research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Formation of a nona­nuclear copper(II) cluster with 3,5-di­methyl­pyrazolate starting from an NHC complex of copper(I) chloride

CROSSMARK_Color_square_no_text.svg

aWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: christopher.dodds@strath.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 July 2020; accepted 17 August 2020; online 21 August 2020)

The complete nona­nuclear cluster in bis­[1,3-bis­(2,6-di­methyl­phen­yl)imid­azol­ium] di-μ-chlorido-tetra­chlorido­octa­kis­(μ-3,5-di­methyl­pyrazolato)hexa-μ3-hydroxido-nona­copper(II) chloro­form disolvate, [HIXy]2[Cu9(μ-pz*)8(μ3-OH)6(μ2-Cl)2Cl4]·2CHCl3 or (C19H21N2)2[Cu9(C5H7N2)8Cl6(OH)6]·2CHCl3, where pz* is the 3,5-di­methyl­pyrazolyl anion, C5H7N2, and HIXy is the 1,3-bis­(2,6-di­methyl­phen­yl)imidazolium cation, C19H21N2+, is generated by a crystallographic centre of symmetry with a square-planar CuII ion bound to four μ3-OH ions lying on the inversion centre. Of the four remaining unique CuII atoms, three adopt CuN2O2Cl square-pyramidal coordination geometries with the chloride ion in the apical position and one has a distorted CuN2OCl tetra­hedral geometry. The dianionic nona­nuclear core can be described as a 24-membered [CuNN]8 ring that contains a Cu9O6Cl6 core. The cluster features three intra­molecular O—H⋯Cl hydrogen bonds. In the crystal, weak C—H⋯N and C—H⋯Cl inter­actions link the components. Polynuclear paramagnetic clusters of this type are of considerable inter­est due to their relevance to both the bioinorganic and single-mol­ecule magnets research fields.

1. Chemical context

The study of N-heterocyclic carbene (NHC) complexes of the group 11 metals has proven fruitful for researchers active in this field. Copper (Egbert et al., 2013[Egbert, J. D., Cazin, C. S. J. & Nolan, S. P. (2013). Catal. Sci. Technol. 3, 912-926.]) and gold (Díez-González et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]) complexes have proven particularly useful in catalysis while silver complexes are routinely used as NHC transfer reagents in addition to finding applications as pharmaceutical species (Garrison & Youngs, 2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]). Our inter­est has been the study of the structural chemistry of copper(I) NHC species and, in particular, the replacement of the chloride ligand in [Cu(NHC)Cl] with a variety of pseudohalides, including thio­cyanate and cyanate (Dodds & Kennedy, 2014[Dodds, C. A. & Kennedy, A. R. (2014). Z. Anorg. Allg. Chem. 640, 926-930.]; Dodds et al., 2019[Dodds, C. A., Kennedy, A. R. & Thompson, R. (2019). Eur. J. Inorg. Chem. pp. 3581-3587.]). In addition, we have been keen to highlight novel copper(II) species that can form when exploring copper(I) NHC complexes, such as the curious [(1,3-dimesityl-1H-imidazol-3-ium-2-yl)methano­lato]copper(II) chloride dimer that formed when formaldehyde was inserted into a copper–carbene bond (Dodds & Kennedy, 2018[Dodds, C. A. & Kennedy, A. R. (2018). Acta Cryst. E74, 1369-1372.]).

We sought to extend our studies through the reaction of [Cu(NHC)Cl] with the scorpionate ligand hydro­tris­(3,5-di­methyl­pyrazol­yl)borate (Tp*), hoping to replace the chloride ligand with Tp*. The reaction of [Cu(IXy)Cl] [IXy = 1,3-bis­(2,6-di­methyl­phen­yl)imidazol-2-yl­idene] with an impure batch of NaTp* (predominant contaminant unreacted 3,5-di­methyl­pyrazole) in chloro­form at room temperature resulted in the isolation of a blue solution, which yielded a pale-red powder. Vapour diffusion of diethyl ether into a chloro­form solution of this powder generated both colourless and green crystals. The colourless crystals were analysed by X-ray diffraction and were identified as unreacted [Cu(IXy)Cl].

[Scheme 1]

The green crystals were also suitable for X-ray diffraction studies and were identified as the title ionic species [HIXy]2 [Cu9(μ-pz*)8(μ3-OH)6(μ2-Cl)2Cl4]·2CHCl3 (I)[link] (where pz* is 3,5-di­methyl­pyrazolyl, C5H7N2), with the dianion being an unusual nona­nuclear copper(II) cluster. Subsequent attempts to rationally prepare this species have proven unsuccessful to date, and consequently the mechanism for the formation of this species is unknown. There are a large number of examples in the Cambridge Structural Database (CSD) of complexes containing trinuclear triangular μ3-OH capped copper(II) clusters (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). On searching the CSD for structures containing a central Cu9O6 core identical to the structure reported, no exact matches were found. The closest match found was the nona­nuclear CuII complex [Cu9(L)4(μ3-OH)4(MeOH)2] (L = penta­dentate trianionic Schiff-base ligand with N2O3 donor atoms) (Khanra et al., 2009[Khanra, S., Weyhermüller, T. & Chaudhuri, P. (2009). Dalton Trans. pp. 3847-3847.]). This complex consists of a central copper(II) atom, which resides in a Jahn–Teller-distorted octa­hedral geometry, coordinated by six oxygen atoms. The remaining CuII atoms are in distorted square-based pyramidal coordination environments, with each CuII ion coordinated by one nitro­gen atom and four oxygen atoms. The imidazolium cation, [HIXy]+, has been structurally characterized previously, with two entries in the CSD (Ilyakina et al., 2012[Ilyakina, E. V., Poddel'sky, A. I., Piskunov, A. V., Fukin, G. K., Bogomyakov, A. S., Cherkasov, V. K. & Abakumov, G. A. (2012). New J. Chem. 36, 1944-1948.]; Bortoluzzi et al., 2016[Bortoluzzi, M., Ferretti, E., Marchetti, F., Pampaloni, G. & Zacchini, S. (2016). Dalton Trans. 45, 6939-6948.]).

2. Structural commentary

The mol­ecular structure of (I)[link] consists of a nona­nuclear dianion and two imidazolium cations: two solvent CHCl3 mol­ecules complete the structure. The dianion is crystallographically centrosymmetric (Z′ = 0.5) with Cu1 occupying the centre of symmetry. The dianion can thus be best thought of as two [Cu4(μ-pz*)4(μ3-OH)3(μ2-Cl)Cl2] moieties with each connected to a CuII centre via two μ3-OH groups (Figs. 1[link] and 2[link]). This central CuII ion resides in a square-planar geometry, as evidenced by the O—Cu1—O bond angles (Table 1[link]). The eight outer CuII ions are found in two different coordination environments. Cu5 and Cu5i [symmetry code: (i) –x, –y, –z] can be described as residing in flattened tetra­hedral geometries (sum of bond angles = 666.32°) and each of these Cu centres bonds to a single N atom of each of two pz* ligands, to one μ3-OH ligand and to a terminal chloride ligand. The N—Cu—N and O—Cu—Cl bond angles have widened to 150.43 (14) and 133.07 (7)°, respectively, with the remaining angles compressed to between 92.56 (10) and 98.93 (9)°, see Table 1[link]. The Cu5—O3 bond length is 2.029 (2) Å, which is similar to the values of other reported Cu—O bond lengths between CuII ions and μ3-OH groups (Casarin et al., 2005[Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]; Khanra et al., 2009[Khanra, S., Weyhermüller, T. & Chaudhuri, P. (2009). Dalton Trans. pp. 3847-3847.]). The two Cu5—N bond lengths are statistically identical at 1.924 (3) and 1.927 (3) Å and finally the Cu5—Cl bond length is 2.2466 (19) Å. The remaining six CuII centres (Cu2, Cu3 and Cu4 and their symmetry clones) reside in distorted square-based pyramidal geometries. Each of these metal ions is coordinated to a single N atom from each of two pz* ligands, to two μ3-OH ligands and to a chloride ligand (either terminal or bridging). The cis-N2O2 basal planes are comprised of the μ3-hydroxo oxygen atoms and pz* nitro­gen atoms with the chloride ligands occupying the apical positions. Details of coordination bond lengths and angles are given in Table 1[link], with some pertinent features highlighted below. The Cu—N bond length range is 1.943 (3) to 1.979 (3) Å while the Cu—O bond length range is 1.986 (2) to 2.115 (2) Å with both sets of values comparing well to previously reported examples of multinuclear copper(II) complexes containing both μ3-OH groups and pyrazolate ligands (Casarin et al., 2005[Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]). The Cu—Cl bond lengths vary as expected, depending on whether the chloride is bonding via bridging or terminal modes. The Cu4—Cl2 bond length for the terminal chloride anion is 2.5191 (9) Å while the bridging chloride ions have longer Cu—Cl bond lengths of 2.5755 (8) and 2.6282 (9) Å. Note that all these Cu—Cl and Cu—N distances are longer than those found for four-coordinate Cu5, but that the Cu5—O3 distance fits within the range given above. These inter­actions combine to give a nona­nuclear dianion whose core can be envisioned as a linear Cu(O)2Cu(O)2Cu unit subtended by two Cu3O units (Figs. 3[link], 4[link] and 5).

Table 1
Selected geometric parameters (Å, °)

Cu1—O1i 1.924 (2) Cu3—O3i 2.057 (2)
Cu1—O1 1.924 (2) Cu3—Cl1 2.5755 (8)
Cu1—O2 1.929 (2) Cu4—N9 1.943 (3)
Cu1—O2i 1.929 (2) Cu4—N8 1.977 (3)
Cu2—N7 1.947 (3) Cu4—O2 1.996 (2)
Cu2—N3 1.964 (3) Cu4—O3 2.115 (2)
Cu2—O1i 2.031 (2) Cu4—Cl2 2.5191 (9)
Cu2—O2 2.044 (2) Cu5—N6i 1.924 (3)
Cu2—Cl1 2.6282 (9) Cu5—N10 1.927 (3)
Cu3—N5 1.950 (3) Cu5—O3 2.029 (2)
Cu3—N4 1.979 (3) Cu5—Cl3 2.2466 (9)
Cu3—O1i 1.986 (2)    
       
O1i—Cu1—O1 180.0 O1i—Cu3—O3i 92.81 (9)
O1i—Cu1—O2 87.68 (9) N5—Cu3—Cl1 96.83 (8)
O1—Cu1—O2 92.32 (9) N4—Cu3—Cl1 101.02 (8)
O1i—Cu1—O2i 92.32 (9) O1i—Cu3—Cl1 81.45 (6)
O1—Cu1—O2i 87.68 (9) O3i—Cu3—Cl1 99.01 (6)
O2—Cu1—O2i 180.0 N9—Cu4—N8 93.34 (12)
N7—Cu2—N3 106.25 (11) N9—Cu4—O2 176.28 (11)
N7—Cu2—O1i 167.65 (10) N8—Cu4—O2 83.51 (10)
N3—Cu2—O1i 85.78 (10) N9—Cu4—O3 87.28 (10)
N7—Cu2—O2 85.87 (10) N8—Cu4—O3 157.45 (10)
N3—Cu2—O2 165.28 (10) O2—Cu4—O3 96.39 (9)
O1i—Cu2—O2 81.83 (8) N9—Cu4—Cl2 97.75 (9)
N7—Cu2—Cl1 101.13 (9) N8—Cu4—Cl2 112.62 (8)
N3—Cu2—Cl1 98.45 (8) O2—Cu4—Cl2 81.71 (6)
O1i—Cu2—Cl1 79.34 (7) O3—Cu4—Cl2 89.57 (6)
O2—Cu2—Cl1 87.07 (7) N6i—Cu5—N10 150.43 (14)
N5—Cu3—N4 95.03 (11) N6i—Cu5—O3 93.11 (10)
N5—Cu3—O1i 177.04 (10) N10—Cu5—O3 92.56 (10)
N4—Cu3—O1i 82.97 (10) N6i—Cu5—Cl3 98.22 (9)
N5—Cu3—O3i 89.83 (10) N10—Cu5—Cl3 98.93 (9)
N4—Cu3—O3i 158.66 (10) O3—Cu5—Cl3 133.07 (7)
Symmetry code: (i) -x, -y, -z.
[Figure 1]
Figure 1
Contents of the asymmetric unit of (I)[link] with non-H atoms shown as 50% probability ellipsoids and H atoms as spheres of arbitrary size.
[Figure 2]
Figure 2
Structure of the centrosymmetric nona­nuclear anion in (I)[link]. The symmetry-equivalent atoms are generated by the symmetry operationx, –y, –z.
[Figure 3]
Figure 3
Simplified diagram of the coordination bonds within the anion in (I)[link]. The outer ring is a 24-membered [CuN2]8 unit that contains a Cu- and O-based core.
[Figure 4]
Figure 4
Central Cu9O6 core in (I)[link] viewed (a) from above and (b) from the side.

Of the μ3-OH groups, atom O3 is situated 0.364 (2) Å out of the plane defined by the three copper atoms (Cu3i/Cu4/Cu5) whilst O1 and O2 adopt more pyramidal geometries and are situated out of the planes defined by the copper atoms (Cu1i/Cu2i/Cu3i and Cu1/Cu2/Cu4) by 0.651 (2) and 0.758 (2) Å, respectively.

The structural parameters of the imidazolium cation, [HIXy]+, in (I)[link] compare well to the previously reported structures (Ilyakina et al., 2012[Ilyakina, E. V., Poddel'sky, A. I., Piskunov, A. V., Fukin, G. K., Bogomyakov, A. S., Cherkasov, V. K. & Abakumov, G. A. (2012). New J. Chem. 36, 1944-1948.]; Bortoluzzi et al., 2016[Bortoluzzi, M., Ferretti, E., Marchetti, F., Pampaloni, G. & Zacchini, S. (2016). Dalton Trans. 45, 6939-6948.]). The C1—N bond lengths of the heterocycle are slightly shorter at 1.322 (5) and 1.334 (5) Å compared to the 1.333–1.357 Å range in the previously reported structures. The N1—C1—N2 bond angle of the heterocycle is 109.5 (3)° compared to 108.6° for both of the previously reported structures.

3. Supra­molecular features

Table 2[link] shows the short hydrogen-bonding contacts of the structure. All three classical hydrogen bonds are intra­molecular O—H⋯Cl contacts and the inter­molecular contacts are thus non-classical inter­actions involving C atoms. The main inter­actions observed between the anion and the cation involve the labile C1—H1 group of the imidazolium cation. This inter­acts with two Cl ligands of the anion through the C1—H1⋯Cl1 hydrogen bond and through a π geometry C—H to Cl3i inter­action [C⋯Cl = 3.093 (2) Å]. The other inter­actions of Table 2[link] are all inter­nal to the [HIXy]2 [Cu9(μ-pz*)8(μ3-OH)6(μ2-Cl)2Cl4]·2CHCl3 unit, except for the C2—H2⋯Cl3ii contact [symmetry code: (ii) –x + 1, –y, –z]. This short contact exists between an H atom of the unsaturated backbone of the imidazolium cation and a chloride ligand of a neighbouring anion and connects anions and cations by translation along the a-axis direction.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯Cl2i 0.87 (1) 2.68 (4) 3.098 (2) 111 (3)
O2—H2H⋯Cl1 0.88 (1) 2.95 (5) 3.246 (2) 102 (3)
O3—H3H⋯Cl2 0.88 (1) 2.81 (4) 3.277 (2) 115 (3)
C1—H1⋯Cl1 0.95 2.48 3.336 (4) 151
C2—H2⋯Cl3ii 0.95 2.71 3.467 (4) 138
C1S—H1S⋯Cl3 1.00 2.51 3.395 (5) 147
C20—H20A⋯N7 0.98 2.60 3.477 (5) 149
C24—H24C⋯N5 0.98 2.55 3.307 (5) 134
C25—H25A⋯Cl1 0.98 2.77 3.652 (4) 150
C29—H29A⋯Cl3i 0.98 2.81 3.572 (5) 135
C35—H35A⋯Cl2 0.98 2.90 3.764 (4) 148
C39—H39A⋯Cl3 0.98 2.80 3.644 (4) 144
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

4. Database survey

Outside the complex reported herein there are eleven structures reported in the CSD (Version 5.41, update no. 1, March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) that contain a Cu9O6 core as observed in the complex reported. Of these, only one structure is truly a nona­nuclear copper(II) cluster (Khanra et al., 2009[Khanra, S., Weyhermüller, T. & Chaudhuri, P. (2009). Dalton Trans. pp. 3847-3847.]: refcode DUGLOH). There are two reports in the CSD of structures that contain the imidazolium cation [HIXy]+ (Ilyakina et al., 2012[Ilyakina, E. V., Poddel'sky, A. I., Piskunov, A. V., Fukin, G. K., Bogomyakov, A. S., Cherkasov, V. K. & Abakumov, G. A. (2012). New J. Chem. 36, 1944-1948.]: refcode ZEFBAP; Bortoluzzi et al., 2016[Bortoluzzi, M., Ferretti, E., Marchetti, F., Pampaloni, G. & Zacchini, S. (2016). Dalton Trans. 45, 6939-6948.]: refcode QAJTIH).

5. Synthesis and crystallization

[Cu(IXy)Cl] (234 mg, 0.625 mmol) was dissolved in chloro­form (5 ml) and NaTp* (200 mg, 0.625 mmol) dissolved in chloro­form (5 ml) was added. (Retrospectively it was found that the NaTp* used was not pure, containing significant qu­anti­ties of unreacted 3,5-di­methyl­pyrazole.) The initially pale-yellow solution turned pale green and the solution was left stirring for 24 h. After this time, the solution had turned blue and it appeared as though a small amount of white precipitate had formed. The mixture was filtered through Celite and the solvent was removed in vacuo. During the removal of the solvent, the colour changed from blue to deep red–brown, resulting in the isolation of a deep red–brown oil. Diethyl ether was added, which resulted in the precipitation of a pale-red solid, which was isolated by filtration and dried, yielding 180 mg of solid. In an effort to grow crystals suitable for single-crystal X-ray diffraction studies, 19 mg of solid was dissolved in chloro­form (0.5 ml) and vapour diffused with diethyl ether. The majority of the crystals that formed were colourless and analysed as unreacted [Cu(IXy)Cl]. The green crystals that were isolated analysed as the reported [HIXy]2[Cu9(μ-pz*)8(μ3-OH)6(μ2-Cl)2Cl4]·2CHCl3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Data were measured by the EPSRC National Crystallography Service (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]). All H atoms bound to C were geometrically placed and modelled in riding mode with C—H distances of 0.95, 0.98 and 1.00 Å for sp2 CH, methyl, and sp3 CH groups, respectively. For methyl groups, the constraint Uiso(H) = 1.5Ueq(C) was applied and elsewhere Uiso(H) = 1.2Ueq(C). The H atoms of the OH groups were positioned as found in a difference map and refined isotropically with the O—H distance restrained to 0.88 (1) Å. Displacement ellipsoids show a relatively high amount of motion in the Cl atoms of the solvent CHCl3 mol­ecule, and the highest residual electron density lies close to this feature. Disordered models were constructed, but were not as satisfactory as the ordered model presented.

Table 3
Experimental details

Crystal data
Chemical formula (C19H21N2)2[Cu9(C5H7N2)8Cl6(OH)6]·2CHCl3
Mr 2441.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 12.9974 (9), 13.9305 (10), 14.7162 (10)
α, β, γ (°) 106.143 (3), 93.254 (2), 99.819 (2)
V3) 2506.6 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.25
Crystal size (mm) 0.19 × 0.08 × 0.05
 
Data collection
Diffractometer Rigaku AFC12 Saturn724+ CCD
Absorption correction Multi-scan (CrystalClear; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku MSC, Orem, Utah, USA.])
Tmin, Tmax 0.593, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37232, 11446, 10024
Rint 0.055
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.04
No. of reflections 11446
No. of parameters 598
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.28, −1.39
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku MSC, Orem, Utah, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020), OLEX2 Dolomanov et al., 2003); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Bis[1,3-bis(2,6-dimethylphenyl)imidazolium] di-µ-chlorido-tetrachloridooctakis(µ-3,5-dimethylpyrazolato)hexa-µ3-hydroxido-nonacopper(II) chloroform disolvate top
Crystal data top
(C19H21N2)2[Cu9(C5H7N2)8Cl6(OH)6]·2CHCl3Z = 1
Mr = 2441.10F(000) = 1239
Triclinic, P1Dx = 1.617 Mg m3
a = 12.9974 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.9305 (10) ÅCell parameters from 35050 reflections
c = 14.7162 (10) Åθ = 2.3–27.5°
α = 106.143 (3)°µ = 2.25 mm1
β = 93.254 (2)°T = 100 K
γ = 99.819 (2)°Block, green
V = 2506.6 (3) Å30.19 × 0.08 × 0.05 mm
Data collection top
Rigaku AFC12 Saturn724+ CCD
diffractometer
10024 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.055
profile data from ω–scansθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2012)
h = 1616
Tmin = 0.593, Tmax = 1.000k = 1718
37232 measured reflectionsl = 1919
11446 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0746P)2 + 4.3606P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
11446 reflectionsΔρmax = 1.28 e Å3
598 parametersΔρmin = 1.39 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.01912 (12)
Cu20.05553 (3)0.08906 (3)0.15325 (3)0.02152 (10)
Cu30.21068 (3)0.20781 (3)0.02174 (3)0.02028 (10)
Cu40.12605 (3)0.09692 (3)0.22732 (3)0.02211 (10)
Cu50.31920 (3)0.29053 (3)0.24280 (3)0.02350 (10)
Cl10.03648 (6)0.25637 (6)0.02371 (6)0.02707 (17)
Cl1S0.58106 (12)0.06358 (12)0.39647 (13)0.0750 (4)
Cl20.05437 (6)0.13306 (6)0.19807 (6)0.03094 (18)
Cl2S0.5393 (2)0.2027 (2)0.56923 (14)0.1182 (8)
Cl30.48127 (6)0.26149 (7)0.27012 (7)0.0354 (2)
Cl3S0.69969 (18)0.26565 (18)0.46028 (19)0.1261 (10)
O10.12609 (16)0.06840 (17)0.03527 (15)0.0207 (4)
O20.07482 (16)0.01795 (17)0.10925 (15)0.0204 (4)
O30.18815 (17)0.20480 (17)0.15822 (15)0.0224 (4)
N10.2395 (2)0.2690 (2)0.1084 (2)0.0333 (7)
N20.1213 (3)0.3829 (2)0.2101 (3)0.0382 (7)
N30.1984 (2)0.1346 (2)0.18140 (19)0.0233 (5)
N40.2699 (2)0.1792 (2)0.10182 (19)0.0230 (5)
N50.2919 (2)0.3463 (2)0.07161 (19)0.0242 (5)
N60.3505 (2)0.3729 (2)0.1587 (2)0.0275 (6)
N70.0389 (2)0.0921 (2)0.25950 (18)0.0245 (5)
N80.1245 (2)0.0138 (2)0.28730 (19)0.0261 (6)
N90.1711 (2)0.2034 (2)0.34688 (19)0.0276 (6)
N100.2632 (2)0.2713 (2)0.35634 (19)0.0286 (6)
C10.1374 (3)0.3016 (3)0.1335 (3)0.0325 (7)
H10.08390.27170.10190.039*
C1S0.5763 (4)0.1875 (4)0.4541 (4)0.0577 (12)
H1S0.52350.20990.41660.069*
C20.2919 (3)0.3328 (3)0.1725 (4)0.0479 (11)
H20.36580.32740.17190.058*
C30.2187 (4)0.4027 (3)0.2345 (4)0.0482 (11)
H30.23100.45640.28620.058*
C40.2842 (3)0.1802 (3)0.0298 (3)0.0331 (8)
C50.2759 (3)0.1873 (3)0.0623 (3)0.0346 (8)
C60.3152 (3)0.0996 (3)0.1372 (3)0.0419 (9)
H60.31100.10140.20100.050*
C70.3607 (3)0.0095 (3)0.1198 (4)0.0453 (10)
H70.38680.04980.17160.054*
C80.3681 (3)0.0060 (3)0.0277 (4)0.0431 (10)
H80.39990.05600.01710.052*
C90.3301 (3)0.0911 (3)0.0504 (3)0.0379 (9)
C100.2289 (3)0.2845 (3)0.0825 (3)0.0404 (9)
H10A0.23280.27330.15150.061*
H10B0.26810.33760.05430.061*
H10C0.15530.30610.05490.061*
C110.3389 (3)0.0871 (3)0.1505 (3)0.0422 (10)
H11A0.36190.01620.15020.063*
H11B0.27030.11500.18830.063*
H11C0.39020.12740.17850.063*
C120.0168 (3)0.4342 (3)0.2573 (3)0.0431 (10)
C130.0492 (3)0.4885 (3)0.2096 (4)0.0451 (10)
C140.1525 (4)0.5298 (4)0.2519 (4)0.0609 (14)
H140.19990.56630.22090.073*
C150.1856 (5)0.5181 (5)0.3371 (5)0.0722 (17)
H150.25630.54580.36400.087*
C160.1196 (5)0.4675 (4)0.3842 (4)0.0621 (14)
H160.14420.46260.44460.075*
C170.0149 (5)0.4219 (4)0.3449 (3)0.0561 (12)
C180.0148 (3)0.5039 (3)0.1173 (3)0.0458 (10)
H18A0.06050.50510.11360.069*
H18B0.05410.56870.11290.069*
H18C0.02810.44800.06480.069*
C190.0585 (6)0.3621 (4)0.3931 (4)0.0699 (16)
H19A0.08280.29260.35080.105*
H19B0.02180.35950.45220.105*
H19C0.11900.39480.40780.105*
C200.1967 (3)0.0718 (3)0.3572 (3)0.0380 (8)
H20A0.12070.06790.35620.057*
H20B0.22230.11120.39990.057*
H20C0.21120.00290.38000.057*
C210.2511 (3)0.1228 (3)0.2588 (2)0.0277 (7)
C220.3577 (3)0.1608 (3)0.2292 (3)0.0315 (7)
H220.41310.16300.26850.038*
C230.3662 (3)0.1947 (3)0.1306 (3)0.0275 (7)
C240.4627 (3)0.2392 (3)0.0604 (3)0.0351 (8)
H24A0.47820.18840.02980.053*
H24B0.52230.25890.09370.053*
H24C0.45060.29930.01200.053*
C250.2711 (3)0.4173 (3)0.0651 (3)0.0337 (8)
H25A0.19930.37750.07730.051*
H25B0.26960.48680.06710.051*
H25C0.31320.38560.11380.051*
C260.3189 (3)0.4206 (3)0.0316 (2)0.0288 (7)
C270.3961 (3)0.4963 (3)0.0922 (3)0.0344 (8)
H270.42960.55790.08180.041*
C280.4141 (3)0.4634 (3)0.1711 (3)0.0337 (8)
C290.4879 (3)0.5158 (3)0.2602 (3)0.0438 (10)
H29A0.52830.46760.27480.066*
H29B0.53600.57360.25070.066*
H29C0.44750.54030.31320.066*
C300.0271 (3)0.2591 (3)0.2858 (3)0.0340 (8)
H30A0.08830.24430.31930.051*
H30B0.00390.30830.30920.051*
H30C0.04910.28770.21740.051*
C310.0523 (3)0.1631 (3)0.3035 (2)0.0289 (7)
C320.1479 (3)0.1288 (3)0.3615 (2)0.0337 (8)
H320.17780.16260.40120.040*
C330.1901 (3)0.0362 (3)0.3493 (2)0.0313 (7)
C340.2932 (3)0.0341 (4)0.3925 (3)0.0416 (9)
H34A0.32750.05820.34310.062*
H34B0.33860.00270.41960.062*
H34C0.28060.09240.44270.062*
C350.0410 (3)0.1482 (3)0.4489 (3)0.0382 (9)
H35A0.01000.12950.39220.057*
H35B0.01090.18620.50410.057*
H35C0.05790.08630.46040.057*
C360.1390 (3)0.2132 (3)0.4339 (2)0.0343 (8)
C370.2120 (3)0.2885 (3)0.5009 (3)0.0398 (9)
H370.20990.31110.56780.048*
C380.2883 (3)0.3232 (3)0.4489 (3)0.0363 (8)
C390.3843 (3)0.4062 (3)0.4831 (3)0.0440 (10)
H39A0.43900.39130.44100.066*
H39B0.41020.40990.54810.066*
H39C0.36630.47160.48250.066*
H1H0.164 (3)0.022 (3)0.056 (3)0.046 (13)*
H2H0.116 (3)0.062 (3)0.093 (3)0.048 (13)*
H3H0.138 (2)0.240 (3)0.167 (3)0.037 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0149 (2)0.0265 (3)0.0172 (2)0.00159 (19)0.00120 (18)0.0100 (2)
Cu20.01761 (18)0.0302 (2)0.01721 (18)0.00066 (14)0.00122 (13)0.01019 (15)
Cu30.01672 (18)0.0249 (2)0.01895 (18)0.00097 (14)0.00124 (14)0.00801 (14)
Cu40.01850 (19)0.0300 (2)0.01643 (18)0.00035 (15)0.00013 (14)0.00803 (15)
Cu50.01768 (19)0.0313 (2)0.01977 (19)0.00124 (15)0.00073 (14)0.00850 (15)
Cl10.0212 (4)0.0322 (4)0.0274 (4)0.0086 (3)0.0025 (3)0.0061 (3)
Cl1S0.0628 (8)0.0700 (9)0.0905 (11)0.0234 (7)0.0047 (7)0.0150 (8)
Cl20.0218 (4)0.0320 (4)0.0335 (4)0.0060 (3)0.0016 (3)0.0012 (3)
Cl2S0.173 (2)0.1406 (19)0.0623 (10)0.0689 (18)0.0352 (12)0.0370 (11)
Cl30.0200 (4)0.0500 (5)0.0394 (5)0.0045 (3)0.0017 (3)0.0201 (4)
Cl3S0.1041 (15)0.1175 (16)0.144 (2)0.0473 (13)0.0505 (14)0.0720 (15)
O10.0169 (10)0.0260 (11)0.0190 (10)0.0028 (8)0.0025 (8)0.0071 (8)
O20.0169 (10)0.0276 (11)0.0180 (10)0.0051 (8)0.0012 (8)0.0085 (8)
O30.0174 (10)0.0290 (11)0.0197 (10)0.0022 (8)0.0016 (8)0.0066 (9)
N10.0265 (15)0.0283 (15)0.0508 (19)0.0098 (12)0.0169 (13)0.0154 (13)
N20.0369 (17)0.0313 (16)0.0483 (19)0.0121 (13)0.0169 (15)0.0089 (14)
N30.0204 (13)0.0275 (13)0.0226 (13)0.0037 (10)0.0039 (10)0.0084 (10)
N40.0189 (12)0.0273 (13)0.0237 (13)0.0027 (10)0.0029 (10)0.0096 (10)
N50.0215 (13)0.0264 (13)0.0243 (13)0.0020 (10)0.0012 (10)0.0087 (11)
N60.0257 (14)0.0289 (14)0.0243 (13)0.0015 (11)0.0022 (11)0.0068 (11)
N70.0237 (13)0.0311 (14)0.0194 (12)0.0045 (11)0.0018 (10)0.0087 (11)
N80.0204 (13)0.0392 (16)0.0198 (12)0.0020 (11)0.0005 (10)0.0132 (11)
N90.0208 (13)0.0370 (15)0.0211 (13)0.0035 (11)0.0026 (10)0.0077 (11)
N100.0207 (13)0.0416 (16)0.0188 (13)0.0040 (11)0.0002 (10)0.0076 (12)
C10.0289 (17)0.0285 (17)0.042 (2)0.0083 (14)0.0122 (15)0.0099 (15)
C1S0.060 (3)0.069 (3)0.045 (3)0.007 (2)0.002 (2)0.022 (2)
C20.034 (2)0.039 (2)0.080 (3)0.0155 (17)0.032 (2)0.022 (2)
C30.046 (2)0.037 (2)0.065 (3)0.0177 (18)0.031 (2)0.009 (2)
C40.0171 (15)0.0279 (17)0.058 (2)0.0074 (12)0.0085 (15)0.0162 (16)
C50.0192 (16)0.0327 (18)0.056 (2)0.0090 (13)0.0086 (15)0.0170 (17)
C60.0264 (18)0.041 (2)0.060 (3)0.0095 (15)0.0075 (17)0.0162 (19)
C70.0251 (18)0.036 (2)0.071 (3)0.0043 (15)0.0041 (18)0.010 (2)
C80.0215 (17)0.0289 (18)0.081 (3)0.0027 (14)0.0108 (18)0.0199 (19)
C90.0167 (15)0.0355 (19)0.067 (3)0.0070 (13)0.0086 (16)0.0221 (18)
C100.0251 (18)0.040 (2)0.063 (3)0.0069 (15)0.0097 (17)0.0256 (19)
C110.0270 (18)0.039 (2)0.070 (3)0.0070 (15)0.0157 (18)0.029 (2)
C120.042 (2)0.035 (2)0.045 (2)0.0147 (17)0.0047 (18)0.0048 (17)
C130.037 (2)0.0289 (19)0.061 (3)0.0051 (16)0.0069 (19)0.0008 (18)
C140.042 (3)0.047 (3)0.081 (4)0.005 (2)0.000 (2)0.000 (2)
C150.060 (3)0.064 (3)0.074 (4)0.012 (3)0.011 (3)0.007 (3)
C160.073 (4)0.056 (3)0.045 (3)0.024 (3)0.009 (2)0.008 (2)
C170.079 (4)0.046 (3)0.040 (2)0.026 (2)0.012 (2)0.0018 (19)
C180.038 (2)0.033 (2)0.061 (3)0.0022 (16)0.0105 (19)0.0081 (19)
C190.110 (5)0.059 (3)0.043 (3)0.034 (3)0.026 (3)0.005 (2)
C200.040 (2)0.050 (2)0.0229 (17)0.0071 (17)0.0109 (15)0.0089 (15)
C210.0279 (16)0.0328 (17)0.0256 (16)0.0053 (13)0.0100 (13)0.0126 (13)
C220.0265 (17)0.0393 (19)0.0333 (18)0.0085 (14)0.0146 (14)0.0147 (15)
C230.0212 (15)0.0284 (16)0.0372 (18)0.0063 (12)0.0072 (13)0.0151 (14)
C240.0214 (16)0.039 (2)0.046 (2)0.0012 (14)0.0024 (15)0.0183 (17)
C250.0359 (19)0.0342 (18)0.0343 (18)0.0041 (15)0.0006 (15)0.0179 (15)
C260.0277 (16)0.0294 (17)0.0310 (17)0.0034 (13)0.0041 (13)0.0125 (14)
C270.0365 (19)0.0267 (17)0.0384 (19)0.0031 (14)0.0000 (15)0.0132 (15)
C280.0325 (18)0.0328 (18)0.0308 (18)0.0035 (14)0.0009 (14)0.0078 (14)
C290.045 (2)0.038 (2)0.037 (2)0.0138 (17)0.0060 (17)0.0070 (16)
C300.048 (2)0.0302 (18)0.0281 (17)0.0093 (15)0.0075 (15)0.0132 (14)
C310.0322 (18)0.0386 (19)0.0224 (15)0.0128 (14)0.0096 (13)0.0148 (14)
C320.0306 (18)0.053 (2)0.0265 (17)0.0141 (16)0.0064 (14)0.0209 (16)
C330.0230 (16)0.052 (2)0.0234 (16)0.0088 (15)0.0029 (12)0.0181 (15)
C340.0228 (17)0.073 (3)0.0309 (19)0.0028 (17)0.0053 (14)0.0239 (19)
C350.0293 (18)0.054 (2)0.0231 (16)0.0087 (16)0.0082 (14)0.0076 (16)
C360.0277 (17)0.046 (2)0.0236 (16)0.0059 (15)0.0033 (13)0.0084 (15)
C370.037 (2)0.051 (2)0.0203 (16)0.0094 (17)0.0042 (14)0.0044 (15)
C380.0305 (18)0.045 (2)0.0236 (16)0.0061 (15)0.0002 (14)0.0036 (15)
C390.038 (2)0.053 (2)0.0255 (18)0.0155 (18)0.0030 (15)0.0027 (17)
Geometric parameters (Å, º) top
Cu1—O1i1.924 (2)C9—C111.500 (6)
Cu1—O11.924 (2)C10—H10A0.9800
Cu1—O21.929 (2)C10—H10B0.9800
Cu1—O2i1.929 (2)C10—H10C0.9800
Cu1—Cu2i2.9293 (4)C11—H11A0.9800
Cu1—Cu22.9293 (4)C11—H11B0.9800
Cu2—N71.947 (3)C11—H11C0.9800
Cu2—N31.964 (3)C12—C131.393 (7)
Cu2—O1i2.031 (2)C12—C171.397 (7)
Cu2—O22.044 (2)C13—C141.401 (6)
Cu2—Cl12.6282 (9)C13—C181.489 (7)
Cu2—Cu33.0558 (5)C14—C151.364 (9)
Cu3—N51.950 (3)C14—H140.9500
Cu3—N41.979 (3)C15—C161.360 (9)
Cu3—O1i1.986 (2)C15—H150.9500
Cu3—O3i2.057 (2)C16—C171.414 (8)
Cu3—Cl12.5755 (8)C16—H160.9500
Cu4—N91.943 (3)C17—C191.497 (8)
Cu4—N81.977 (3)C18—H18A0.9800
Cu4—O21.996 (2)C18—H18B0.9800
Cu4—O32.115 (2)C18—H18C0.9800
Cu4—Cl22.5191 (9)C19—H19A0.9800
Cu5—N6i1.924 (3)C19—H19B0.9800
Cu5—N101.927 (3)C19—H19C0.9800
Cu5—O32.029 (2)C20—C211.498 (5)
Cu5—Cl32.2466 (9)C20—H20A0.9800
Cl1S—C1S1.712 (6)C20—H20B0.9800
Cl2S—C1S1.753 (5)C20—H20C0.9800
Cl3S—C1S1.760 (6)C21—C221.394 (5)
O1—Cu3i1.986 (2)C22—C231.388 (5)
O1—Cu2i2.031 (2)C22—H220.9500
O1—H1H0.874 (10)C23—C241.501 (5)
O2—H2H0.877 (10)C24—H24A0.9800
O3—Cu3i2.057 (2)C24—H24B0.9800
O3—H3H0.876 (10)C24—H24C0.9800
N1—C11.322 (5)C25—C261.505 (5)
N1—C21.399 (5)C25—H25A0.9800
N1—C41.446 (5)C25—H25B0.9800
N2—C11.334 (5)C25—H25C0.9800
N2—C31.386 (5)C26—C271.389 (5)
N2—C121.457 (5)C27—C281.384 (5)
N3—C211.347 (4)C27—H270.9500
N3—N41.377 (4)C28—C291.503 (5)
N4—C231.346 (4)C29—H29A0.9800
N5—C261.335 (4)C29—H29B0.9800
N5—N61.375 (4)C29—H29C0.9800
N6—C281.344 (4)C30—C311.493 (5)
N6—Cu5i1.924 (3)C30—H30A0.9800
N7—C311.352 (4)C30—H30B0.9800
N7—N81.371 (4)C30—H30C0.9800
N8—C331.349 (4)C31—C321.397 (5)
N9—C361.347 (4)C32—C331.376 (5)
N9—N101.368 (4)C32—H320.9500
N10—C381.343 (4)C33—C341.506 (5)
C1—H10.9500C34—H34A0.9800
C1S—H1S1.0000C34—H34B0.9800
C2—C31.334 (7)C34—H34C0.9800
C2—H20.9500C35—C361.498 (5)
C3—H30.9500C35—H35A0.9800
C4—C51.394 (6)C35—H35B0.9800
C4—C91.402 (5)C35—H35C0.9800
C5—C61.394 (6)C36—C371.397 (5)
C5—C101.503 (5)C37—C381.390 (5)
C6—C71.390 (6)C37—H370.9500
C6—H60.9500C38—C391.504 (5)
C7—C81.378 (7)C39—H39A0.9800
C7—H70.9500C39—H39B0.9800
C8—C91.396 (6)C39—H39C0.9800
C8—H80.9500
O1i—Cu1—O1180.0C7—C6—H6119.6
O1i—Cu1—O287.68 (9)C5—C6—H6119.6
O1—Cu1—O292.32 (9)C8—C7—C6120.2 (4)
O1i—Cu1—O2i92.32 (9)C8—C7—H7119.9
O1—Cu1—O2i87.68 (9)C6—C7—H7119.9
O2—Cu1—O2i180.0C7—C8—C9121.8 (4)
O1i—Cu1—Cu2i136.36 (6)C7—C8—H8119.1
O1—Cu1—Cu2i43.64 (6)C9—C8—H8119.1
O2—Cu1—Cu2i135.95 (6)C8—C9—C4116.2 (4)
O2i—Cu1—Cu2i44.05 (6)C8—C9—C11121.6 (4)
O1i—Cu1—Cu243.64 (6)C4—C9—C11122.2 (4)
O1—Cu1—Cu2136.36 (6)C5—C10—H10A109.5
O2—Cu1—Cu244.05 (6)C5—C10—H10B109.5
O2i—Cu1—Cu2135.95 (6)H10A—C10—H10B109.5
Cu2i—Cu1—Cu2180.0C5—C10—H10C109.5
N7—Cu2—N3106.25 (11)H10A—C10—H10C109.5
N7—Cu2—O1i167.65 (10)H10B—C10—H10C109.5
N3—Cu2—O1i85.78 (10)C9—C11—H11A109.5
N7—Cu2—O285.87 (10)C9—C11—H11B109.5
N3—Cu2—O2165.28 (10)H11A—C11—H11B109.5
O1i—Cu2—O281.83 (8)C9—C11—H11C109.5
N7—Cu2—Cl1101.13 (9)H11A—C11—H11C109.5
N3—Cu2—Cl198.45 (8)H11B—C11—H11C109.5
O1i—Cu2—Cl179.34 (7)C13—C12—C17123.0 (4)
O2—Cu2—Cl187.07 (7)C13—C12—N2118.0 (4)
N7—Cu2—Cu1126.85 (8)C17—C12—N2118.9 (4)
N3—Cu2—Cu1126.06 (8)C12—C13—C14117.4 (5)
O1i—Cu2—Cu140.83 (6)C12—C13—C18123.1 (4)
O2—Cu2—Cu141.01 (6)C14—C13—C18119.5 (5)
Cl1—Cu2—Cu181.59 (2)C15—C14—C13120.7 (6)
N7—Cu2—Cu3148.15 (8)C15—C14—H14119.6
N3—Cu2—Cu365.40 (8)C13—C14—H14119.6
O1i—Cu2—Cu339.93 (6)C16—C15—C14121.4 (5)
O2—Cu2—Cu3108.52 (6)C16—C15—H15119.3
Cl1—Cu2—Cu353.243 (19)C14—C15—H15119.3
Cu1—Cu2—Cu372.926 (12)C15—C16—C17121.0 (5)
N5—Cu3—N495.03 (11)C15—C16—H16119.5
N5—Cu3—O1i177.04 (10)C17—C16—H16119.5
N4—Cu3—O1i82.97 (10)C12—C17—C16116.5 (5)
N5—Cu3—O3i89.83 (10)C12—C17—C19121.1 (5)
N4—Cu3—O3i158.66 (10)C16—C17—C19122.4 (5)
O1i—Cu3—O3i92.81 (9)C13—C18—H18A109.5
N5—Cu3—Cl196.83 (8)C13—C18—H18B109.5
N4—Cu3—Cl1101.02 (8)H18A—C18—H18B109.5
O1i—Cu3—Cl181.45 (6)C13—C18—H18C109.5
O3i—Cu3—Cl199.01 (6)H18A—C18—H18C109.5
N5—Cu3—Cu2136.06 (8)H18B—C18—H18C109.5
N4—Cu3—Cu263.99 (8)C17—C19—H19A109.5
O1i—Cu3—Cu241.03 (6)C17—C19—H19B109.5
O3i—Cu3—Cu2124.15 (6)H19A—C19—H19B109.5
Cl1—Cu3—Cu254.84 (2)C17—C19—H19C109.5
N9—Cu4—N893.34 (12)H19A—C19—H19C109.5
N9—Cu4—O2176.28 (11)H19B—C19—H19C109.5
N8—Cu4—O283.51 (10)C21—C20—H20A109.5
N9—Cu4—O387.28 (10)C21—C20—H20B109.5
N8—Cu4—O3157.45 (10)H20A—C20—H20B109.5
O2—Cu4—O396.39 (9)C21—C20—H20C109.5
N9—Cu4—Cl297.75 (9)H20A—C20—H20C109.5
N8—Cu4—Cl2112.62 (8)H20B—C20—H20C109.5
O2—Cu4—Cl281.71 (6)N3—C21—C22108.7 (3)
O3—Cu4—Cl289.57 (6)N3—C21—C20121.8 (3)
N6i—Cu5—N10150.43 (14)C22—C21—C20129.4 (3)
N6i—Cu5—O393.11 (10)C23—C22—C21105.8 (3)
N10—Cu5—O392.56 (10)C23—C22—H22127.1
N6i—Cu5—Cl398.22 (9)C21—C22—H22127.1
N10—Cu5—Cl398.93 (9)N4—C23—C22109.1 (3)
O3—Cu5—Cl3133.07 (7)N4—C23—C24121.5 (3)
Cu3—Cl1—Cu271.91 (2)C22—C23—C24129.4 (3)
Cu1—O1—Cu3i131.01 (12)C23—C24—H24A109.5
Cu1—O1—Cu2i95.53 (9)C23—C24—H24B109.5
Cu3i—O1—Cu2i99.04 (9)H24A—C24—H24B109.5
Cu1—O1—H1H107 (3)C23—C24—H24C109.5
Cu3i—O1—H1H114 (3)H24A—C24—H24C109.5
Cu2i—O1—H1H106 (3)H24B—C24—H24C109.5
Cu1—O2—Cu4122.22 (11)C26—C25—H25A109.5
Cu1—O2—Cu294.94 (9)C26—C25—H25B109.5
Cu4—O2—Cu299.60 (9)H25A—C25—H25B109.5
Cu1—O2—H2H112 (3)C26—C25—H25C109.5
Cu4—O2—H2H116 (3)H25A—C25—H25C109.5
Cu2—O2—H2H107 (3)H25B—C25—H25C109.5
Cu5—O3—Cu3i106.67 (10)N5—C26—C27109.2 (3)
Cu5—O3—Cu4105.71 (9)N5—C26—C25123.0 (3)
Cu3i—O3—Cu4137.76 (11)C27—C26—C25127.8 (3)
Cu5—O3—H3H108 (3)C28—C27—C26105.7 (3)
Cu3i—O3—H3H98 (3)C28—C27—H27127.2
Cu4—O3—H3H97 (3)C26—C27—H27127.2
C1—N1—C2107.9 (3)N6—C28—C27108.8 (3)
C1—N1—C4123.7 (3)N6—C28—C29122.2 (3)
C2—N1—C4128.3 (3)C27—C28—C29129.0 (3)
C1—N2—C3107.8 (3)C28—C29—H29A109.5
C1—N2—C12122.7 (3)C28—C29—H29B109.5
C3—N2—C12129.4 (4)H29A—C29—H29B109.5
C21—N3—N4108.3 (3)C28—C29—H29C109.5
C21—N3—Cu2137.0 (2)H29A—C29—H29C109.5
N4—N3—Cu2114.0 (2)H29B—C29—H29C109.5
C23—N4—N3108.1 (3)C31—C30—H30A109.5
C23—N4—Cu3135.9 (2)C31—C30—H30B109.5
N3—N4—Cu3115.96 (19)H30A—C30—H30B109.5
C26—N5—N6108.1 (3)C31—C30—H30C109.5
C26—N5—Cu3132.5 (2)H30A—C30—H30C109.5
N6—N5—Cu3118.3 (2)H30B—C30—H30C109.5
C28—N6—N5108.3 (3)N7—C31—C32108.1 (3)
C28—N6—Cu5i132.2 (2)N7—C31—C30121.4 (3)
N5—N6—Cu5i119.0 (2)C32—C31—C30130.5 (3)
C31—N7—N8108.7 (3)C33—C32—C31106.0 (3)
C31—N7—Cu2134.7 (2)C33—C32—H32127.0
N8—N7—Cu2115.3 (2)C31—C32—H32127.0
C33—N8—N7107.7 (3)N8—C33—C32109.5 (3)
C33—N8—Cu4136.1 (2)N8—C33—C34121.2 (3)
N7—N8—Cu4116.14 (19)C32—C33—C34129.3 (3)
C36—N9—N10108.3 (3)C33—C34—H34A109.5
C36—N9—Cu4130.7 (2)C33—C34—H34B109.5
N10—N9—Cu4119.5 (2)H34A—C34—H34B109.5
C38—N10—N9108.5 (3)C33—C34—H34C109.5
C38—N10—Cu5132.3 (2)H34A—C34—H34C109.5
N9—N10—Cu5118.5 (2)H34B—C34—H34C109.5
N1—C1—N2109.5 (3)C36—C35—H35A109.5
N1—C1—H1125.3C36—C35—H35B109.5
N2—C1—H1125.3H35A—C35—H35B109.5
Cl1S—C1S—Cl2S112.4 (3)C36—C35—H35C109.5
Cl1S—C1S—Cl3S109.8 (3)H35A—C35—H35C109.5
Cl2S—C1S—Cl3S109.4 (3)H35B—C35—H35C109.5
Cl1S—C1S—H1S108.4N9—C36—C37108.8 (3)
Cl2S—C1S—H1S108.4N9—C36—C35122.0 (3)
Cl3S—C1S—H1S108.4C37—C36—C35129.2 (3)
C3—C2—N1107.1 (4)C38—C37—C36105.3 (3)
C3—C2—H2126.4C38—C37—H37127.3
N1—C2—H2126.4C36—C37—H37127.3
C2—C3—N2107.8 (4)N10—C38—C37109.1 (3)
C2—C3—H3126.1N10—C38—C39121.8 (3)
N2—C3—H3126.1C37—C38—C39129.1 (3)
C5—C4—C9123.8 (4)C38—C39—H39A109.5
C5—C4—N1117.9 (3)C38—C39—H39B109.5
C9—C4—N1118.2 (4)H39A—C39—H39B109.5
C4—C5—C6117.1 (4)C38—C39—H39C109.5
C4—C5—C10122.8 (4)H39A—C39—H39C109.5
C6—C5—C10120.0 (4)H39B—C39—H39C109.5
C7—C6—C5120.8 (4)
C21—N3—N4—C230.1 (4)C13—C12—C17—C160.2 (6)
Cu2—N3—N4—C23172.1 (2)N2—C12—C17—C16175.7 (4)
C21—N3—N4—Cu3178.5 (2)C13—C12—C17—C19179.4 (4)
Cu2—N3—N4—Cu39.3 (3)N2—C12—C17—C193.5 (6)
C26—N5—N6—C280.6 (4)C15—C16—C17—C121.7 (7)
Cu3—N5—N6—C28168.8 (2)C15—C16—C17—C19177.5 (5)
C26—N5—N6—Cu5i172.4 (2)N4—N3—C21—C220.4 (4)
Cu3—N5—N6—Cu5i18.2 (3)Cu2—N3—C21—C22169.8 (3)
C31—N7—N8—C330.7 (4)N4—N3—C21—C20177.2 (3)
Cu2—N7—N8—C33169.7 (2)Cu2—N3—C21—C207.7 (5)
C31—N7—N8—Cu4177.2 (2)N3—C21—C22—C230.6 (4)
Cu2—N7—N8—Cu48.2 (3)C20—C21—C22—C23176.7 (4)
C36—N9—N10—C380.0 (4)N3—N4—C23—C220.5 (4)
Cu4—N9—N10—C38167.5 (3)Cu3—N4—C23—C22177.7 (3)
C36—N9—N10—Cu5171.0 (3)N3—N4—C23—C24177.8 (3)
Cu4—N9—N10—Cu521.4 (4)Cu3—N4—C23—C244.0 (5)
C2—N1—C1—N20.1 (4)C21—C22—C23—N40.7 (4)
C4—N1—C1—N2178.1 (3)C21—C22—C23—C24177.4 (3)
C3—N2—C1—N10.0 (5)N6—N5—C26—C270.4 (4)
C12—N2—C1—N1177.6 (4)Cu3—N5—C26—C27167.0 (3)
C1—N1—C2—C30.2 (5)N6—N5—C26—C25179.5 (3)
C4—N1—C2—C3178.1 (4)Cu3—N5—C26—C2512.2 (5)
N1—C2—C3—N20.2 (5)N5—C26—C27—C280.0 (4)
C1—N2—C3—C20.2 (5)C25—C26—C27—C28179.1 (4)
C12—N2—C3—C2177.2 (4)N5—N6—C28—C270.6 (4)
C1—N1—C4—C573.0 (5)Cu5i—N6—C28—C27171.1 (3)
C2—N1—C4—C5109.5 (4)N5—N6—C28—C29179.0 (4)
C1—N1—C4—C9105.0 (4)Cu5i—N6—C28—C297.3 (6)
C2—N1—C4—C972.6 (5)C26—C27—C28—N60.3 (5)
C9—C4—C5—C60.5 (5)C26—C27—C28—C29178.6 (4)
N1—C4—C5—C6177.3 (3)N8—N7—C31—C320.7 (4)
C9—C4—C5—C10178.2 (3)Cu2—N7—C31—C32166.7 (3)
N1—C4—C5—C104.0 (5)N8—N7—C31—C30178.6 (3)
C4—C5—C6—C70.0 (5)Cu2—N7—C31—C3012.7 (5)
C10—C5—C6—C7178.8 (3)N7—C31—C32—C330.5 (4)
C5—C6—C7—C80.5 (6)C30—C31—C32—C33178.8 (4)
C6—C7—C8—C90.5 (6)N7—N8—C33—C320.4 (4)
C7—C8—C9—C40.0 (5)Cu4—N8—C33—C32176.9 (3)
C7—C8—C9—C11179.7 (4)N7—N8—C33—C34179.0 (3)
C5—C4—C9—C80.5 (5)Cu4—N8—C33—C341.7 (6)
N1—C4—C9—C8177.3 (3)C31—C32—C33—N80.0 (4)
C5—C4—C9—C11179.2 (3)C31—C32—C33—C34178.4 (4)
N1—C4—C9—C113.1 (5)N10—N9—C36—C370.3 (5)
C1—N2—C12—C1369.6 (5)Cu4—N9—C36—C37165.3 (3)
C3—N2—C12—C13113.3 (5)N10—N9—C36—C35178.9 (4)
C1—N2—C12—C17106.5 (5)Cu4—N9—C36—C3513.3 (6)
C3—N2—C12—C1770.6 (6)N9—C36—C37—C380.5 (5)
C17—C12—C13—C141.5 (6)C35—C36—C37—C38179.0 (4)
N2—C12—C13—C14174.4 (4)N9—N10—C38—C370.3 (5)
C17—C12—C13—C18178.5 (4)Cu5—N10—C38—C37169.7 (3)
N2—C12—C13—C185.6 (6)N9—N10—C38—C39178.3 (4)
C12—C13—C14—C150.9 (7)Cu5—N10—C38—C399.0 (6)
C18—C13—C14—C15179.0 (5)C36—C37—C38—N100.5 (5)
C13—C14—C15—C160.9 (8)C36—C37—C38—C39178.0 (4)
C14—C15—C16—C172.3 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···Cl2i0.87 (1)2.68 (4)3.098 (2)111 (3)
O2—H2H···Cl10.88 (1)2.95 (5)3.246 (2)102 (3)
O3—H3H···Cl20.88 (1)2.81 (4)3.277 (2)115 (3)
C1—H1···Cl10.952.483.336 (4)151
C2—H2···Cl3ii0.952.713.467 (4)138
C1S—H1S···Cl31.002.513.395 (5)147
C20—H20A···N70.982.603.477 (5)149
C24—H24C···N50.982.553.307 (5)134
C25—H25A···Cl10.982.773.652 (4)150
C29—H29A···Cl3i0.982.813.572 (5)135
C35—H35A···Cl20.982.903.764 (4)148
C39—H39A···Cl30.982.803.644 (4)144
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the UK National Crystallography Service, University of Southampton, for the data collection.

References

First citationBortoluzzi, M., Ferretti, E., Marchetti, F., Pampaloni, G. & Zacchini, S. (2016). Dalton Trans. 45, 6939–6948.  CSD CrossRef PubMed Google Scholar
First citationCasarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDodds, C. A. & Kennedy, A. R. (2014). Z. Anorg. Allg. Chem. 640, 926–930.  Web of Science CSD CrossRef Google Scholar
First citationDodds, C. A. & Kennedy, A. R. (2018). Acta Cryst. E74, 1369–1372.  CSD CrossRef IUCr Journals Google Scholar
First citationDodds, C. A., Kennedy, A. R. & Thompson, R. (2019). Eur. J. Inorg. Chem. pp. 3581–3587.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEgbert, J. D., Cazin, C. S. J. & Nolan, S. P. (2013). Catal. Sci. Technol. 3, 912–926.  Web of Science CrossRef Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIlyakina, E. V., Poddel'sky, A. I., Piskunov, A. V., Fukin, G. K., Bogomyakov, A. S., Cherkasov, V. K. & Abakumov, G. A. (2012). New J. Chem. 36, 1944–1948.  CSD CrossRef Google Scholar
First citationKhanra, S., Weyhermüller, T. & Chaudhuri, P. (2009). Dalton Trans. pp. 3847–3847.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku MSC, Orem, Utah, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds