research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of hydrated and anhydrous 1:2 cocrystals of oxyresveratrol and zwitterionic proline

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand, bDivision of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand, cMedical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat-Yai, 90112, Thailand, and dCenter of Excellence for Drug Delivery System and Department of Pharmaceutical, Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand
*Correspondence e-mail: vimon.t@psu.ac.th

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 July 2020; accepted 24 August 2020; online 28 August 2020)

The hydrated and anhydrous 1:2 cocrystals of oxyresveratrol (4-[(E)-2-(3,5-di­hydroxy­phen­yl)ethen­yl]benzene-1,3-diol; OXY; C14H12O4) and proline [(S)-pyrrolidine-2-carb­oxy­lic acid; PRO; C5H9NO2], namely, 4-[(E)-2-(3,5-di­hydroxy­phen­yl)ethen­yl]benzene-1,3-diol bis­[(S)-pyrrolidin-1-ium-2-carboxyl­ate] monohydrate, C14H12O4·2C5H9NO2·H2O, and the anhydrous form, C14H12O4·2C5H9NO2, were obtained by crystallization at different temperatures. Both of them crystallize with ortho­rhom­bic (P212121) symmetry. The structures display N—H⋯O and O—H⋯O hydrogen-bonding inter­actions between PRO and PRO, OXY and OXY, and OXY and PRO. In the hydrated cocrystal, these types of contacts are also observed between the OXY, PRO and water mol­ecules. A combination of these inter­actions leads to a three-dimensional supra­molecular assembly in each case. Hirshfeld surfaces were used to gain further insight into the inter­molecular inter­actions in the packing, including the relative percentage contributions of the significant inter­molecular H⋯H and H⋯O/O⋯H contacts.

1. Chemical context

Oxyresveratrol (4-[(E)-2-(3,5-di­hydroxy­phen­yl)ethen­yl]benzene-1,3-diol; OXY; C14H12O4) is a natural stilbenoid found in various plants, such as Morus alba L. (Lu et al., 2017[Lu, H.-P., Jia, Y.-N., Peng, Y.-L., Yu, Y., Sun, S.-L., Yue, M.-T., Pan, M.-H., Zeng, L.-S. & Xu, L. (2017). Phytother. Res. 31, 1842-1848.]). It has several biological activities, including neuroprotective and hepatoprotective effects (Shah et al., 2019[Shah, A., Chao, J., Legido-Quigley, C. & Chang, R. C.-C. (2019). Nutr. Neurosci. pp. 1-16.]; Jia et al., 2018[Jia, Y.-N., Lu, H.-P., Peng, Y.-L., Zhang, B.-S., Gong, X.-B., Su, J., Zhou, Y., Pan, M.-H. & Xu, L. (2018). Int. Immunopharmacol. 56, 105-112.]; Chao et al., 2008[Chao, J., Yu, M.-S., Ho, Y.-S., Wang, M. & Chang, R. C.-C. (2008). Free Radical Biol. Med. 45, 1019-1026.]). As the aqueous solubility of OXY is low, there have been attempts to improve its solubility and oral bioavailability by cocrystallization with citric acid and glutaric acid (Suzuki et al., 2019[Suzuki, Y., Muangnoi, C., Thaweesest, W., Teerawonganan, P., Ratnatilaka Na Bhuket, P., Titapiwatanakun, V., Yoshimura-Fujii, M., Sritularak, B., Likhitwitayawuid, K., Rojsitthisak, P. & Fukami, T. (2019). Biol. Pharm. Bull. 42, 1004-1012.]). Proline [(S)-pyrrolidine-2-carb­oxy­lic acid; PRO,; C5H9NO2] is a natural amino acid that has a secondary amino group in the form of a pyrrolydinic ring. It is an osmoprotectant and is used frequently in many pharmacological and biotechnological applications (Panday, 2011[Panday, S. K. (2011). Tetrahedron Asymmetry, 22, 1817-1847.]). PRO has been used as a cocrystal former in various drugs and pharmacological active compounds because of its mol­ecular rigidity and high solubility in water (Chesna et al., 2017[Chesna, A. M., Cox, J. M., Basso, S. & Benedict, J. B. (2017). Acta Cryst. E73, 369-371.]; Surov et al., 2018[Surov, A. O., Voronin, A. P., Vener, M. V., Churakov, A. V. & Perlovich, G. L. (2018). CrystEngComm, 20, 6970-6981.]; Tilborg et al., 2014[Tilborg, A., Norberg, B. & Wouters, J. (2014). Eur. J. Med. Chem. 74, 411-426.]). According to previous studies, the phenolic hydroxyl groups of flavonoids are able to form charge-assisted hydrogen bonds with the carboxyl­ate moiety of PRO (He et al., 2016[He, H., Huang, Y., Zhang, Q., Wang, J.-R. & Mei, X. (2016). Cryst. Growth Des. 16, 2348-2356.]). Moreover, PRO could form a cocrystal with resveratrol [(E)-5-(4-hy­droxy­styr­yl)benzene-1,3-diol; RES; C14H12O3], which is a close analogue of OXY (He et al., 2017[He, H. Y., Zhang, Q., Li, M. Q., Wang, J. R. & Mei, X. F. (2017). Cryst. Growth Des. 17, 3989-3996.]). Therefore, PRO is a good candidate as a cocrystal former for cocrystallization with OXY and we now describe the syntheses and structures of hydrated and anhydrous 1:2 cocrystals of OXY and PRO, hereafter (I)[link] and (II)[link].

[Scheme 1]

2. Structural commentary

Both cocrystals of OXY and PRO form a 1:2 stoichiometry in the ortho­rhom­bic system, space group P212121, with Z = 4. The asymmetric unit of (I)[link] contains two PRO, one OXY and one water mol­ecule while the asymmetric unit of (II)[link] consists of only two PRO and one OXY mol­ecules, as depicted in Fig. 1[link]. The dihedral angle between the planes of the OXY C1–C6 and C9–C14 phenyl rings in (I)[link] is 7.1 (2)°. This is slightly different from the previous report [9.39 (9)°] of the corresponding angle in OXY·2H2O (Deng et al., 2012[Deng, H., He, X., Xu, Y. & Hu, X. (2012). Acta Cryst. E68, o1318-o1319.]). However, a more twisted dihedral angle between these phenyl rings is observed in (II)[link], of 14.15 (19)°. It might be caused by the influence of hydrogen-bonding inter­actions in the crystal. In addition, the zwitterionic form of the PRO mol­ecules of both cocrystals is confirmed by the C—O and C—N bond lengths.

[Figure 1]
Figure 1
The mol­ecular structures of (I)[link] and (II)[link] showing 50% displacement ellipsoids.

3. Supra­molecular features

The packing for (I)[link] and (II)[link] is shown in Fig. 2[link]. The two PRO mol­ecules (PRO 1 and PRO 2) are indicated in blue and red, respectively, whereas the OXY and water mol­ecules are shown in green and yellow, respectively. The main architectures of (I)[link] and (II)[link] are quite similar but there are clearly differences regarding the water mol­ecule in (I)[link].

[Figure 2]
Figure 2
The packing in (I)[link] and (II)[link]; colour code PRO 1 (blue), PRO 2 (red), OXY (green) and water (yellow).

The PRO 1 and PRO 2 mol­ecules form a three-dimensional network of N—H⋯O hydrogen bonds between the H atoms of NH2 groups and O atoms of carboxyl­ate groups: N1—H1A⋯O6iii, N2—H2A⋯O8v and N2—H2B⋯O5vi for (I)[link] and N1—H1B⋯O5iii, N1—H1A⋯O8iv and N2—H2B⋯O6vi for (II)[link] (see Tables 1[link] and 2[link], where the symmetry codes are defined). The hydrogen-bonding inter­actions between PRO 1 and PRO 2 of both cocrystals viewed down [100] are shown in Fig. 3[link]. The phenolic hydroxyl groups from the OXY mol­ecule inter­act with O atoms of the carboxyl­ate groups of the PRO mol­ecules via O—H⋯O hydrogen bonds, namely O2—H2′⋯O6 and O1—H1′⋯O8 for (I)[link] and O1—H1′⋯O8, O2—H2′⋯O6 and O4—H4′⋯O7ii for (II)[link]. In addition, one of the four hydroxyl groups of OXY accepts a hydrogen bond N1—H1B⋯O4iv from PRO at an N⋯O distance of 2.951 (4) Å in (I)[link] while the equivalent bond in (II)[link] is observed at 2.920 (4) Å for N2—H2A⋯O4v. Moreover, hydrogen-bonding contacts among the OXY mol­ecules in both cocrystals are observed between phenolic hydroxyl groups, O3—H3′⋯O2i, for both cocrystals. Further hydrogen-bond inter­actions involving the water mol­ecule are observed in (I)[link]: N1—H1B⋯O9iv between PRO and water [N⋯O = 3.105 (5) Å] and O4—H4′⋯O9 [2.575 (6) Å] and O9—H9A⋯O7ii [2.639 (5) Å] inter­actions between OXY and water mol­ecules. Taken together, the hydrogen bonds in both cocrystals form complex three-dimensional supra­molecular architectures.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1′⋯O8 0.84 (2) 1.78 (3) 2.597 (3) 166 (5)
O2—H2′⋯O6 0.92 1.74 2.647 (3) 172
O3—H3′⋯O2i 0.85 (2) 1.93 (3) 2.778 (3) 175 (5)
O4—H4′⋯O9 0.99 1.76 2.575 (6) 137
O9—H9A⋯O7ii 0.89 (2) 1.76 (3) 2.639 (5) 168 (4)
N1—H1A⋯O6iii 0.89 1.90 2.777 (4) 168
N1—H1B⋯O4iv 0.89 2.28 2.951 (4) 132
N1—H1B⋯O9iv 0.89 2.47 3.105 (5) 129
N2—H2A⋯O8v 0.89 1.90 2.753 (3) 159
N2—H2B⋯O5vi 0.89 2.07 2.829 (3) 143
N2—H2B⋯O7 0.89 2.24 2.677 (4) 110
C6—H6⋯O6 0.93 2.58 3.261 (4) 130
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1′⋯O8 0.96 1.70 2.642 (4) 169
O2—H2′⋯O6 0.82 (2) 1.83 (3) 2.647 (3) 175 (5)
O3—H3′⋯O2i 0.87 1.92 2.784 (3) 171
O4—H4′⋯O7ii 0.89 (2) 1.95 (3) 2.794 (4) 159 (4)
N1—H1B⋯O5iii 0.89 2.04 2.827 (3) 146
N1—H1A⋯O8iv 0.89 1.90 2.733 (4) 154
N2—H2A⋯O4v 0.89 2.11 2.920 (4) 150
N2—H2B⋯O6vi 0.89 1.87 2.734 (4) 163
C6—H6⋯O6 0.93 2.61 3.282 (4) 130
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
Hydrogen-bond inter­actions between the PRO mol­ecules viewed down [100] in (a) (I)[link] and (b) (II)[link].

4. Hirshfeld surface analysis

Hirshfeld surface analysis and two dimensional fingerprint plots are used to provide the additional insight of the weak inter­molecular contacts and inter­molecular inter­actions in the crystal packing of mol­ecules (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The blue, white and red areas in the dnorm-mapped Hirshfeld surfaces indicate inter­atomic contacts longer, equal to and shorter than the sum of the van der Waals radii, respectively. Analysis of (I)[link] and (II)[link] was performed by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]). The Hirshfeld surfaces are plotted for individual components, to examine the inter­actions of the main mol­ecules (PRO and OXY) in the cocrystals.

The Hirshfeld surfaces around the PRO mol­ecules mapped over dnorm are shown in Fig. 4[link] with selected atoms labelled (compare Tables 1[link] and 2[link]). There are red spots on the surface close to H atoms of the amine group inside the surface of PRO mol­ecules in both cocrystals, H1A and H1B for PRO 1 and H2A and H2B for PRO 2. The inside zones indicate hydrogen-bond donors to acceptor O atoms at outside surfaces of the nearby carboxyl­ate groups of adjacent PRO mol­ecules (N—H⋯O type), hydroxyl group of OXY (N—H⋯O type) and O atoms of water [only for (I)[link], O—H⋯O and N—H⋯O forms]. Besides, the O atoms of the carboxyl­ate groups of both PRO mol­ecules acting as hydrogen-bond acceptors inter­act with the hydrogen-bond donor NH2 group of PRO mol­ecules on the outside surfaces, as discussed in the Supra­molecular features section.

[Figure 4]
Figure 4
Hirshfeld surfaces of the PRO mol­ecules in (I)[link] and (II)[link].

In addition, the two-dimensional fingerprint plots of the PRO mol­ecules for (I)[link] and (II)[link] are illustrated in Figs. 5[link] and 6[link], showing the relative contributions of the various types of contacts to the Hirshfeld surface. The overall fingerprint plot for PRO 1 is shown in Fig. 5[link]a and 6a and those delineated into the contacts of H⋯H, O⋯H/H⋯O and C⋯H/H⋯C inter­actions are displayed in Fig. 5[link]bd and 6bd. Similarly, the overall fingerprint plot of PRO 2 of both cocrystals is presented in Fig. 5[link]e and 6e and those delineated into individual contacts are shown in Fig. 5[link]fh and 6fh. For cocrystals (I)[link] and (II)[link], the most significant inter­actions in terms to their relative percentage contributions are by H⋯H contacts with the second largest percentage attributed to H⋯O/O⋯H inter­actions in one PRO mol­ecule and vice versa for the other PRO mol­ecule. A pair of blue-colored spikes pointing towards the bottom left of the H⋯O/O⋯H contacts in Figs. 5[link] and 6[link] correlate with the important O—H⋯O and N—H⋯O hydrogen bonds associated with the deep-red spots shown in Fig. 4[link]. The asymmetric pair of wings for H⋯C/C⋯H inter­actions in both cocrystals are also found, while other types of contact make a negligible contribution. The relative percentage contributions for the PRO 1 and PRO 2 mol­ecules in both cocrystals are summarized in Table 3[link].

Table 3
Relative percentage contributions of close contacts of PRO and OXY mol­ecules to the Hirshfeld surface of cocrystals I and II

Contacts PRO 1 PRO 2 OXY
(I)      
H⋯H 47.9 36.6 38.6
H⋯O/O⋯H 31.4 43.6 33.3
H⋯C/C⋯H 14.6 18.8
(II)      
H⋯H 32.3 49.4 38.2
H⋯O/O⋯H 47.8 34.7 35.1
H⋯C/C⋯H 19.3 15.0
[Figure 5]
Figure 5
Fingerprint plots for the PRO mol­ecules in (I)[link]: (a)–(d) of PRO 1 and (e)–(h) of PRO 2.
[Figure 6]
Figure 6
Fingerprint plots for the PRO mol­ecules in (II)[link]: (a)–(d) of PRO 1 and (e)–(h) of PRO 2.

The OXY Hirshfeld surface, including fingerprint plots for each cocrystal, is depicted in Fig. 7[link]. The bright-red spots on the surfaces relate to the significant hydrogen bonds of the phenolic hydroxyl groups as O donors (O—H⋯O) and acceptors (N—H⋯O). In (I)[link], the hydrogen-bond contacts are observed from the O atom of the water mol­ecule linking with the OXY surface through one of the hydroxyl groups. In addition, it is found that this water mol­ecule is connected with PRO mol­ecule via a hydrogen-bonding inter­action, as indicated in part of the PRO surfaces. The fingerprint plots for OXY are illustrated below the Hirshfeld surfaces in Fig. 7[link]ac for (I)[link] and Fig. 7[link]df for (II)[link]. The fingerprint plots Fig. 7[link]a and Fig. 7[link]d show the overall inter­actions (100%) of the OXY surface. The most significant inter­actions are H⋯H contacts [38.6% for (I)[link] and 38.2% for (II)] and the second largest percentage [33.3% for (I)[link] and 35.1% for (II)] can be attributed to H⋯O/O⋯H contacts, which are seen as red spots on the Hirshfeld surfaces and correlate with the O—H⋯O and N—H⋯O hydrogen bonds. The relative percentage contributions of OXY are also included in Table 3[link]. Overall, there are few differences between the Hirshfeld surfaces, fingerprint patterns and the relative percentage contributions for (I)[link] and (II)[link].

[Figure 7]
Figure 7
Hirshfeld surfaces and fingerprint plots for the OXY mol­ecules; (a)–(c) refer to (I)[link] and (d)–(f) refer to (II)[link].

5. Database survey

Based on the SciFinder (2020[SciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 2020).]) database, there are no reports for cocrystal structures containing OXY. Only the crystal structure of OXY dihydrate was previously reported (Deng et al., 2012[Deng, H., He, X., Xu, Y. & Hu, X. (2012). Acta Cryst. E68, o1318-o1319.]; Cambridge Structural Database refcode ZAPDOL). The connecting C=C bond of OXY has a trans configuration and allows the setup of a conjugated system throughout the OXY mol­ecule. Furthermore, in the crystal, the OXY mol­ecules are connected through O—H⋯O hydrogen bonds between the hy­droxy groups of OXY and water mol­ecules. The anhydrous and monohydrate crystals of PRO have been reported in numerous papers (Seijas et al., 2010[Seijas, L. E., Delgado, G. E., Mora, A. J., Fitch, A. N. & Brunelli, M. (2010). Powder Diffr. 25, 235-240.]; Janczak & Luger, 1997[Janczak, J. & Luger, P. (1997). Acta Cryst. C53, 1954-1956.]; Verbist et al., 1972[Verbist, J. J., Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). Nature, 235, 328-329.]; Caetano et al., 2018[Caetano et al. (2018). Please supply missing reference.]; Koenig et al., 2018[Koenig, J. J., Neudörfl, J.-M., Hansen, A. & Breugst, M. (2018). Acta Cryst. E74, 1067-1070.]) and PRO invariably crystallizes in the zwitterionic form.

A search for cocrystal structures of PRO gave 148 hits. PRO has been used as a cocrystal former of various active pharmaceutical ingredients (Tilborg et al., 2013[Tilborg, A., Springuel, G., Norberg, B., Wouters, J. & Leyssens, T. (2013). CrystEngComm, 15, 3341-3350.]; Tumanova et al., 2018[Tumanova, N., Tumanov, N., Fischer, F., Morelle, F., Ban, V., Robeyns, K., Filinchuk, Y., Wouters, J., Emmerling, F. & Leyssens, T. (2018). CrystEngComm, 20, 7308-7321.]; Song et al., 2019[Song, Y., Wang, L.-Y., Liu, F., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2019). CrystEngComm, 21, 3064-3073.]). The most relevant cocrystal structure to this work is the cocrystal of RES and PRO (He et al., 2017[He, H. Y., Zhang, Q., Li, M. Q., Wang, J. R. & Mei, X. F. (2017). Cryst. Growth Des. 17, 3989-3996.]; refcode PEBZEE). RES and PRO form O—H⋯O hydrogen bonds in the cocrystal.

6. Synthesis and crystallization

OXY and PRO were purchased from Chengdu Biopurify Phytochemicals Ltd. (Sichuan, China) and Sigma Aldrich (St. Louis, MO, USA), respectively. All organic solvents used were of analytical grade and were purchased from RCI Labscan Ltd (Bangkok, Thailand). All chemicals and solvents were used as received without further purification. Solid OXY (122.10 mg, 0.50 mmol) and PRO (115.10 mg, 1.00 mmol) were added to a 20 ml transparent glass vial. To this was added a mixture of methanol and aceto­nitrile (1:1 v/v, 12 ml), followed by sonication until all solids were entirely dissolved. The mixture was divided into two portions, and each was covered with aluminum foil with a few small holes in it. Crystals of (I)[link] in the form of colourless rods were obtained when the solution was placed on a hot plate at 323 K for 16 h. Single crystals of (II)[link] (colourless blocks) were grown from a solution that was left at room temperature (303 K) for 16 h.

7. Refinement

Crystal data, data collection and structure refinement details for (I)[link] and (II)[link] are summarized in Table 4[link]. The H atoms of PRO mol­ecules of both cocrystals were included with calculated positions and isotropically refined with Uiso(H) = 1.2Ueq(N). However, two H atoms on phenolic hydroxyl groups for OXY [for (I)[link] and (II)] and water [for (I)] were located in difference maps and isotropically refined with the distance restraint O—H = 0.82 (2)–0.89 (2) Å for OXY and O—H = 0.89 (2)–1.03 (2) Å for water. The other two H atoms of the OXY mol­ecules were calculated and isotropically refined and the constraint with Uiso(H) = 1.5Ueq(O) was applied.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C14H12O4·2C5H9NO2·H2O C14H12O4·2C5H9NO2
Mr 492.51 474.50
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 297 297
a, b, c (Å) 9.9759 (2), 10.6052 (2), 22.8535 (4) 9.8293 (2), 10.4915 (2), 22.9863 (6)
V3) 2417.82 (8) 2370.44 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.10
Crystal size (mm) 0.33 × 0.23 × 0.11 0.46 × 0.33 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.716, 0.746 0.656, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 27568, 4237, 4046 22887, 4084, 4038
Rint 0.024 0.019
(sin θ/λ)max−1) 0.595 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.05 0.047, 0.134, 1.09
No. of reflections 4237 4084
No. of parameters 332 317
No. of restraints 4 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.31 0.62, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

4-[(E)-2-(3,5-Dihydroxyphenyl)ethenyl]benzene-1,3-diol bis[(S)-pyrrolidin-1-ium-2-carboxylate] monohydrate (I) top
Crystal data top
C14H12O4·2C5H9NO2·H2ODx = 1.353 Mg m3
Mr = 492.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9870 reflections
a = 9.9759 (2) Åθ = 3.3–27.2°
b = 10.6052 (2) ŵ = 0.10 mm1
c = 22.8535 (4) ÅT = 297 K
V = 2417.82 (8) Å3Rod, colourless
Z = 40.33 × 0.23 × 0.11 mm
F(000) = 1048
Data collection top
Bruker D8 VENTURE
diffractometer
4237 independent reflections
Radiation source: Sealed x-ray tube4046 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.024
Detector resolution: 7.39 pixels mm-1θmax = 25.0°, θmin = 2.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1212
Tmin = 0.716, Tmax = 0.746l = 2727
27568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0603P)2 + 1.0192P]
where P = (Fo2 + 2Fc2)/3
4237 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.35 e Å3
4 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1315 (3)0.6159 (2)0.61582 (10)0.0526 (7)
N10.7751 (3)0.3182 (3)0.47097 (13)0.0448 (7)
H1A0.8212410.2512730.4830570.054*
H1B0.7651500.3131680.4323440.054*
C10.1165 (3)0.6442 (3)0.55821 (13)0.0380 (7)
O20.2661 (2)0.5415 (2)0.42047 (10)0.0456 (6)
H2'0.323 (4)0.489 (4)0.4405 (11)0.068*
N20.0782 (3)0.4926 (2)0.79401 (11)0.0366 (6)
H2A0.0323990.4214090.7991000.044*
H2B0.0557950.5461390.8223640.044*
C20.0261 (4)0.7335 (3)0.53867 (14)0.0459 (8)
H20.0264010.7782720.5651130.055*
O30.2666 (3)0.9933 (3)0.19900 (11)0.0567 (7)
C30.0150 (4)0.7553 (3)0.47947 (14)0.0484 (8)
H30.0476400.8140010.4665650.058*
O40.0969 (5)0.7386 (4)0.13945 (13)0.0928 (13)
H4'0.190 (8)0.723 (8)0.1526 (16)0.139*
C40.0942 (3)0.6928 (3)0.43769 (13)0.0369 (7)
O50.5778 (3)0.4212 (3)0.41114 (10)0.0520 (6)
C50.1858 (3)0.6041 (3)0.45910 (12)0.0323 (6)
O60.4180 (2)0.3743 (2)0.47524 (11)0.0489 (6)
C60.1957 (3)0.5792 (3)0.51887 (13)0.0354 (6)
H60.2557470.5187320.5322830.042*
O70.0442 (5)0.7425 (2)0.78719 (12)0.0891 (13)
C70.0819 (4)0.7181 (3)0.37485 (14)0.0426 (7)
H70.1474940.6840060.3506600.051*
O80.0014 (3)0.7457 (2)0.69276 (10)0.0562 (7)
C80.0133 (4)0.7847 (4)0.34932 (14)0.0450 (8)
H80.0780620.8185400.3740460.054*
O90.3312 (5)0.6407 (4)0.1266 (2)0.0987 (14)
C90.0299 (3)0.8120 (3)0.28670 (14)0.0391 (7)
C100.1353 (3)0.8902 (3)0.27012 (14)0.0418 (7)
H100.1902630.9253340.2986600.050*
C110.1595 (3)0.9162 (3)0.21180 (14)0.0426 (7)
C120.0792 (4)0.8656 (4)0.16910 (15)0.0519 (9)
H120.0947180.8842070.1299140.062*
C130.0242 (4)0.7874 (4)0.18468 (15)0.0548 (9)
C140.0517 (4)0.7593 (3)0.24318 (15)0.0472 (8)
H140.1226960.7066430.2530420.057*
C150.5376 (3)0.3770 (3)0.45739 (13)0.0357 (7)
C160.6412 (3)0.3223 (3)0.50027 (14)0.0378 (7)
H160.6143530.2379570.5132510.045*
C170.6655 (4)0.4086 (5)0.55262 (16)0.0623 (11)
H17A0.5832670.4501580.5644630.075*
H17B0.7007610.3613920.5855670.075*
C180.7653 (6)0.5017 (6)0.5311 (3)0.0917 (17)
H18A0.7203750.5737820.5138400.110*
H18B0.8212560.5309530.5630230.110*
C190.8472 (5)0.4362 (5)0.4868 (3)0.0820 (15)
H19A0.9350750.4165950.5025390.098*
H19B0.8585970.4890860.4525110.098*
C200.0468 (3)0.5485 (3)0.73547 (12)0.0331 (6)
H200.0358260.5109860.7201320.040*
C210.1645 (5)0.5115 (4)0.69655 (18)0.0650 (11)
H21A0.2104070.5861870.6823710.078*
H21B0.1334800.4632140.6631690.078*
C220.2580 (5)0.4327 (5)0.7340 (2)0.0784 (14)
H22A0.3509080.4522880.7253350.094*
H22B0.2431790.3434580.7272090.094*
C230.2245 (4)0.4669 (4)0.7956 (2)0.0656 (11)
H23A0.2739190.5411100.8079230.079*
H23B0.2447410.3979640.8220450.079*
C240.0301 (4)0.6913 (3)0.73993 (14)0.0455 (8)
H1'0.080 (4)0.660 (4)0.6361 (18)0.068*
H3'0.270 (5)1.004 (5)0.1623 (11)0.068*
H9A0.376 (4)0.670 (4)0.1576 (14)0.055*
H9B0.419 (3)0.644 (4)0.1031 (16)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0727 (17)0.0544 (15)0.0305 (11)0.0138 (13)0.0030 (11)0.0011 (11)
N10.0333 (14)0.0529 (17)0.0481 (16)0.0065 (12)0.0018 (12)0.0036 (13)
C10.0474 (18)0.0358 (16)0.0309 (15)0.0028 (14)0.0001 (13)0.0031 (12)
O20.0475 (13)0.0572 (14)0.0322 (12)0.0176 (11)0.0042 (10)0.0039 (10)
N20.0513 (16)0.0274 (12)0.0311 (13)0.0006 (11)0.0041 (11)0.0008 (10)
C20.0532 (19)0.0458 (18)0.0388 (17)0.0128 (16)0.0072 (15)0.0022 (14)
O30.0526 (15)0.0767 (18)0.0408 (14)0.0061 (14)0.0015 (11)0.0187 (14)
C30.054 (2)0.0473 (19)0.0439 (18)0.0172 (16)0.0014 (16)0.0053 (15)
O40.126 (3)0.097 (3)0.0546 (17)0.039 (2)0.0386 (19)0.0031 (18)
C40.0368 (16)0.0379 (16)0.0359 (16)0.0031 (13)0.0006 (13)0.0006 (13)
O50.0557 (14)0.0676 (16)0.0326 (11)0.0066 (12)0.0033 (11)0.0128 (11)
C50.0310 (14)0.0343 (15)0.0316 (14)0.0030 (12)0.0022 (11)0.0052 (12)
O60.0313 (12)0.0589 (15)0.0565 (14)0.0063 (11)0.0013 (10)0.0141 (12)
C60.0351 (15)0.0371 (15)0.0339 (15)0.0014 (12)0.0054 (12)0.0003 (13)
O70.191 (4)0.0338 (13)0.0430 (14)0.0075 (19)0.031 (2)0.0107 (12)
C70.0484 (18)0.0435 (18)0.0358 (16)0.0078 (15)0.0034 (14)0.0017 (14)
O80.099 (2)0.0303 (11)0.0394 (12)0.0038 (13)0.0118 (13)0.0020 (10)
C80.0436 (18)0.056 (2)0.0360 (17)0.0085 (16)0.0019 (14)0.0033 (15)
O90.109 (3)0.072 (2)0.115 (3)0.016 (2)0.056 (3)0.022 (2)
C90.0418 (16)0.0414 (17)0.0341 (15)0.0007 (14)0.0015 (14)0.0045 (13)
C100.0434 (17)0.0479 (18)0.0341 (16)0.0007 (15)0.0058 (13)0.0057 (14)
C110.0456 (18)0.0458 (18)0.0363 (16)0.0069 (15)0.0001 (14)0.0074 (14)
C120.072 (2)0.052 (2)0.0313 (16)0.0028 (19)0.0020 (16)0.0065 (15)
C130.074 (2)0.0491 (19)0.0411 (19)0.0025 (19)0.0206 (18)0.0002 (16)
C140.054 (2)0.0429 (18)0.0449 (18)0.0043 (15)0.0050 (16)0.0058 (15)
C150.0348 (16)0.0383 (16)0.0340 (16)0.0034 (13)0.0010 (12)0.0005 (13)
C160.0318 (15)0.0457 (18)0.0357 (15)0.0007 (13)0.0013 (13)0.0089 (13)
C170.057 (2)0.095 (3)0.0356 (18)0.000 (2)0.0052 (16)0.005 (2)
C180.092 (4)0.094 (4)0.088 (4)0.028 (3)0.004 (3)0.033 (3)
C190.053 (2)0.058 (3)0.135 (5)0.012 (2)0.018 (3)0.000 (3)
C200.0461 (17)0.0274 (13)0.0259 (13)0.0006 (12)0.0021 (12)0.0016 (11)
C210.079 (3)0.065 (3)0.051 (2)0.018 (2)0.023 (2)0.003 (2)
C220.062 (3)0.077 (3)0.096 (4)0.022 (2)0.018 (2)0.004 (3)
C230.053 (2)0.069 (3)0.075 (3)0.005 (2)0.015 (2)0.007 (2)
C240.073 (2)0.0290 (15)0.0341 (16)0.0016 (15)0.0058 (16)0.0039 (13)
Geometric parameters (Å, º) top
O1—C11.359 (4)O9—H9A0.89 (2)
O1—H1'0.84 (2)O9—H9B1.03 (2)
N1—C191.487 (6)C9—C101.392 (5)
N1—C161.495 (4)C9—C141.401 (5)
N1—H1A0.8900C10—C111.382 (4)
N1—H1B0.8900C10—H100.9300
C1—C61.381 (5)C11—C121.372 (5)
C1—C21.382 (5)C12—C131.370 (6)
O2—C51.364 (4)C12—H120.9300
O2—H2'0.92 (5)C13—C141.397 (5)
N2—C231.486 (5)C14—H140.9300
N2—C201.496 (4)C15—C161.538 (4)
N2—H2A0.8900C16—C171.525 (5)
N2—H2B0.8900C16—H160.9800
C2—C31.377 (5)C17—C181.486 (7)
C2—H20.9300C17—H17A0.9700
O3—C111.378 (4)C17—H17B0.9700
O3—H3'0.85 (2)C18—C191.475 (8)
C3—C41.405 (5)C18—H18A0.9700
C3—H30.9300C18—H18B0.9700
O4—C131.365 (4)C19—H19A0.9700
O4—H4'0.99 (8)C19—H19B0.9700
C4—C51.400 (4)C20—C211.525 (5)
C4—C71.466 (4)C20—C241.526 (4)
O5—C151.224 (4)C20—H200.9800
C5—C61.395 (4)C21—C221.517 (6)
O6—C151.262 (4)C21—H21A0.9700
C6—H60.9300C21—H21B0.9700
O7—C241.217 (4)C22—C231.492 (7)
C7—C81.319 (5)C22—H22A0.9700
C7—H70.9300C22—H22B0.9700
O8—C241.256 (4)C23—H23A0.9700
C8—C91.469 (4)C23—H23B0.9700
C8—H80.9300
C1—O1—H1'110 (3)C13—C14—H14120.6
C19—N1—C16107.4 (3)C9—C14—H14120.6
C19—N1—H1A110.2O5—C15—O6126.7 (3)
C16—N1—H1A110.2O5—C15—C16118.3 (3)
C19—N1—H1B110.2O6—C15—C16114.9 (3)
C16—N1—H1B110.2N1—C16—C17103.1 (3)
H1A—N1—H1B108.5N1—C16—C15109.0 (2)
O1—C1—C6117.2 (3)C17—C16—C15112.4 (3)
O1—C1—C2122.5 (3)N1—C16—H16110.7
C6—C1—C2120.3 (3)C17—C16—H16110.7
C5—O2—H2'109.5C15—C16—H16110.7
C23—N2—C20107.5 (3)C18—C17—C16104.2 (3)
C23—N2—H2A110.2C18—C17—H17A110.9
C20—N2—H2A110.2C16—C17—H17A110.9
C23—N2—H2B110.2C18—C17—H17B110.9
C20—N2—H2B110.2C16—C17—H17B110.9
H2A—N2—H2B108.5H17A—C17—H17B108.9
C3—C2—C1119.0 (3)C19—C18—C17106.6 (4)
C3—C2—H2120.5C19—C18—H18A110.4
C1—C2—H2120.5C17—C18—H18A110.4
C11—O3—H3'109 (3)C19—C18—H18B110.4
C2—C3—C4122.9 (3)C17—C18—H18B110.4
C2—C3—H3118.6H18A—C18—H18B108.6
C4—C3—H3118.6C18—C19—N1107.2 (4)
C13—O4—H4'109.5C18—C19—H19A110.3
C5—C4—C3116.5 (3)N1—C19—H19A110.3
C5—C4—C7121.3 (3)C18—C19—H19B110.3
C3—C4—C7122.2 (3)N1—C19—H19B110.3
O2—C5—C6120.0 (3)H19A—C19—H19B108.5
O2—C5—C4119.0 (3)N2—C20—C21105.0 (3)
C6—C5—C4121.0 (3)N2—C20—C24110.9 (2)
C1—C6—C5120.2 (3)C21—C20—C24112.2 (3)
C1—C6—H6119.9N2—C20—H20109.6
C5—C6—H6119.9C21—C20—H20109.6
C8—C7—C4126.2 (3)C24—C20—H20109.6
C8—C7—H7116.9C22—C21—C20106.6 (3)
C4—C7—H7116.9C22—C21—H21A110.4
C7—C8—C9128.1 (3)C20—C21—H21A110.4
C7—C8—H8116.0C22—C21—H21B110.4
C9—C8—H8116.0C20—C21—H21B110.4
H9A—O9—H9B89 (3)H21A—C21—H21B108.6
C10—C9—C14118.9 (3)C23—C22—C21105.1 (3)
C10—C9—C8117.9 (3)C23—C22—H22A110.7
C14—C9—C8123.2 (3)C21—C22—H22A110.7
C11—C10—C9120.9 (3)C23—C22—H22B110.7
C11—C10—H10119.6C21—C22—H22B110.7
C9—C10—H10119.6H22A—C22—H22B108.8
C12—C11—O3122.3 (3)N2—C23—C22104.0 (3)
C12—C11—C10120.4 (3)N2—C23—H23A111.0
O3—C11—C10117.3 (3)C22—C23—H23A111.0
C13—C12—C11119.4 (3)N2—C23—H23B111.0
C13—C12—H12120.3C22—C23—H23B111.0
C11—C12—H12120.3H23A—C23—H23B109.0
O4—C13—C12115.6 (3)O7—C24—O8125.7 (3)
O4—C13—C14122.7 (4)O7—C24—C20119.3 (3)
C12—C13—C14121.7 (3)O8—C24—C20115.0 (3)
C13—C14—C9118.7 (3)
O1—C1—C2—C3178.9 (3)O4—C13—C14—C9178.9 (4)
C6—C1—C2—C30.9 (5)C12—C13—C14—C90.6 (6)
C1—C2—C3—C41.6 (6)C10—C9—C14—C130.1 (5)
C2—C3—C4—C50.8 (5)C8—C9—C14—C13177.5 (4)
C2—C3—C4—C7179.4 (4)C19—N1—C16—C1725.4 (4)
C3—C4—C5—O2179.4 (3)C19—N1—C16—C1594.1 (4)
C7—C4—C5—O20.8 (5)O5—C15—C16—N18.3 (4)
C3—C4—C5—C60.7 (5)O6—C15—C16—N1173.7 (3)
C7—C4—C5—C6179.1 (3)O5—C15—C16—C17105.3 (4)
O1—C1—C6—C5179.7 (3)O6—C15—C16—C1772.7 (4)
C2—C1—C6—C50.5 (5)N1—C16—C17—C1833.9 (4)
O2—C5—C6—C1178.7 (3)C15—C16—C17—C1883.3 (4)
C4—C5—C6—C11.4 (5)C16—C17—C18—C1930.2 (6)
C5—C4—C7—C8169.2 (4)C17—C18—C19—N114.5 (6)
C3—C4—C7—C810.6 (6)C16—N1—C19—C187.3 (6)
C4—C7—C8—C9179.7 (3)C23—N2—C20—C2119.7 (4)
C7—C8—C9—C10176.9 (4)C23—N2—C20—C24101.7 (3)
C7—C8—C9—C145.8 (6)N2—C20—C21—C221.4 (4)
C14—C9—C10—C110.3 (5)C24—C20—C21—C22121.9 (4)
C8—C9—C10—C11177.7 (3)C20—C21—C22—C2321.6 (5)
C9—C10—C11—C120.3 (5)C20—N2—C23—C2233.4 (4)
C9—C10—C11—O3179.3 (3)C21—C22—C23—N233.4 (5)
O3—C11—C12—C13178.7 (3)N2—C20—C24—O70.7 (5)
C10—C11—C12—C131.0 (5)C21—C20—C24—O7116.3 (4)
C11—C12—C13—O4178.4 (4)N2—C20—C24—O8178.9 (3)
C11—C12—C13—C141.1 (6)C21—C20—C24—O864.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.84 (2)1.78 (3)2.597 (3)166 (5)
O2—H2···O60.921.742.647 (3)172
O3—H3···O2i0.85 (2)1.93 (3)2.778 (3)175 (5)
O4—H4···O90.991.762.575 (6)137
O9—H9A···O7ii0.89 (2)1.76 (3)2.639 (5)168 (4)
N1—H1A···O6iii0.891.902.777 (4)168
N1—H1B···O4iv0.892.282.951 (4)132
N1—H1B···O9iv0.892.473.105 (5)129
N2—H2A···O8v0.891.902.753 (3)159
N2—H2B···O5vi0.892.072.829 (3)143
N2—H2B···O70.892.242.677 (4)110
C6—H6···O60.932.583.261 (4)130
C12—H12···O2i0.932.653.339 (5)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+3/2; (vi) x+1/2, y+1, z+1/2.
4-[(E)-2-(3,5-Dihydroxyphenyl)ethenyl]benzene-1,3-diol bis[(S)-pyrrolidin-1-ium-2-carboxylate] (II) top
Crystal data top
C14H12O4·2C5H9NO2Dx = 1.330 Mg m3
Mr = 474.50Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9885 reflections
a = 9.8293 (2) Åθ = 3.0–33.7°
b = 10.4915 (2) ŵ = 0.10 mm1
c = 22.9863 (6) ÅT = 297 K
V = 2370.44 (9) Å3Block, colourless
Z = 40.46 × 0.33 × 0.19 mm
F(000) = 1008
Data collection top
Bruker D8 VENTURE
diffractometer
4084 independent reflections
Radiation source: Sealed x-ray tube4038 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.019
Detector resolution: 7.39 pixels mm-1θmax = 25.0°, θmin = 3.0°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1212
Tmin = 0.656, Tmax = 0.747l = 2727
22887 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.7969P]
where P = (Fo2 + 2Fc2)/3
4084 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.62 e Å3
2 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1260 (3)0.6128 (3)0.61986 (10)0.0514 (7)
H1'0.071 (6)0.669 (5)0.6427 (14)0.077*
N10.0705 (3)0.4844 (2)0.79572 (11)0.0353 (6)
H1A0.0143330.4190630.8014440.042*
H1B0.0562560.5418000.8235850.042*
C10.1126 (3)0.6427 (3)0.56307 (13)0.0352 (7)
O20.2565 (2)0.5318 (3)0.42496 (9)0.0427 (6)
N20.7837 (3)0.3235 (3)0.46631 (12)0.0389 (6)
H2A0.7725570.3182530.4279540.047*
H2B0.8379800.2602920.4776810.047*
C20.0265 (4)0.7382 (4)0.54340 (14)0.0453 (8)
H20.0247060.7858130.5695820.054*
O30.2495 (3)0.9798 (3)0.19378 (11)0.0495 (6)
H3'0.249 (3)0.987 (5)0.156 (3)0.074*
C30.0180 (4)0.7616 (4)0.48443 (14)0.0455 (8)
H30.0418180.8242620.4715950.055*
O40.1637 (3)0.7502 (3)0.15416 (11)0.0599 (8)
C40.0949 (3)0.6957 (3)0.44306 (13)0.0356 (7)
O50.5729 (3)0.4173 (3)0.41022 (10)0.0533 (7)
C50.1812 (3)0.6002 (3)0.46420 (13)0.0309 (6)
O60.4198 (2)0.3686 (3)0.47823 (11)0.0466 (6)
C60.1903 (3)0.5733 (3)0.52325 (13)0.0329 (6)
H60.2479940.5091540.5362610.039*
O70.0892 (3)0.7406 (2)0.78591 (10)0.0460 (6)
C70.0875 (4)0.7241 (3)0.38077 (13)0.0386 (7)
H70.1569580.6916460.3576450.046*
O80.0296 (3)0.7428 (2)0.69242 (10)0.0506 (7)
C80.0076 (3)0.7910 (4)0.35402 (14)0.0398 (7)
H80.0759270.8253770.3771580.048*
C90.0159 (3)0.8164 (3)0.29118 (14)0.0360 (7)
C100.1234 (3)0.8909 (3)0.27047 (14)0.0371 (7)
H100.1854110.9262320.2964290.044*
C110.1378 (3)0.9121 (3)0.21109 (14)0.0366 (7)
C120.0429 (4)0.8644 (3)0.17235 (13)0.0411 (8)
H120.0518370.8800420.1327050.049*
C130.0660 (4)0.7930 (3)0.19307 (14)0.0419 (7)
C140.0793 (4)0.7665 (3)0.25177 (14)0.0399 (7)
H140.1506710.7161150.2650040.048*
C150.5388 (3)0.3722 (3)0.45688 (13)0.0329 (6)
C160.6496 (3)0.3150 (3)0.49651 (14)0.0378 (7)
H160.6282130.2260930.5057990.045*
C170.6714 (5)0.3919 (6)0.55258 (16)0.0633 (12)
H17A0.5880470.4342380.5643510.076*
H17B0.7019600.3372480.5839900.076*
C180.7786 (8)0.4871 (8)0.5367 (3)0.108 (3)
H18A0.7378010.5707060.5323180.130*
H18B0.8459900.4918000.5674710.130*
C190.8440 (5)0.4497 (5)0.4825 (2)0.0664 (12)
H19A0.9415350.4422510.4877480.080*
H19B0.8263320.5122720.4523260.080*
C200.0456 (3)0.5426 (3)0.73720 (12)0.0326 (6)
H200.0446940.5178840.7230750.039*
C210.1553 (5)0.4849 (4)0.69788 (18)0.0583 (10)
H21A0.2087780.5517540.6798270.070*
H21B0.1139110.4337810.6674900.070*
C220.2429 (6)0.4041 (6)0.7356 (2)0.0830 (17)
H22A0.3380640.4181730.7265160.100*
H22B0.2223030.3146780.7294930.100*
C230.2149 (4)0.4400 (4)0.7970 (2)0.0583 (10)
H23A0.2255090.3673420.8226880.070*
H23B0.2752840.5076420.8097220.070*
C240.0559 (3)0.6875 (3)0.74016 (13)0.0350 (7)
H2'0.311 (4)0.484 (4)0.4408 (18)0.052*
H4'0.234 (3)0.736 (5)0.1775 (16)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0627 (15)0.0674 (16)0.0241 (11)0.0127 (14)0.0039 (11)0.0043 (11)
N10.0470 (15)0.0298 (11)0.0291 (12)0.0001 (11)0.0021 (11)0.0007 (10)
C10.0366 (15)0.0449 (17)0.0242 (14)0.0039 (13)0.0001 (12)0.0004 (12)
O20.0439 (13)0.0569 (15)0.0272 (11)0.0194 (11)0.0044 (10)0.0057 (10)
N20.0297 (13)0.0499 (15)0.0372 (14)0.0040 (12)0.0003 (11)0.0029 (12)
C20.0494 (18)0.0534 (19)0.0330 (16)0.0142 (16)0.0088 (14)0.0023 (15)
O30.0459 (13)0.0668 (16)0.0357 (12)0.0036 (12)0.0028 (10)0.0172 (12)
C30.0517 (19)0.0494 (18)0.0355 (17)0.0193 (17)0.0019 (14)0.0031 (15)
O40.0617 (17)0.082 (2)0.0356 (13)0.0123 (16)0.0113 (12)0.0022 (14)
C40.0369 (15)0.0426 (16)0.0274 (14)0.0044 (13)0.0007 (12)0.0021 (12)
O50.0467 (13)0.0819 (19)0.0311 (11)0.0097 (13)0.0015 (10)0.0159 (12)
C50.0261 (13)0.0385 (15)0.0281 (14)0.0001 (12)0.0009 (11)0.0053 (12)
O60.0301 (11)0.0578 (14)0.0517 (14)0.0071 (11)0.0051 (10)0.0140 (11)
C60.0318 (14)0.0375 (15)0.0294 (15)0.0028 (12)0.0035 (12)0.0009 (12)
O70.0643 (16)0.0357 (11)0.0382 (12)0.0033 (11)0.0102 (11)0.0075 (10)
C70.0435 (16)0.0425 (16)0.0297 (14)0.0083 (14)0.0031 (13)0.0020 (13)
O80.0834 (19)0.0336 (11)0.0347 (12)0.0046 (12)0.0123 (12)0.0041 (10)
C80.0374 (16)0.0523 (18)0.0295 (15)0.0059 (14)0.0017 (12)0.0023 (14)
C90.0381 (16)0.0403 (15)0.0297 (15)0.0020 (13)0.0008 (13)0.0034 (13)
C100.0366 (16)0.0436 (16)0.0310 (15)0.0000 (14)0.0020 (12)0.0030 (13)
C110.0376 (16)0.0406 (16)0.0315 (15)0.0057 (13)0.0039 (13)0.0090 (13)
C120.0518 (19)0.0478 (17)0.0236 (14)0.0086 (16)0.0010 (13)0.0062 (13)
C130.0485 (19)0.0450 (17)0.0324 (16)0.0022 (15)0.0075 (14)0.0001 (13)
C140.0417 (16)0.0448 (17)0.0333 (15)0.0014 (14)0.0018 (13)0.0040 (13)
C150.0305 (15)0.0389 (15)0.0294 (15)0.0020 (13)0.0008 (12)0.0029 (12)
C160.0323 (15)0.0458 (17)0.0354 (17)0.0018 (13)0.0001 (13)0.0105 (14)
C170.058 (2)0.103 (3)0.0294 (17)0.004 (2)0.0044 (16)0.002 (2)
C180.111 (5)0.121 (5)0.093 (4)0.052 (4)0.023 (4)0.062 (4)
C190.054 (2)0.063 (3)0.083 (3)0.018 (2)0.005 (2)0.003 (2)
C200.0404 (15)0.0294 (13)0.0280 (14)0.0022 (12)0.0035 (12)0.0017 (11)
C210.078 (3)0.053 (2)0.043 (2)0.014 (2)0.0174 (19)0.0079 (17)
C220.073 (3)0.089 (3)0.088 (4)0.044 (3)0.027 (3)0.008 (3)
C230.049 (2)0.057 (2)0.069 (3)0.0053 (18)0.0188 (19)0.012 (2)
C240.0420 (16)0.0321 (14)0.0309 (14)0.0060 (13)0.0039 (13)0.0023 (12)
Geometric parameters (Å, º) top
O1—C11.349 (4)C8—H80.9300
O1—H1'0.96 (6)C9—C101.398 (5)
N1—C231.495 (5)C9—C141.403 (5)
N1—C201.497 (4)C10—C111.390 (4)
N1—H1A0.8900C10—H100.9300
N1—H1B0.8900C11—C121.383 (5)
C1—C21.387 (5)C12—C131.391 (5)
C1—C61.397 (5)C12—H120.9300
O2—C51.369 (4)C13—C141.384 (4)
O2—H2'0.82 (2)C14—H140.9300
N2—C161.492 (4)C15—C161.541 (4)
N2—C191.498 (5)C16—C171.535 (5)
N2—H2A0.8900C16—H160.9800
N2—H2B0.8900C17—C181.497 (8)
C2—C31.380 (5)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
O3—C111.367 (4)C18—C191.456 (8)
O3—H3'0.87 (6)C18—H18A0.9700
C3—C41.398 (5)C18—H18B0.9700
C3—H30.9300C19—H19A0.9700
O4—C131.387 (4)C19—H19B0.9700
O4—H4'0.89 (2)C20—C241.526 (4)
C4—C51.400 (4)C20—C211.531 (5)
C4—C71.464 (4)C20—H200.9800
O5—C151.219 (4)C21—C221.488 (7)
C5—C61.389 (4)C21—H21A0.9700
O6—C151.269 (4)C21—H21B0.9700
C6—H60.9300C22—C231.485 (7)
O7—C241.234 (4)C22—H22A0.9700
C7—C81.320 (5)C22—H22B0.9700
C7—H70.9300C23—H23A0.9700
O8—C241.268 (4)C23—H23B0.9700
C8—C91.471 (4)
C1—O1—H1'109.5C13—C14—H14120.3
C23—N1—C20107.4 (3)C9—C14—H14120.3
C23—N1—H1A110.2O5—C15—O6127.2 (3)
C20—N1—H1A110.2O5—C15—C16118.5 (3)
C23—N1—H1B110.2O6—C15—C16114.3 (3)
C20—N1—H1B110.2N2—C16—C17103.7 (3)
H1A—N1—H1B108.5N2—C16—C15109.0 (3)
O1—C1—C2122.9 (3)C17—C16—C15113.0 (3)
O1—C1—C6117.4 (3)N2—C16—H16110.3
C2—C1—C6119.8 (3)C17—C16—H16110.3
C5—O2—H2'112 (3)C15—C16—H16110.3
C16—N2—C19106.6 (3)C18—C17—C16104.1 (3)
C16—N2—H2A110.4C18—C17—H17A110.9
C19—N2—H2A110.4C16—C17—H17A110.9
C16—N2—H2B110.4C18—C17—H17B110.9
C19—N2—H2B110.4C16—C17—H17B110.9
H2A—N2—H2B108.6H17A—C17—H17B109.0
C3—C2—C1119.0 (3)C19—C18—C17109.8 (4)
C3—C2—H2120.5C19—C18—H18A109.7
C1—C2—H2120.5C17—C18—H18A109.7
C11—O3—H3'109.5C19—C18—H18B109.7
C2—C3—C4123.2 (3)C17—C18—H18B109.7
C2—C3—H3118.4H18A—C18—H18B108.2
C4—C3—H3118.4C18—C19—N2106.0 (4)
C13—O4—H4'102 (3)C18—C19—H19A110.5
C3—C4—C5116.5 (3)N2—C19—H19A110.5
C3—C4—C7122.5 (3)C18—C19—H19B110.5
C5—C4—C7121.0 (3)N2—C19—H19B110.5
O2—C5—C6120.2 (3)H19A—C19—H19B108.7
O2—C5—C4118.3 (3)N1—C20—C24110.8 (2)
C6—C5—C4121.5 (3)N1—C20—C21104.7 (3)
C5—C6—C1120.0 (3)C24—C20—C21111.9 (3)
C5—C6—H6120.0N1—C20—H20109.7
C1—C6—H6120.0C24—C20—H20109.7
C8—C7—C4126.8 (3)C21—C20—H20109.7
C8—C7—H7116.6C22—C21—C20106.8 (3)
C4—C7—H7116.6C22—C21—H21A110.4
C7—C8—C9126.4 (3)C20—C21—H21A110.4
C7—C8—H8116.8C22—C21—H21B110.4
C9—C8—H8116.8C20—C21—H21B110.4
C10—C9—C14119.5 (3)H21A—C21—H21B108.6
C10—C9—C8118.5 (3)C23—C22—C21107.6 (3)
C14—C9—C8122.0 (3)C23—C22—H22A110.2
C11—C10—C9120.0 (3)C21—C22—H22A110.2
C11—C10—H10120.0C23—C22—H22B110.2
C9—C10—H10120.0C21—C22—H22B110.2
O3—C11—C12122.8 (3)H22A—C22—H22B108.5
O3—C11—C10116.8 (3)C22—C23—N1103.7 (3)
C12—C11—C10120.4 (3)C22—C23—H23A111.0
C11—C12—C13119.6 (3)N1—C23—H23A111.0
C11—C12—H12120.2C22—C23—H23B111.0
C13—C12—H12120.2N1—C23—H23B111.0
C14—C13—O4119.9 (3)H23A—C23—H23B109.0
C14—C13—C12121.0 (3)O7—C24—O8125.8 (3)
O4—C13—C12119.1 (3)O7—C24—C20120.3 (3)
C13—C14—C9119.5 (3)O8—C24—C20113.8 (3)
O1—C1—C2—C3179.3 (4)O4—C13—C14—C9176.4 (3)
C6—C1—C2—C30.9 (5)C12—C13—C14—C92.3 (5)
C1—C2—C3—C41.7 (6)C10—C9—C14—C130.7 (5)
C2—C3—C4—C51.4 (6)C8—C9—C14—C13179.7 (3)
C2—C3—C4—C7178.2 (4)C19—N2—C16—C1731.3 (4)
C3—C4—C5—O2178.9 (3)C19—N2—C16—C1589.3 (3)
C7—C4—C5—O21.5 (5)O5—C15—C16—N22.2 (4)
C3—C4—C5—C60.4 (5)O6—C15—C16—N2179.3 (3)
C7—C4—C5—C6179.3 (3)O5—C15—C16—C17112.5 (4)
O2—C5—C6—C1179.6 (3)O6—C15—C16—C1766.0 (4)
C4—C5—C6—C10.3 (5)N2—C16—C17—C1827.9 (5)
O1—C1—C6—C5179.7 (3)C15—C16—C17—C1889.9 (5)
C2—C1—C6—C50.1 (5)C16—C17—C18—C1914.9 (8)
C3—C4—C7—C815.6 (6)C17—C18—C19—N24.2 (8)
C5—C4—C7—C8164.8 (3)C16—N2—C19—C1822.5 (6)
C4—C7—C8—C9178.4 (3)C23—N1—C20—C2499.1 (3)
C7—C8—C9—C10179.2 (4)C23—N1—C20—C2121.8 (4)
C7—C8—C9—C141.8 (6)N1—C20—C21—C223.7 (5)
C14—C9—C10—C111.8 (5)C24—C20—C21—C22116.5 (4)
C8—C9—C10—C11177.2 (3)C20—C21—C22—C2315.9 (6)
C9—C10—C11—O3176.4 (3)C21—C22—C23—N129.0 (5)
C9—C10—C11—C122.8 (5)C20—N1—C23—C2231.5 (4)
O3—C11—C12—C13178.0 (3)N1—C20—C24—O74.1 (4)
C10—C11—C12—C131.1 (5)C21—C20—C24—O7112.4 (4)
C11—C12—C13—C141.4 (5)N1—C20—C24—O8176.9 (3)
C11—C12—C13—O4177.3 (3)C21—C20—C24—O866.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.961.702.642 (4)169
O2—H2···O60.82 (2)1.83 (3)2.647 (3)175 (5)
O3—H3···O2i0.871.922.784 (3)171
O4—H4···O7ii0.89 (2)1.95 (3)2.794 (4)159 (4)
N1—H1B···O5iii0.892.042.827 (3)146
N1—H1A···O8iv0.891.902.733 (4)154
N2—H2A···O4v0.892.112.920 (4)150
N2—H2B···O6vi0.891.872.734 (4)163
C6—H6···O60.932.613.282 (4)130
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1, z+1/2; (iv) x, y1/2, z+3/2; (v) x+1, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1.
Relative percentage contributions of close contacts of PRO and OXY molecules to the Hirshfeld surface of cocrystals I and II top
ContactsPRO 1PRO 2OXY
(I)
H···H47.936.638.6
H···O/O···H31.443.633.3
H···C/C···H14.618.8
(II)
H···H32.349.438.2
H···O/O···H47.834.735.1
H···C/C···H19.315.0
 

Funding information

The authors thank the Thailand Research Fund for financial support through the Royal Golden Jubilee PhD Program (grant No. PHD/0160/2558) and the Integrated Research and Development of Medicine Project (grant No. PHA610372S).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaetano et al. (2018). Please supply missing reference.  Google Scholar
First citationChao, J., Yu, M.-S., Ho, Y.-S., Wang, M. & Chang, R. C.-C. (2008). Free Radical Biol. Med. 45, 1019–1026.  CrossRef CAS Google Scholar
First citationChesna, A. M., Cox, J. M., Basso, S. & Benedict, J. B. (2017). Acta Cryst. E73, 369–371.  CSD CrossRef IUCr Journals Google Scholar
First citationDeng, H., He, X., Xu, Y. & Hu, X. (2012). Acta Cryst. E68, o1318–o1319.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, H., Huang, Y., Zhang, Q., Wang, J.-R. & Mei, X. (2016). Cryst. Growth Des. 16, 2348–2356.  CSD CrossRef CAS Google Scholar
First citationHe, H. Y., Zhang, Q., Li, M. Q., Wang, J. R. & Mei, X. F. (2017). Cryst. Growth Des. 17, 3989–3996.  CSD CrossRef CAS Google Scholar
First citationJanczak, J. & Luger, P. (1997). Acta Cryst. C53, 1954–1956.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJia, Y.-N., Lu, H.-P., Peng, Y.-L., Zhang, B.-S., Gong, X.-B., Su, J., Zhou, Y., Pan, M.-H. & Xu, L. (2018). Int. Immunopharmacol. 56, 105–112.  CrossRef CAS PubMed Google Scholar
First citationKoenig, J. J., Neudörfl, J.-M., Hansen, A. & Breugst, M. (2018). Acta Cryst. E74, 1067–1070.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, H.-P., Jia, Y.-N., Peng, Y.-L., Yu, Y., Sun, S.-L., Yue, M.-T., Pan, M.-H., Zeng, L.-S. & Xu, L. (2017). Phytother. Res. 31, 1842–1848.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPanday, S. K. (2011). Tetrahedron Asymmetry, 22, 1817–1847.  Web of Science CrossRef CAS Google Scholar
First citationSciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 2020).  Google Scholar
First citationSeijas, L. E., Delgado, G. E., Mora, A. J., Fitch, A. N. & Brunelli, M. (2010). Powder Diffr. 25, 235–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationShah, A., Chao, J., Legido-Quigley, C. & Chang, R. C.-C. (2019). Nutr. Neurosci. pp. 1–16.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, Y., Wang, L.-Y., Liu, F., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2019). CrystEngComm, 21, 3064–3073.  CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSurov, A. O., Voronin, A. P., Vener, M. V., Churakov, A. V. & Perlovich, G. L. (2018). CrystEngComm, 20, 6970–6981.  CSD CrossRef CAS Google Scholar
First citationSuzuki, Y., Muangnoi, C., Thaweesest, W., Teerawonganan, P., Ratnatilaka Na Bhuket, P., Titapiwatanakun, V., Yoshimura-Fujii, M., Sritularak, B., Likhitwitayawuid, K., Rojsitthisak, P. & Fukami, T. (2019). Biol. Pharm. Bull. 42, 1004–1012.  CrossRef CAS PubMed Google Scholar
First citationTilborg, A., Norberg, B. & Wouters, J. (2014). Eur. J. Med. Chem. 74, 411–426.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTilborg, A., Springuel, G., Norberg, B., Wouters, J. & Leyssens, T. (2013). CrystEngComm, 15, 3341–3350.  Web of Science CSD CrossRef CAS Google Scholar
First citationTumanova, N., Tumanov, N., Fischer, F., Morelle, F., Ban, V., Robeyns, K., Filinchuk, Y., Wouters, J., Emmerling, F. & Leyssens, T. (2018). CrystEngComm, 20, 7308–7321.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationVerbist, J. J., Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). Nature, 235, 328–329.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds