C100.0251 (15)0.0330 (16)0.0260 (14)0.0062 (13)0.0011 (12)0.0001 (12)
C110.0275 (15)0.0263 (14)0.0272 (14)0.0022 (12)0.0022 (12)0.0001 (12)
C120.0259 (15)0.0248 (14)0.0240 (13)0.0029 (12)0.0002 (11)0.0022 (11)
C130.0272 (15)0.0216 (14)0.0260 (13)0.0005 (12)0.0022 (11)0.0018 (11)
C140.0311 (16)0.0259 (14)0.0267 (14)0.0003 (13)0.0037 (12)0.0010 (11)
C150.0271 (16)0.0260 (14)0.0291 (14)0.0018 (12)0.0002 (12)0.0007 (11)
C160.0298 (16)0.0322 (16)0.0239 (13)0.0048 (13)0.0027 (12)0.0008 (12)
C170.0296 (16)0.0289 (15)0.0218 (13)0.0018 (13)0.0021 (12)0.0022 (11)
C180.0425 (19)0.0378 (17)0.0236 (14)0.0040 (15)0.0002 (13)0.0015 (12)
C190.046 (2)0.045 (2)0.0246 (14)0.0085 (17)0.0044 (14)0.0025 (14)
C200.0384 (18)0.0401 (18)0.0300 (16)0.0040 (15)0.0079 (14)0.0103 (13)
C210.0315 (17)0.0310 (16)0.0327 (15)0.0005 (13)0.0025 (13)0.0033 (13)
C220.0305 (17)0.0468 (19)0.0246 (14)0.0010 (15)0.0010 (13)0.0032 (13)
C230.051 (2)0.057 (2)0.0325 (17)0.0223 (18)0.0034 (17)0.0177 (15)
C240.075 (3)0.045 (2)0.056 (2)0.016 (2)0.000 (2)0.0206 (18)
C250.0337 (18)0.0309 (15)0.0318 (16)0.0003 (14)0.0003 (13)0.0052 (13)
C260.045 (2)0.0267 (16)0.051 (2)0.0054 (15)0.0005 (16)0.0047 (14)
C270.080 (3)0.0310 (19)0.091 (3)0.003 (2)0.023 (3)0.001 (2)
Geometric parameters (Å, º) top
Br1—Mn12.5146 (6)C10—C221.506 (4)
Mn1—C21.798 (3)C11—C121.398 (4)
Mn1—C11.809 (4)C11—H50.9500
Mn1—C31.809 (3)C12—C131.473 (4)
Mn1—N12.063 (2)C13—C141.404 (4)
Mn1—N22.068 (2)C14—C151.368 (4)
O1—C11.118 (4)C14—H60.9500
O2—C21.135 (4)C15—C161.429 (4)
O3—C31.144 (4)C15—C251.508 (4)
O4—C221.195 (4)C16—C171.416 (4)
O5—C221.323 (4)C16—C181.419 (4)
O5—C231.457 (4)C17—C211.414 (4)
O6—C251.190 (4)C18—C191.358 (4)
O7—C251.318 (4)C18—H70.9500
O7—C261.449 (4)C19—C201.402 (5)
N1—C121.328 (4)C19—H80.9500
N1—C91.382 (4)C20—C211.358 (4)
N2—C131.333 (3)C20—H90.9500
N2—C171.373 (3)C21—H100.9500
C4—C51.371 (5)C23—C241.493 (5)
C4—C91.394 (4)C23—H110.9900
C4—H10.9500C23—H120.9900
C5—C61.389 (6)C24—H130.9800
C5—H20.9500C24—H140.9800
C6—C71.363 (5)C24—H150.9800
C6—H30.9500C26—C271.478 (5)
C7—C81.425 (4)C26—H160.9900
C7—H40.9500C26—H170.9900
C8—C101.418 (4)C27—H180.9800
C8—C91.422 (4)C27—H190.9800
C10—C111.364 (4)C27—H200.9800
C2—Mn1—C191.40 (15)C14—C13—C12122.4 (2)
C2—Mn1—C384.91 (15)C15—C14—C13120.3 (3)
C1—Mn1—C391.23 (14)C15—C14—H6119.9
C2—Mn1—N1171.30 (13)C13—C14—H6119.9
C1—Mn1—N196.74 (12)C14—C15—C16118.8 (3)
C3—Mn1—N197.94 (11)C14—C15—C25118.5 (3)
C2—Mn1—N297.89 (12)C16—C15—C25122.6 (3)
C1—Mn1—N298.04 (11)C17—C16—C18118.9 (3)
C3—Mn1—N2170.22 (12)C17—C16—C15117.3 (2)
N1—Mn1—N277.97 (9)C18—C16—C15123.8 (3)
C2—Mn1—Br185.68 (11)N2—C17—C21118.6 (3)
C1—Mn1—Br1175.86 (9)N2—C17—C16122.5 (3)
C3—Mn1—Br185.59 (10)C21—C17—C16118.9 (3)
N1—Mn1—Br186.34 (7)C19—C18—C16120.2 (3)
N2—Mn1—Br185.29 (7)C19—C18—H7119.9
C22—O5—C23117.3 (3)C16—C18—H7119.9
C25—O7—C26116.8 (2)C18—C19—C20121.0 (3)
C12—N1—C9118.5 (2)C18—C19—H8119.5
C12—N1—Mn1112.39 (18)C20—C19—H8119.5
C9—N1—Mn1127.65 (19)C21—C20—C19120.2 (3)
C13—N2—C17118.1 (2)C21—C20—H9119.9
C13—N2—Mn1111.33 (18)C19—C20—H9119.9
C17—N2—Mn1128.58 (19)C20—C21—C17120.7 (3)
O1—C1—Mn1176.2 (3)C20—C21—H10119.6
O2—C2—Mn1176.4 (3)C17—C21—H10119.6
O3—C3—Mn1177.1 (3)O4—C22—O5126.2 (3)
C5—C4—C9120.6 (3)O4—C22—C10124.1 (3)
C5—C4—H1119.7O5—C22—C10109.7 (2)
C9—C4—H1119.7O5—C23—C24106.7 (3)
C4—C5—C6120.6 (3)O5—C23—H11110.4
C4—C5—H2119.7C24—C23—H11110.4
C6—C5—H2119.7O5—C23—H12110.4
C7—C6—C5120.7 (3)C24—C23—H12110.4
C7—C6—H3119.7H11—C23—H12108.6
C5—C6—H3119.7C23—C24—H13109.5
C6—C7—C8120.2 (3)C23—C24—H14109.5
C6—C7—H4119.9H13—C24—H14109.5
C8—C7—H4119.9C23—C24—H15109.5
C10—C8—C9117.9 (3)H13—C24—H15109.5
C10—C8—C7123.7 (3)H14—C24—H15109.5
C9—C8—C7118.4 (3)O6—C25—O7123.9 (3)
N1—C9—C4119.7 (3)O6—C25—C15125.3 (3)
N1—C9—C8121.0 (3)O7—C25—C15110.8 (2)
C4—C9—C8119.3 (3)O7—C26—C27110.0 (3)
C11—C10—C8119.2 (3)O7—C26—H16109.7
C11—C10—C22118.8 (3)C27—C26—H16109.7
C8—C10—C22122.1 (3)O7—C26—H17109.7
C10—C11—C12119.9 (3)C27—C26—H17109.7
C10—C11—H5120.0H16—C26—H17108.2
C12—C11—H5120.0C26—C27—H18109.5
N1—C12—C11122.9 (3)C26—C27—H19109.5
N1—C12—C13114.9 (2)H18—C27—H19109.5
C11—C12—C13122.1 (3)C26—C27—H20109.5
N2—C13—C14122.5 (3)H18—C27—H20109.5
N2—C13—C12115.1 (2)H19—C27—H20109.5
C9—C4—C5—C60.6 (6)C12—C13—C14—C15176.0 (3)
C4—C5—C6—C74.0 (6)C13—C14—C15—C163.2 (4)
C5—C6—C7—C82.6 (6)C13—C14—C15—C25179.7 (3)
C6—C7—C8—C10174.7 (3)C14—C15—C16—C173.7 (4)
C6—C7—C8—C92.0 (5)C25—C15—C16—C17180.0 (3)
C12—N1—C9—C4171.2 (3)C14—C15—C16—C18176.8 (3)
Mn1—N1—C9—C423.8 (4)C25—C15—C16—C180.5 (5)
C12—N1—C9—C88.9 (4)C13—N2—C17—C21170.9 (3)
Mn1—N1—C9—C8156.1 (2)Mn1—N2—C17—C2126.4 (4)
C5—C4—C9—N1175.8 (3)C13—N2—C17—C166.5 (4)
C5—C4—C9—C84.1 (5)Mn1—N2—C17—C16156.1 (2)
C10—C8—C9—N18.5 (4)C18—C16—C17—N2178.4 (3)
C7—C8—C9—N1174.6 (3)C15—C16—C17—N21.1 (4)
C10—C8—C9—C4171.6 (3)C18—C16—C17—C214.2 (4)
C7—C8—C9—C45.3 (4)C15—C16—C17—C21176.3 (3)
C9—C8—C10—C112.4 (4)C17—C16—C18—C193.5 (4)
C7—C8—C10—C11179.1 (3)C15—C16—C18—C19177.0 (3)
C9—C8—C10—C22176.4 (3)C16—C18—C19—C201.2 (5)
C7—C8—C10—C220.3 (5)C18—C19—C20—C210.3 (5)
C8—C10—C11—C123.0 (4)C19—C20—C21—C170.5 (5)
C22—C10—C11—C12178.2 (3)N2—C17—C21—C20179.7 (3)
C9—N1—C12—C113.3 (4)C16—C17—C21—C202.8 (4)
Mn1—N1—C12—C11163.9 (2)C23—O5—C22—O41.8 (5)
C9—N1—C12—C13174.6 (2)C23—O5—C22—C10178.8 (3)
Mn1—N1—C12—C1318.2 (3)C11—C10—C22—O4135.9 (3)
C10—C11—C12—N12.7 (4)C8—C10—C22—O445.3 (5)
C10—C11—C12—C13179.5 (3)C11—C10—C22—O544.7 (4)
C17—N2—C13—C147.2 (4)C8—C10—C22—O5134.1 (3)
Mn1—N2—C13—C14158.3 (2)C22—O5—C23—C24171.0 (3)
C17—N2—C13—C12171.3 (2)C26—O7—C25—O610.5 (5)
Mn1—N2—C13—C1223.2 (3)C26—O7—C25—C15168.4 (3)
N1—C12—C13—N23.5 (4)C14—C15—C25—O6159.9 (4)
C11—C12—C13—N2174.4 (3)C16—C15—C25—O616.4 (5)
N1—C12—C13—C14178.0 (3)C14—C15—C25—O718.9 (4)
C11—C12—C13—C144.1 (4)C16—C15—C25—O7164.7 (3)
N2—C13—C14—C152.4 (4)C25—O7—C26—C2783.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H4···O40.952.443.040 (4)121
C11—H5···Br1i0.952.923.789 (3)153
C14—H6···O70.952.332.659 (3)100
C18—H7···O60.952.252.883 (5)124
C19—H8···O2ii0.952.473.373 (4)160
C20—H9···O6iii0.952.513.383 (4)153
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP17K05799).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArdo, S. & Meyer, G. J. (2009). Chem. Soc. Rev. 38, 115–164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903–9906.  Web of Science CrossRef CAS Google Scholar
First citationChakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014a). ChemMedChem, 9, 1266–1274.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014b). Acc. Chem. Res. 47, 2603–2611.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChandrasekharam, M., Srinivasarao, C., Suresh, T., Reddy, S. M., Raghavender, M., Rajkumar, G., Srinivasu, M. & Reddy, P. Y. (2011). J. Chem. Sci. 123, 37–46.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHallett, A. J. & Pope, J. A. (2011). Inorg. Chem. Commun. 14, 1606–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationHenke, W. C., Otolski, C. J., Moore, W. N. G., Elles, C. G. & Blakemore, J. D. (2020). Inorg. Chem. 59, 2178–2187.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHoertz, P. G., Staniszewski, A., Marton, A., Higgins, G. T., Incarvito, C. D., Rheingold, A. L. & Meyer, G. J. (2006). J. Am. Chem. Soc. 128, 8234–8245.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKurz, P., Probst, B., Spingler, B. & Alberto, R. (2006). Eur. J. Inorg. Chem. pp. 2966–2974.  Web of Science CSD CrossRef Google Scholar
First citationLense, S., Guzei, I. A., Andersen, J. & Thao, K. C. (2018). Acta Cryst. E74, 731–736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMotterlini, R., Clark, J. E., Foresti, R., Sarathchandra, P., Mann, B. E. & Green, C. J. (2002). Circ. Res. 90, e17–e24.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalsh, J. J., Smith, C. L., Neri, G., Whitehead, G. F. S., Robertson, C. M. & Cowan, A. J. (2015). Faraday Discuss. 183, 147–160.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., He, R. & Gu, H. C. (2006). Appl. Surf. Sci. 253, 2611–2617.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds