research communications
Structure of a diorganotelluroxonium(IV) cation, {[2,6-(CH2NMe2)2C6H3Te(μ-O)]2}2+, with the trichlorido(dimethyl sulfoxide)platinum(II) anion
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title salt, di-μ-oxido-bis{2,6-bis[(dimethylamino)methyl]phenyl-κC1}tellurium(IV) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)], (C24H38N4O2Te2)[PdCl3(C2H6OS)]2, which crystallizes in the triclinic P, each Te atom is in a distorted five-coordinated TeO2N2C square-pyramidal geometry (τ values of 0.026 and 0.001) with the C atoms of the phenyl rings occupying the apical positions. The phenyl rings in the [C24H38N4O2Te2]2+ cation are in a cis arrangement to enable this species to participate in Te⋯Cl cation–anion interactions. There are also C—H⋯O interactions involving the dimethyl sulfoxide ligands and numerous cation–anion and anion–anion C—H⋯Cl interactions, which link the ions into a complex three-dimensional array.
CCDC reference: 1563166
1. Chemical context
After the initial discovery (Moulton & Shaw, 1976) and seminal contributions from various research groups, the coordination chemistry of pincer ligands has become an important field in coordination chemistry (Peris & Crabtree, 2018). One pincer ligand scaffold that has recently attracted considerable attention with respect to its interesting structural features and reactivity, is the NCN pincer ligand, [2,6-(Me2NCH2)2C6H3] (HL).
Of particular interest are the group 16 derivatives of these ligands where, due to the presence of intramolecular N→M interactions from the two coordinating auxiliary arms, their compounds show interesting reactivity and have been used in the formation of selenium cations (Fujihara et al., 1995; Poleschner & Seppelt, 2004, 2013; Gupta et al., 2017; Pop et al., 2014; Varga et al., 2010; Rani et al., 2018). It is worth noting that, compared to the selenenium cation of ligand L, studies on their higher congener i.e., tellurenium cations, are relatively scarce in the literature and this was the initial impetus for this work. Furukawa and co-workers reported the synthesis of a tellurenium cation by the reaction of heteroleptic diorganotelluride LTeR (where R = n-butyl) with Br2/K[PF6] (Fujihara et al., 1995). However, the structural elucidation of the tellurenium cation of the ligand L remained elusive until Silvestru and co-workers reported the first structural characterization of a tellurenium cation (Beleaga et al., 2011).
It is interesting to note that the related tin(II) cations of ligand L, containing one lone pair of electrons, have been used as ligands to isolate heterobimetallic complexes 4a,b (Martincová et al., 2011, 2012). However, no such coordination chemistry has been explored for the selenenium(II) and tellurenium(II) cations of ligand L, which have two such pairs of electrons. A notable work is that by Lin & Gabbaï (2013) where they used TeIV cations having one lone pair of electrons as ligands for isolating complex 5 where the TeIV center acted as a σ-acceptor (Z-type) ligand.
Recently, we investigated the reactivity of the homoleptic diorganotelluride [2,6 (Me2NCH2)2C6H3]2Te, 1 with SO2Cl2:K2PdCl4 (Gupta et al., 2019). We observed that the diorganotelluride underwent intramolecular chalcogen bonding (IChB) mediated Te-dearylation to afford the first example of a PdII complex [2,6(Me2NCH2)2C6H3]TePdCl3, with any organotellurenium(II) cation as a ligand. This might be due to the formation of the highly stable tellurenium(II) cation where the Te is T-shaped and involved in a three-centered, four-electron bond. While checking the reproducibility of the reaction, in one instance, because of the adventitious uptake of oxygen, the reaction unexpectedly resulted in the isolation of the title compound, which contains the ditelluroxonium(IV) cation 2, [2,6-(CH2NMe2)2C6H3Te(μ-O)]2 with the PdCl3(DMSO) anion. It is worth noting that Furukawa and coworkers have reported a similar diorganotelluroxonium(IV) cation namely, [2,6-(CH2NMe2)2C6H3Te(μ-O)]2·PF6, by the reaction of the diorganotelluride [2,6 (Me2NCH2)2C6H3]2Te with the oxidizing agent NOPF6 (Kobayashi et al., 2000).
2. Structural commentary
The title structure represents a rare example of a structurally characterized diorganotelluroxonium(IV) cation and key geometrical data are listed in Table 1. The salt [C24H38N4O2Te2]2+ ·[PdCl3(DMSO)]−2, 3, crystallizes in the triclinic P. In the structure of the cation 2 there is a cis arrangement of the aryl rings of the attached 2,6-[(dimethylamino)methyl)]phenyl substituents (Fig. 1). This is in contrast to that observed in the structure of [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+·PF6−, wherein the cation lies on a center of inversion and thus the are in a trans configuration (Kobayashi et al., 2000). Each Te atom is in a five-coordinate geometry with the phenyl rings occupying the apical position. An analysis of this geometry using the continuous shape measurement (CSM) method (Cirera et al., 2005; Llunell et al., 2013) and using the four appropriate reference shapes [vacant octahedron, C4v; trigonal bipyramid, D3h; square pyramid, C4v; and Johnson trigonal bipyramid, D3h] showed that the closest fit was the vacant octahedron. The Te—N bond distances, lying in the range from 2.450 (2)–2.495 (2) Å for 2, are in good agreement with the values observed in [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+·PF6− [2.475 (5)–2.486 (5) Å] (Kobayashi et al., 2000). In 2, the dihedral angle between the two is 6.2 (2)° and those between the Te2O2 plane and the aryl rings are 88.77 (8) and 85.00 (8)°, indicating that the two are not coplanar, and are too far apart to form π–π stacking interactions (the closest contact is between C1 and C1A at 3.672 Å). Thus, the driving force for the adoption of this sterically unfavorable cis conformation appears to be the formation of Te⋯Cl cation–anion interactions, which would not be possible if the trans conformation were adopted. In this case, there is a short Te2⋯Cl3 contact of 3.386 (1) Å and longer contacts of 3.833 (1) Å (Te2⋯Cl2) and 3.991 (1) Å (Te1⋯Cl5) (see Fig. 2). In contrast, in the case of [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+·PF6−, no such cation–anion interactions are present and hence the more sterically favorable trans conformation is adopted. In the other two related structures containing the Te2O22+ core dication, the same cis configuration is adopted to allow the formation of interionic Te⋯O interactions (Hupf et al., 2017; Deka et al., 2020).
|
3. Supramolecular features
In addition to the Te⋯Cl cation–anion interactions mentioned above, there are also C—H⋯O interactions involving the DMSO ligands and numerous cation–anion and anion–anion C—H⋯Cl interactions (Table 2), which link the ions into a complex three-dimensional array, as seen in Fig. 3.
4. Database survey
There are only three reports available containing a cation with the Te2O22+ core. The first report on the molecular structure of a diorganotelluroxonium(IV) cation was made by Furukawa and co-workers (Kobayashi et al., 2000; Cambridge Structural Database refcode XAGGER), which contains a cation [2,6-(CH2NMe2)2C6H3Te(μ-O)]2+ charge-balanced as the PF6− salt. Beckmann and coworkers reported the molecular structure of [(6-Ph2P(O)-Ace-5-) Te(μ-O)]2·2OTf [Ace = acenaphthyl; Hupf et al., 2017; refcode CAZCEO). Recently, we have reported the third example of a structurally characterized ditelluroxonium cation, namely [ppyTe(μ-O)]2·2ClO4 (ppy = phenylpyridine), stabilized by extensive IChB interactions (Deka et al., 2020; refcode PUBWAN).
5. Synthesis and crystallization
To a solution of 1 (0.10 g, 0.20 mmol) in CCl4 (3 ml), a solution of SO2Cl2 (0.03 g, 17.76 µL, 0.22 mmol) in CCl4 (2 ml) was added dropwise at 273 K under an N2 atmosphere. After stirring the reaction mixture for 1 h, hexane (10 ml) was added, resulting in the formation of a white precipitate. The precipitate was washed with hexane (2 × 5 ml) and dissolved in THF (20 ml). To it, K2PdCl4 (0.06 g, 0.20 mmol) and KOH (0.01 g, 0.17 mmol) were added at ambient temperature. After stirring for 12 h, the solvent was removed under vacuum, resulting in the precipitation of a dark-purple solid. The solid was washed with CH2Cl2 (3 × 5 ml) and Et2O (2 × 10 ml), and dried under vacuum to afford the analytically pure solid of 2. Dark-purple prisms of 2 suitable for single-crystal were acquired by slow diffusion of Et2O into a DMSO solution at room temperature.
Yield: 59%; m.p. 444–446 K; 1H NMR: δ (ppm) 7.35–7.31 (m, 1H, Ar-H), 7.24–7.20 (m, 2H, Ar-H), 4.25 (d, 2H, ArCH2), 3.55 (d, 2H, ArCH2), 2.52 (s, 6H, NMe2), 2.41 (s, 6H, NMe2); 13C NMR: δ (ppm) 130.55, 125.22, 122.89, 120.44, 67.14, 45.70; 125Te NMR: δ (ppm) 1500; ESI–MS (positive mode): m/z calculated for [C12H19N2OTe]+: 336.0545, found: 336.0541.
6. Refinement
Crystal data, data collection and structure . A riding model was used for the H atoms with atomic displacement parameters = 1.2Ueq(C) [1.5Ueq(CH3)] and C—H distances ranging from 0.95 to 0.99 Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1563166
https://doi.org/10.1107/S2056989020011482/hb7941sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020011482/hb7941Isup2.hkl
Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell
CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C24H38N4O2Te2)[PdCl3(C2H6OS)]2 | Z = 2 |
Mr = 1251.54 | F(000) = 1216 |
Triclinic, P1 | Dx = 1.972 Mg m−3 |
a = 9.6333 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.770 (3) Å | Cell parameters from 4389 reflections |
c = 17.956 (4) Å | θ = 3.0–25.3° |
α = 73.82 (3)° | µ = 2.73 mm−1 |
β = 83.55 (3)° | T = 100 K |
γ = 88.86 (3)° | Prism, dark purple |
V = 2107.8 (8) Å3 | 0.39 × 0.20 × 0.14 mm |
Rigaku Saturn 724 Dual Source CCD diffractometer | 6351 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.028 |
ω scans | θmax = 25.4°, θmin = 3.0° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −10→11 |
Tmin = 0.417, Tmax = 0.703 | k = −15→15 |
16345 measured reflections | l = −18→21 |
7532 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0225P)2] where P = (Fo2 + 2Fc2)/3 |
7532 reflections | (Δ/σ)max = 0.001 |
445 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.95 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.33401 (2) | 0.04241 (2) | 0.28514 (2) | 0.01035 (6) | |
Pd1 | 0.94231 (2) | 0.16499 (2) | 0.01042 (2) | 0.01127 (6) | |
Cl1 | 0.81302 (7) | 0.00483 (6) | 0.05078 (4) | 0.01552 (17) | |
S1 | 0.89105 (8) | 0.19555 (6) | −0.11264 (4) | 0.01283 (17) | |
N1A | 0.4790 (2) | 0.2407 (2) | 0.02780 (13) | 0.0115 (6) | |
C1A | 0.4649 (3) | 0.3347 (2) | 0.14904 (16) | 0.0127 (7) | |
O1 | 0.40044 (19) | 0.09584 (16) | 0.17231 (10) | 0.0107 (5) | |
N1 | 0.5460 (2) | −0.0692 (2) | 0.27189 (14) | 0.0133 (6) | |
C1 | 0.4960 (3) | 0.1100 (2) | 0.32559 (16) | 0.0112 (6) | |
Te2 | 0.29877 (2) | 0.23691 (2) | 0.13837 (2) | 0.00938 (5) | |
Pd2 | 0.10998 (2) | 0.68021 (2) | 0.44760 (2) | 0.01459 (6) | |
S2 | 0.29029 (8) | 0.56851 (7) | 0.47852 (4) | 0.01472 (17) | |
N2 | 0.2358 (2) | 0.0782 (2) | 0.40747 (13) | 0.0144 (6) | |
O2 | 0.23723 (19) | 0.18393 (17) | 0.25186 (10) | 0.0114 (5) | |
N2A | 0.1943 (2) | 0.3983 (2) | 0.17064 (14) | 0.0129 (6) | |
C2A | 0.4399 (3) | 0.4105 (2) | 0.19095 (16) | 0.0115 (7) | |
C2 | 0.4621 (3) | 0.1733 (3) | 0.37634 (16) | 0.0147 (7) | |
Cl3 | 0.96704 (8) | 0.15286 (7) | 0.14002 (4) | 0.01622 (17) | |
O3 | 0.7830 (2) | 0.27971 (18) | −0.13078 (11) | 0.0175 (5) | |
C3A | 0.5517 (3) | 0.4697 (3) | 0.20169 (17) | 0.0158 (7) | |
H3AA | 0.537194 | 0.519754 | 0.232222 | 0.019* | |
C3 | 0.5686 (3) | 0.2270 (3) | 0.39672 (17) | 0.0176 (7) | |
H3A | 0.548200 | 0.269940 | 0.432012 | 0.021* | |
Cl2 | 1.07137 (8) | 0.32486 (6) | −0.02994 (4) | 0.01833 (17) | |
Cl4 | 0.00771 (8) | 0.63088 (7) | 0.57463 (4) | 0.02292 (19) | |
O4 | 0.4201 (2) | 0.62606 (18) | 0.48098 (12) | 0.0172 (5) | |
C4A | 0.6855 (3) | 0.4554 (3) | 0.16736 (17) | 0.0173 (7) | |
H4AA | 0.762485 | 0.494414 | 0.175776 | 0.021* | |
C4 | 0.7059 (3) | 0.2181 (3) | 0.36546 (17) | 0.0187 (7) | |
H4A | 0.777779 | 0.259323 | 0.376730 | 0.022* | |
Cl5 | 0.21996 (8) | 0.73154 (8) | 0.32293 (4) | 0.0282 (2) | |
C5 | 0.7392 (3) | 0.1501 (3) | 0.31822 (17) | 0.0160 (7) | |
H5A | 0.833870 | 0.142102 | 0.299431 | 0.019* | |
C5A | 0.7069 (3) | 0.3844 (3) | 0.12092 (17) | 0.0149 (7) | |
H5AA | 0.797667 | 0.377838 | 0.095907 | 0.018* | |
Cl6 | −0.06703 (9) | 0.80252 (8) | 0.40930 (5) | 0.0279 (2) | |
C6A | 0.5978 (3) | 0.3236 (3) | 0.11093 (16) | 0.0125 (7) | |
C6 | 0.6342 (3) | 0.0934 (3) | 0.29826 (16) | 0.0132 (7) | |
C7 | 0.6628 (3) | 0.0113 (3) | 0.25245 (17) | 0.0147 (7) | |
H7A | 0.672555 | 0.048960 | 0.195871 | 0.018* | |
H7B | 0.751358 | −0.026580 | 0.265278 | 0.018* | |
C7A | 0.6129 (3) | 0.2492 (3) | 0.05866 (16) | 0.0125 (7) | |
H7AA | 0.686396 | 0.278106 | 0.014850 | 0.015* | |
H7AB | 0.641317 | 0.175920 | 0.088484 | 0.015* | |
C8A | 0.2900 (3) | 0.4297 (3) | 0.21981 (16) | 0.0132 (7) | |
H8AA | 0.268099 | 0.386007 | 0.274743 | 0.016* | |
H8AB | 0.277568 | 0.507681 | 0.217519 | 0.016* | |
C8 | 0.3110 (3) | 0.1770 (3) | 0.40978 (17) | 0.0156 (7) | |
H8A | 0.306764 | 0.180806 | 0.464321 | 0.019* | |
H8B | 0.266195 | 0.242929 | 0.379013 | 0.019* | |
C9A | 0.4723 (3) | 0.1439 (3) | −0.00092 (17) | 0.0166 (7) | |
H9AA | 0.542769 | 0.150699 | −0.045863 | 0.025* | |
H9AB | 0.379207 | 0.138039 | −0.016649 | 0.025* | |
H9AC | 0.490338 | 0.078522 | 0.040633 | 0.025* | |
C9 | 0.5562 (3) | −0.1486 (3) | 0.34914 (17) | 0.0191 (8) | |
H9A | 0.639146 | −0.193593 | 0.346083 | 0.029* | |
H9B | 0.472556 | −0.195482 | 0.364070 | 0.029* | |
H9C | 0.563665 | −0.109263 | 0.388236 | 0.029* | |
C10A | 0.4566 (3) | 0.3395 (3) | −0.03633 (16) | 0.0160 (7) | |
H10A | 0.527925 | 0.343701 | −0.080528 | 0.024* | |
H10B | 0.463240 | 0.404439 | −0.017966 | 0.024* | |
H10C | 0.363715 | 0.335566 | −0.052866 | 0.024* | |
C10 | 0.5437 (3) | −0.1274 (3) | 0.21195 (17) | 0.0168 (7) | |
H10D | 0.629019 | −0.170147 | 0.210198 | 0.025* | |
H10E | 0.538531 | −0.074539 | 0.160977 | 0.025* | |
H10F | 0.462038 | −0.176280 | 0.224740 | 0.025* | |
C11 | 0.2664 (3) | −0.0165 (3) | 0.47220 (17) | 0.0203 (8) | |
H11A | 0.229057 | −0.003978 | 0.522014 | 0.030* | |
H11B | 0.367714 | −0.026302 | 0.470967 | 0.030* | |
H11C | 0.222739 | −0.082175 | 0.466593 | 0.030* | |
C11A | 0.0504 (3) | 0.3825 (3) | 0.21053 (18) | 0.0187 (8) | |
H11D | 0.016516 | 0.451347 | 0.219420 | 0.028* | |
H11E | 0.049883 | 0.326727 | 0.260701 | 0.028* | |
H11F | −0.010523 | 0.358949 | 0.177925 | 0.028* | |
C12A | 0.1962 (3) | 0.4811 (3) | 0.09374 (17) | 0.0172 (7) | |
H12A | 0.167029 | 0.551598 | 0.101602 | 0.026* | |
H12B | 0.131865 | 0.458418 | 0.062439 | 0.026* | |
H12C | 0.290992 | 0.488054 | 0.066435 | 0.026* | |
C12 | 0.0820 (3) | 0.0938 (3) | 0.40960 (17) | 0.0185 (8) | |
H12D | 0.046264 | 0.111991 | 0.457722 | 0.028* | |
H12E | 0.036883 | 0.026492 | 0.408038 | 0.028* | |
H12F | 0.061573 | 0.153370 | 0.364434 | 0.028* | |
C21 | 0.8346 (3) | 0.0792 (3) | −0.13645 (18) | 0.0201 (7) | |
H21A | 0.814868 | 0.099776 | −0.190980 | 0.030* | |
H21B | 0.749658 | 0.049098 | −0.102401 | 0.030* | |
H21C | 0.908035 | 0.024203 | −0.129171 | 0.030* | |
C22 | 1.0399 (3) | 0.2339 (3) | −0.18270 (17) | 0.0236 (8) | |
H22B | 1.012324 | 0.243964 | −0.235132 | 0.035* | |
H22C | 1.110033 | 0.176508 | −0.172427 | 0.035* | |
H22D | 1.079343 | 0.302250 | −0.179196 | 0.035* | |
C31 | 0.2581 (3) | 0.4638 (3) | 0.56735 (19) | 0.0268 (9) | |
H31B | 0.340628 | 0.417616 | 0.575523 | 0.040* | |
H31C | 0.177774 | 0.419428 | 0.564930 | 0.040* | |
H31D | 0.238166 | 0.496447 | 0.610681 | 0.040* | |
C32 | 0.3259 (3) | 0.4885 (3) | 0.4126 (2) | 0.0272 (9) | |
H32B | 0.401809 | 0.438141 | 0.429211 | 0.041* | |
H32C | 0.353752 | 0.536234 | 0.360159 | 0.041* | |
H32D | 0.241933 | 0.446834 | 0.411990 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.01126 (11) | 0.00795 (11) | 0.01136 (10) | −0.00191 (8) | −0.00056 (8) | −0.00204 (8) |
Pd1 | 0.01032 (13) | 0.00973 (13) | 0.01451 (12) | −0.00091 (10) | −0.00135 (9) | −0.00456 (9) |
Cl1 | 0.0150 (4) | 0.0123 (4) | 0.0193 (4) | −0.0034 (3) | −0.0003 (3) | −0.0048 (3) |
S1 | 0.0130 (4) | 0.0111 (4) | 0.0155 (4) | 0.0003 (3) | −0.0023 (3) | −0.0051 (3) |
N1A | 0.0113 (13) | 0.0091 (14) | 0.0141 (13) | 0.0003 (11) | −0.0016 (10) | −0.0029 (10) |
C1A | 0.0155 (16) | 0.0078 (16) | 0.0141 (15) | −0.0024 (13) | −0.0049 (12) | −0.0005 (12) |
O1 | 0.0134 (11) | 0.0092 (11) | 0.0084 (10) | 0.0014 (9) | −0.0012 (8) | −0.0010 (8) |
N1 | 0.0150 (14) | 0.0093 (14) | 0.0148 (13) | −0.0005 (11) | −0.0013 (10) | −0.0022 (11) |
C1 | 0.0120 (16) | 0.0085 (16) | 0.0118 (15) | −0.0052 (13) | −0.0027 (12) | −0.0001 (12) |
Te2 | 0.00944 (11) | 0.00794 (11) | 0.01094 (10) | −0.00101 (8) | −0.00156 (7) | −0.00269 (8) |
Pd2 | 0.01263 (13) | 0.01427 (14) | 0.01753 (13) | −0.00153 (10) | −0.00298 (10) | −0.00488 (10) |
S2 | 0.0148 (4) | 0.0131 (4) | 0.0168 (4) | −0.0020 (3) | −0.0023 (3) | −0.0045 (3) |
N2 | 0.0128 (13) | 0.0132 (15) | 0.0145 (13) | 0.0004 (12) | 0.0020 (10) | −0.0006 (11) |
O2 | 0.0143 (11) | 0.0096 (12) | 0.0093 (10) | 0.0006 (9) | 0.0004 (8) | −0.0015 (8) |
N2A | 0.0111 (13) | 0.0137 (15) | 0.0150 (13) | 0.0021 (11) | −0.0043 (10) | −0.0048 (11) |
C2A | 0.0118 (16) | 0.0097 (16) | 0.0114 (15) | 0.0010 (13) | −0.0060 (12) | 0.0014 (12) |
C2 | 0.0173 (17) | 0.0128 (17) | 0.0117 (15) | −0.0006 (14) | −0.0030 (12) | 0.0007 (13) |
Cl3 | 0.0163 (4) | 0.0178 (4) | 0.0163 (4) | −0.0028 (3) | −0.0007 (3) | −0.0077 (3) |
O3 | 0.0186 (12) | 0.0151 (13) | 0.0205 (11) | 0.0072 (10) | −0.0058 (9) | −0.0070 (9) |
C3A | 0.0197 (17) | 0.0130 (18) | 0.0162 (16) | −0.0029 (14) | −0.0094 (13) | −0.0033 (13) |
C3 | 0.0284 (19) | 0.0117 (17) | 0.0137 (16) | −0.0002 (15) | −0.0073 (14) | −0.0035 (13) |
Cl2 | 0.0188 (4) | 0.0124 (4) | 0.0234 (4) | −0.0047 (3) | −0.0064 (3) | −0.0025 (3) |
Cl4 | 0.0210 (4) | 0.0270 (5) | 0.0217 (4) | −0.0029 (4) | 0.0031 (3) | −0.0102 (4) |
O4 | 0.0134 (11) | 0.0158 (13) | 0.0242 (12) | −0.0039 (10) | −0.0038 (9) | −0.0077 (10) |
C4A | 0.0141 (17) | 0.0125 (18) | 0.0245 (17) | −0.0067 (14) | −0.0114 (13) | 0.0000 (14) |
C4 | 0.0202 (18) | 0.0156 (19) | 0.0197 (17) | −0.0065 (14) | −0.0090 (14) | −0.0007 (14) |
Cl5 | 0.0225 (5) | 0.0388 (6) | 0.0175 (4) | −0.0002 (4) | −0.0016 (3) | 0.0015 (4) |
C5 | 0.0111 (16) | 0.0161 (18) | 0.0188 (16) | −0.0045 (14) | −0.0037 (13) | −0.0002 (13) |
C5A | 0.0105 (16) | 0.0129 (18) | 0.0195 (16) | 0.0009 (13) | −0.0055 (13) | 0.0001 (13) |
Cl6 | 0.0236 (5) | 0.0292 (5) | 0.0349 (5) | 0.0099 (4) | −0.0122 (4) | −0.0126 (4) |
C6A | 0.0148 (16) | 0.0090 (16) | 0.0117 (15) | 0.0000 (13) | −0.0053 (12) | 0.0020 (12) |
C6 | 0.0151 (17) | 0.0118 (17) | 0.0104 (15) | 0.0000 (13) | −0.0021 (12) | 0.0009 (12) |
C7 | 0.0118 (16) | 0.0155 (18) | 0.0151 (16) | −0.0018 (14) | 0.0000 (12) | −0.0019 (13) |
C7A | 0.0113 (16) | 0.0111 (17) | 0.0127 (15) | −0.0020 (13) | −0.0004 (12) | 0.0006 (12) |
C8A | 0.0152 (16) | 0.0101 (17) | 0.0167 (16) | −0.0003 (13) | −0.0041 (13) | −0.0065 (13) |
C8 | 0.0219 (18) | 0.0112 (17) | 0.0131 (15) | 0.0023 (14) | 0.0007 (13) | −0.0035 (13) |
C9A | 0.0168 (17) | 0.0155 (18) | 0.0188 (16) | −0.0036 (14) | 0.0013 (13) | −0.0080 (14) |
C9 | 0.0214 (18) | 0.0132 (18) | 0.0189 (17) | 0.0041 (15) | −0.0033 (13) | 0.0020 (13) |
C10A | 0.0162 (17) | 0.0148 (18) | 0.0147 (16) | −0.0010 (14) | −0.0005 (13) | −0.0004 (13) |
C10 | 0.0157 (17) | 0.0166 (18) | 0.0188 (16) | −0.0011 (14) | 0.0026 (13) | −0.0075 (14) |
C11 | 0.0222 (18) | 0.0190 (19) | 0.0149 (16) | −0.0012 (15) | 0.0013 (13) | 0.0021 (14) |
C11A | 0.0130 (17) | 0.021 (2) | 0.0243 (17) | 0.0042 (15) | −0.0003 (13) | −0.0117 (15) |
C12A | 0.0222 (18) | 0.0097 (17) | 0.0197 (17) | 0.0032 (14) | −0.0062 (13) | −0.0029 (13) |
C12 | 0.0132 (16) | 0.0193 (19) | 0.0200 (17) | −0.0016 (14) | 0.0029 (13) | −0.0025 (14) |
C21 | 0.0275 (19) | 0.0146 (18) | 0.0232 (18) | −0.0016 (15) | −0.0103 (14) | −0.0106 (14) |
C22 | 0.0209 (18) | 0.031 (2) | 0.0174 (17) | −0.0031 (16) | 0.0018 (14) | −0.0058 (15) |
C31 | 0.0218 (19) | 0.019 (2) | 0.0300 (19) | −0.0012 (16) | −0.0004 (15) | 0.0081 (15) |
C32 | 0.024 (2) | 0.028 (2) | 0.042 (2) | 0.0050 (17) | −0.0120 (16) | −0.0271 (18) |
Te1—O1 | 1.9836 (19) | C4—H4A | 0.9500 |
Te1—O2 | 1.9871 (19) | C5—C6 | 1.389 (4) |
Te1—C1 | 2.089 (3) | C5—H5A | 0.9500 |
Te1—N2 | 2.450 (2) | C5A—C6A | 1.375 (4) |
Te1—N1 | 2.495 (2) | C5A—H5AA | 0.9500 |
Te1—Te2 | 3.1222 (12) | C6A—C7A | 1.506 (4) |
Pd1—S1 | 2.2440 (9) | C6—C7 | 1.507 (4) |
Pd1—Cl2 | 2.3049 (12) | C7—H7A | 0.9900 |
Pd1—Cl1 | 2.3091 (11) | C7—H7B | 0.9900 |
Pd1—Cl3 | 2.3278 (9) | C7A—H7AA | 0.9900 |
S1—O3 | 1.477 (2) | C7A—H7AB | 0.9900 |
S1—C21 | 1.768 (3) | C8A—H8AA | 0.9900 |
S1—C22 | 1.777 (3) | C8A—H8AB | 0.9900 |
N1A—C9A | 1.471 (4) | C8—H8A | 0.9900 |
N1A—C7A | 1.477 (4) | C8—H8B | 0.9900 |
N1A—C10A | 1.483 (4) | C9A—H9AA | 0.9800 |
C1A—C2A | 1.384 (4) | C9A—H9AB | 0.9800 |
C1A—C6A | 1.407 (4) | C9A—H9AC | 0.9800 |
Te2—O1 | 2.0071 (19) | C9—H9A | 0.9800 |
Te2—O2 | 1.9844 (18) | C9—H9B | 0.9800 |
Te2—N1A | 2.477 (2) | C9—H9C | 0.9800 |
Te2—N2A | 2.459 (2) | C10A—H10A | 0.9800 |
Te2—C1A | 2.107 (3) | C10A—H10B | 0.9800 |
N1—C10 | 1.471 (4) | C10A—H10C | 0.9800 |
N1—C7 | 1.484 (4) | C10—H10D | 0.9800 |
N1—C9 | 1.485 (4) | C10—H10E | 0.9800 |
C1—C2 | 1.387 (4) | C10—H10F | 0.9800 |
C1—C6 | 1.400 (4) | C11—H11A | 0.9800 |
Pd2—S2 | 2.2444 (10) | C11—H11B | 0.9800 |
Pd2—Cl5 | 2.2891 (11) | C11—H11C | 0.9800 |
Pd2—Cl4 | 2.2997 (11) | C11A—H11D | 0.9800 |
Pd2—Cl6 | 2.3194 (11) | C11A—H11E | 0.9800 |
S2—O4 | 1.474 (2) | C11A—H11F | 0.9800 |
S2—C32 | 1.769 (3) | C12A—H12A | 0.9800 |
S2—C31 | 1.773 (3) | C12A—H12B | 0.9800 |
N2—C11 | 1.476 (4) | C12A—H12C | 0.9800 |
N2—C8 | 1.481 (4) | C12—H12D | 0.9800 |
N2—C12 | 1.489 (4) | C12—H12E | 0.9800 |
N2A—C11A | 1.477 (4) | C12—H12F | 0.9800 |
N2A—C8A | 1.479 (4) | C21—H21A | 0.9800 |
N2A—C12A | 1.486 (4) | C21—H21B | 0.9800 |
C2A—C3A | 1.389 (4) | C21—H21C | 0.9800 |
C2A—C8A | 1.518 (4) | C22—H22B | 0.9800 |
C2—C3 | 1.382 (5) | C22—H22C | 0.9800 |
C2—C8 | 1.516 (4) | C22—H22D | 0.9800 |
C3A—C4A | 1.397 (4) | C31—H31B | 0.9800 |
C3A—H3AA | 0.9500 | C31—H31C | 0.9800 |
C3—C4 | 1.393 (4) | C31—H31D | 0.9800 |
C3—H3A | 0.9500 | C32—H32B | 0.9800 |
C4A—C5A | 1.391 (4) | C32—H32C | 0.9800 |
C4A—H4AA | 0.9500 | C32—H32D | 0.9800 |
C4—C5 | 1.384 (4) | ||
O1—Te1—O2 | 76.92 (8) | C6—C5—H5A | 120.0 |
O1—Te1—C1 | 96.99 (10) | C6A—C5A—C4A | 120.5 (3) |
O2—Te1—C1 | 93.43 (10) | C6A—C5A—H5AA | 119.7 |
O1—Te1—N2 | 150.20 (8) | C4A—C5A—H5AA | 119.7 |
O2—Te1—N2 | 75.53 (8) | C5A—C6A—C1A | 118.4 (3) |
C1—Te1—N2 | 73.66 (10) | C5A—C6A—C7A | 123.1 (3) |
O1—Te1—N1 | 77.12 (8) | C1A—C6A—C7A | 118.5 (3) |
O2—Te1—N1 | 148.63 (8) | C5—C6—C1 | 117.9 (3) |
C1—Te1—N1 | 72.64 (10) | C5—C6—C7 | 123.2 (3) |
N2—Te1—N1 | 124.18 (8) | C1—C6—C7 | 118.8 (3) |
O1—Te1—Te2 | 38.79 (5) | N1—C7—C6 | 109.5 (2) |
O2—Te1—Te2 | 38.14 (5) | N1—C7—H7A | 109.8 |
C1—Te1—Te2 | 97.50 (8) | C6—C7—H7A | 109.8 |
N2—Te1—Te2 | 113.10 (6) | N1—C7—H7B | 109.8 |
N1—Te1—Te2 | 114.34 (6) | C6—C7—H7B | 109.8 |
S1—Pd1—Cl2 | 88.13 (4) | H7A—C7—H7B | 108.2 |
S1—Pd1—Cl1 | 91.84 (4) | N1A—C7A—C6A | 110.0 (2) |
Cl2—Pd1—Cl1 | 179.97 (3) | N1A—C7A—H7AA | 109.7 |
S1—Pd1—Cl3 | 170.82 (3) | C6A—C7A—H7AA | 109.7 |
Cl2—Pd1—Cl3 | 90.42 (4) | N1A—C7A—H7AB | 109.7 |
Cl1—Pd1—Cl3 | 89.61 (4) | C6A—C7A—H7AB | 109.7 |
O3—S1—C21 | 107.75 (14) | H7AA—C7A—H7AB | 108.2 |
O3—S1—C22 | 109.19 (14) | N2A—C8A—C2A | 109.6 (2) |
C21—S1—C22 | 100.00 (17) | N2A—C8A—H8AA | 109.7 |
O3—S1—Pd1 | 111.49 (9) | C2A—C8A—H8AA | 109.7 |
C21—S1—Pd1 | 114.91 (11) | N2A—C8A—H8AB | 109.7 |
C22—S1—Pd1 | 112.80 (12) | C2A—C8A—H8AB | 109.7 |
C9A—N1A—C7A | 112.2 (2) | H8AA—C8A—H8AB | 108.2 |
C9A—N1A—C10A | 109.0 (2) | N2—C8—C2 | 109.5 (2) |
C7A—N1A—C10A | 110.5 (2) | N2—C8—H8A | 109.8 |
C9A—N1A—Te2 | 112.60 (18) | C2—C8—H8A | 109.8 |
C7A—N1A—Te2 | 104.52 (16) | N2—C8—H8B | 109.8 |
C10A—N1A—Te2 | 107.85 (16) | C2—C8—H8B | 109.8 |
C2A—C1A—C6A | 121.7 (3) | H8A—C8—H8B | 108.2 |
C2A—C1A—Te2 | 119.5 (2) | N1A—C9A—H9AA | 109.5 |
C6A—C1A—Te2 | 118.8 (2) | N1A—C9A—H9AB | 109.5 |
Te1—O1—Te2 | 102.96 (8) | H9AA—C9A—H9AB | 109.5 |
C10—N1—C7 | 111.5 (2) | N1A—C9A—H9AC | 109.5 |
C10—N1—C9 | 109.8 (2) | H9AA—C9A—H9AC | 109.5 |
C7—N1—C9 | 110.4 (2) | H9AB—C9A—H9AC | 109.5 |
C10—N1—Te1 | 113.63 (17) | N1—C9—H9A | 109.5 |
C7—N1—Te1 | 103.85 (17) | N1—C9—H9B | 109.5 |
C9—N1—Te1 | 107.35 (16) | H9A—C9—H9B | 109.5 |
C2—C1—C6 | 122.4 (3) | N1—C9—H9C | 109.5 |
C2—C1—Te1 | 118.6 (2) | H9A—C9—H9C | 109.5 |
C6—C1—Te1 | 119.0 (2) | H9B—C9—H9C | 109.5 |
O2—Te2—O1 | 76.44 (8) | N1A—C10A—H10A | 109.5 |
O2—Te2—C1A | 95.66 (10) | N1A—C10A—H10B | 109.5 |
O1—Te2—C1A | 94.79 (10) | H10A—C10A—H10B | 109.5 |
O2—Te2—N2A | 76.19 (8) | N1A—C10A—H10C | 109.5 |
O1—Te2—N2A | 148.65 (8) | H10A—C10A—H10C | 109.5 |
C1A—Te2—N2A | 73.06 (10) | H10B—C10A—H10C | 109.5 |
O2—Te2—N1A | 148.72 (7) | N1—C10—H10D | 109.5 |
O1—Te2—N1A | 75.46 (8) | N1—C10—H10E | 109.5 |
C1A—Te2—N1A | 73.37 (10) | H10D—C10—H10E | 109.5 |
N2A—Te2—N1A | 125.35 (9) | N1—C10—H10F | 109.5 |
O2—Te2—Te1 | 38.20 (6) | H10D—C10—H10F | 109.5 |
O1—Te2—Te1 | 38.25 (5) | H10E—C10—H10F | 109.5 |
C1A—Te2—Te1 | 97.51 (8) | N2—C11—H11A | 109.5 |
N2A—Te2—Te1 | 113.27 (6) | N2—C11—H11B | 109.5 |
N1A—Te2—Te1 | 112.83 (6) | H11A—C11—H11B | 109.5 |
S2—Pd2—Cl5 | 86.92 (4) | N2—C11—H11C | 109.5 |
S2—Pd2—Cl4 | 91.79 (4) | H11A—C11—H11C | 109.5 |
Cl5—Pd2—Cl4 | 177.60 (3) | H11B—C11—H11C | 109.5 |
S2—Pd2—Cl6 | 176.40 (3) | N2A—C11A—H11D | 109.5 |
Cl5—Pd2—Cl6 | 89.84 (4) | N2A—C11A—H11E | 109.5 |
Cl4—Pd2—Cl6 | 91.39 (4) | H11D—C11A—H11E | 109.5 |
O4—S2—C32 | 108.18 (15) | N2A—C11A—H11F | 109.5 |
O4—S2—C31 | 107.93 (15) | H11D—C11A—H11F | 109.5 |
C32—S2—C31 | 99.92 (18) | H11E—C11A—H11F | 109.5 |
O4—S2—Pd2 | 113.54 (9) | N2A—C12A—H12A | 109.5 |
C32—S2—Pd2 | 111.49 (11) | N2A—C12A—H12B | 109.5 |
C31—S2—Pd2 | 114.78 (11) | H12A—C12A—H12B | 109.5 |
C11—N2—C8 | 111.0 (2) | N2A—C12A—H12C | 109.5 |
C11—N2—C12 | 109.6 (2) | H12A—C12A—H12C | 109.5 |
C8—N2—C12 | 112.5 (2) | H12B—C12A—H12C | 109.5 |
C11—N2—Te1 | 107.77 (17) | N2—C12—H12D | 109.5 |
C8—N2—Te1 | 104.65 (16) | N2—C12—H12E | 109.5 |
C12—N2—Te1 | 111.16 (18) | H12D—C12—H12E | 109.5 |
Te2—O2—Te1 | 103.65 (8) | N2—C12—H12F | 109.5 |
C11A—N2A—C8A | 110.7 (2) | H12D—C12—H12F | 109.5 |
C11A—N2A—C12A | 110.0 (2) | H12E—C12—H12F | 109.5 |
C8A—N2A—C12A | 111.2 (3) | S1—C21—H21A | 109.5 |
C11A—N2A—Te2 | 115.2 (2) | S1—C21—H21B | 109.5 |
C8A—N2A—Te2 | 105.52 (15) | H21A—C21—H21B | 109.5 |
C12A—N2A—Te2 | 103.88 (17) | S1—C21—H21C | 109.5 |
C1A—C2A—C3A | 119.0 (3) | H21A—C21—H21C | 109.5 |
C1A—C2A—C8A | 118.5 (3) | H21B—C21—H21C | 109.5 |
C3A—C2A—C8A | 122.5 (3) | S1—C22—H22B | 109.5 |
C3—C2—C1 | 118.5 (3) | S1—C22—H22C | 109.5 |
C3—C2—C8 | 122.6 (3) | H22B—C22—H22C | 109.5 |
C1—C2—C8 | 118.8 (3) | S1—C22—H22D | 109.5 |
C2A—C3A—C4A | 119.6 (3) | H22B—C22—H22D | 109.5 |
C2A—C3A—H3AA | 120.2 | H22C—C22—H22D | 109.5 |
C4A—C3A—H3AA | 120.2 | S2—C31—H31B | 109.5 |
C2—C3—C4 | 119.9 (3) | S2—C31—H31C | 109.5 |
C2—C3—H3A | 120.0 | H31B—C31—H31C | 109.5 |
C4—C3—H3A | 120.0 | S2—C31—H31D | 109.5 |
C5A—C4A—C3A | 120.5 (3) | H31B—C31—H31D | 109.5 |
C5A—C4A—H4AA | 119.8 | H31C—C31—H31D | 109.5 |
C3A—C4A—H4AA | 119.8 | S2—C32—H32B | 109.5 |
C5—C4—C3 | 120.9 (3) | S2—C32—H32C | 109.5 |
C5—C4—H4A | 119.5 | H32B—C32—H32C | 109.5 |
C3—C4—H4A | 119.5 | S2—C32—H32D | 109.5 |
C4—C5—C6 | 120.0 (3) | H32B—C32—H32D | 109.5 |
C4—C5—H5A | 120.0 | H32C—C32—H32D | 109.5 |
C6A—C1A—C2A—C3A | −6.1 (4) | C2—C1—C6—C5 | −5.3 (4) |
Te2—C1A—C2A—C3A | 176.0 (2) | Te1—C1—C6—C5 | 172.1 (2) |
C6A—C1A—C2A—C8A | 170.7 (3) | C2—C1—C6—C7 | 171.6 (3) |
Te2—C1A—C2A—C8A | −7.1 (3) | Te1—C1—C6—C7 | −11.0 (4) |
C6—C1—C2—C3 | 4.0 (4) | C10—N1—C7—C6 | 161.0 (2) |
Te1—C1—C2—C3 | −173.4 (2) | C9—N1—C7—C6 | −76.6 (3) |
C6—C1—C2—C8 | −173.5 (3) | Te1—N1—C7—C6 | 38.2 (2) |
Te1—C1—C2—C8 | 9.1 (4) | C5—C6—C7—N1 | 153.4 (3) |
C1A—C2A—C3A—C4A | 2.8 (4) | C1—C6—C7—N1 | −23.3 (4) |
C8A—C2A—C3A—C4A | −173.9 (3) | C9A—N1A—C7A—C6A | −160.8 (2) |
C1—C2—C3—C4 | 1.0 (4) | C10A—N1A—C7A—C6A | 77.3 (3) |
C8—C2—C3—C4 | 178.4 (3) | Te2—N1A—C7A—C6A | −38.5 (3) |
C2A—C3A—C4A—C5A | 1.7 (4) | C5A—C6A—C7A—N1A | −150.9 (3) |
C2—C3—C4—C5 | −4.5 (4) | C1A—C6A—C7A—N1A | 26.6 (4) |
C3—C4—C5—C6 | 3.1 (4) | C11A—N2A—C8A—C2A | 162.0 (2) |
C3A—C4A—C5A—C6A | −2.9 (5) | C12A—N2A—C8A—C2A | −75.3 (3) |
C4A—C5A—C6A—C1A | −0.3 (4) | Te2—N2A—C8A—C2A | 36.7 (3) |
C4A—C5A—C6A—C7A | 177.2 (3) | C1A—C2A—C8A—N2A | −23.8 (4) |
C2A—C1A—C6A—C5A | 4.9 (4) | C3A—C2A—C8A—N2A | 153.0 (3) |
Te2—C1A—C6A—C5A | −177.2 (2) | C11—N2—C8—C2 | 78.9 (3) |
C2A—C1A—C6A—C7A | −172.8 (3) | C12—N2—C8—C2 | −157.9 (2) |
Te2—C1A—C6A—C7A | 5.1 (3) | Te1—N2—C8—C2 | −37.1 (2) |
C4—C5—C6—C1 | 1.7 (4) | C3—C2—C8—N2 | −154.2 (3) |
C4—C5—C6—C7 | −175.0 (3) | C1—C2—C8—N2 | 23.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···Cl1 | 0.99 | 2.99 | 3.768 (3) | 136 |
C7A—H7AB···Cl1 | 0.99 | 2.90 | 3.663 (3) | 135 |
C9A—H9AB···Cl1i | 0.98 | 2.85 | 3.697 (4) | 145 |
C9A—H9AC···O1 | 0.98 | 2.49 | 3.000 (3) | 112 |
C9—H9B···O4ii | 0.98 | 2.64 | 3.355 (4) | 130 |
C9—H9B···Cl5ii | 0.98 | 2.87 | 3.741 (4) | 149 |
C10A—H10C···Cl2iii | 0.98 | 2.80 | 3.706 (3) | 154 |
C10—H10E···O1 | 0.98 | 2.57 | 3.078 (4) | 112 |
C10—H10F···Cl5ii | 0.98 | 2.82 | 3.711 (4) | 151 |
C11A—H11E···O2 | 0.98 | 2.56 | 3.048 (4) | 110 |
C11A—H11F···Cl3iii | 0.98 | 2.91 | 3.639 (4) | 132 |
C12A—H12A···O3iv | 0.98 | 2.42 | 3.316 (4) | 151 |
C12A—H12A···Cl2iv | 0.98 | 2.97 | 3.595 (3) | 123 |
C12A—H12B···Cl2iii | 0.98 | 2.80 | 3.678 (4) | 150 |
C12—H12D···Cl6v | 0.98 | 2.92 | 3.825 (3) | 155 |
C12—H12F···O2 | 0.98 | 2.43 | 2.980 (4) | 115 |
C21—H21A···Cl5iv | 0.98 | 2.77 | 3.628 (3) | 147 |
C21—H21C···Cl3vi | 0.98 | 2.59 | 3.506 (3) | 157 |
C22—H22B···Cl5iv | 0.98 | 2.84 | 3.681 (4) | 144 |
C22—H22C···Cl1vi | 0.98 | 2.86 | 3.670 (4) | 141 |
C22—H22D···Cl2 | 0.98 | 2.77 | 3.308 (4) | 115 |
C31—H31B···O4vii | 0.98 | 2.53 | 3.389 (4) | 147 |
C31—H31C···Cl6v | 0.98 | 2.94 | 3.796 (4) | 146 |
C32—H32B···O4vii | 0.98 | 2.46 | 3.336 (4) | 149 |
C32—H32C···Cl5 | 0.98 | 2.73 | 3.275 (4) | 115 |
C32—H32D···Cl4v | 0.98 | 2.58 | 3.541 (4) | 167 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, y−1, z; (iii) x−1, y, z; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z+1; (vi) −x+2, −y, −z; (vii) −x+1, −y+1, −z+1. |
Funding information
HBS wishes to acknowledge the DST for the award of a J. C. Bose fellowship. RJB thanks the United States–India Educational Foundation for the award of a Distinguished Chair Fulbright Fellowship to India from January–May 2019.
References
Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830–8838. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562. Web of Science CrossRef CAS Google Scholar
Deka, R., Sarkar, A., Butcher, R. J., Junk, P. C., Turner, D. R., Deacon, G. B. & Singh, H. B. (2020). Organometallics, 39, 334–343. CSD CrossRef CAS Google Scholar
Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154. CSD CrossRef CAS Web of Science Google Scholar
Gupta, A., Singh, H. B. & Butcher, R. J. (2017). IUCrData, 2, x171634. Google Scholar
Gupta, A. K., Deka, R., Singh, H. B. & Butcher, R. J. (2019). New J. Chem. 43, 13225–13233. CSD CrossRef CAS Google Scholar
Hupf, E., Do, T. G., Nordheider, A., Wehrhahn, M., Sanz Camacho, P., Ashbrook, S. E., Lork, E., Slawin, A. M. Z., Mebs, S., Woollins, J. D. & Beckmann, J. (2017). Organometallics, 36, 1566–1579. CSD CrossRef CAS Google Scholar
Kobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Z. Kristallogr. 215, 21–24. CAS Google Scholar
Lin, T.-P. & Gabbaï, F. P. (2013). Angew. Chem. Int. Ed. 52, 3864–3868. CSD CrossRef CAS Google Scholar
Llunell, M., Casanova, D., Cirera, P. A. & Alvarez, J. (2013). Shape. University of Barcelona. Google Scholar
Martincová, J., Dostál, L., Herres-Pawlis, S., Růžička, A. & Jambor, R. (2011). Chem. Eur. J. 17, 7423–7427. PubMed Google Scholar
Martincová, J., Dostál, L., Růžička, A., Herres-Pawlis, S. & Jambor, R. (2012). Z. Anorg. Allg. Chem. 638, 1672–1675. Google Scholar
Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024. CrossRef Web of Science Google Scholar
Peris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959–1968. Web of Science CrossRef CAS PubMed Google Scholar
Poleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565–6574. Web of Science CrossRef PubMed CAS Google Scholar
Poleschner, H. & Seppelt, K. (2013). Angew. Chem. Int. Ed. 52, 12838–12842. Web of Science CSD CrossRef CAS Google Scholar
Pop, A., Silvestru, A., Juárez-Pérez, E. J., Arca, M., Lippolis, V. & Silvestru, C. (2014). Dalton Trans. 43, 2221–2233. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rani, V., Boda, M., Raju, S., Naresh Patwari, G., Singh, H. B. & Butcher, R. J. (2018). Dalton Trans. 47, 9114–9127. CSD CrossRef CAS PubMed Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Varga, R. A., Kulcsar, M. & Silvestru, A. (2010). Acta Cryst. E66, o771. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.