research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure determination of a novel phosphate Ag1.64Zn1.64Fe1.36(PO4)3 with an alluaudite-like structure

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: j_khmiyas@yahoo.fr

Edited by S. Parkin, University of Kentucky, USA (Received 25 July 2020; accepted 19 August 2020; online 25 August 2020)

Single crystals of Ag1.64Zn1.64Fe1.36(PO4)3 [silver zinc iron phosphate (1.64/1.64/1.36/3)] have been synthesized by a conventional solid-state reaction and structurally characterized by single-crystal X-ray diffraction. The title compound crystallizes with an alluaudite-like structure. All atoms of the structure are in general positions except for four, which reside on special positions of the space group, C2/c. The Ag+ cations reside at full occupancy on inversion centre sites and at partial occupancy (64%) on a twofold rotation axis. In this structure, the unique Fe3+ ion with one of the two Zn2+ cations are substitutionally disordered on the same general position (Wyckoff site 8f), with a respective ratio of 0.68/0.32 (occupancies were fixed so as to ensure electrical neutrality for the whole structure). The remaining O and P atoms are located in general positions. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octa­hedra stacked parallel to [10[\overline{1}]]. These chains are built up by a succession of [MO6] (M = Zn/Fe or Zn) units. Adjacent chains are connected by the PO4 anions, forming sheets oriented perpendicular to [010]. These inter­connected sheets generate two types of channels parallel to the c axis, in which the Ag+ cations are located. The validity and adequacy of the proposed structural model of Ag1.64Zn1.64Fe1.36(PO4)3 was established by means of bond-valence-sum (BVS) and charge-distribution (CHARDI) analysis tools.

1. Chemical context

The first crystal structure of natural alluaudite was determined by Fisher (1955[Fisher, D. J. (1955). Am. Mineral. 40, 1100-1109.]) using a specimen of pegmatite from Buranga-Rwanda. The metallic monophosphates belonging to this large alluaudite family form an important class of materials whose numerous phases present rich chemistry and great structural originality. Moore (1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]) proposed the following general formulation for alluaudites: A(2)A(1)M(1)M(2)2(PO4)3 with A and M being cationic sites classified in decreasing order of size (rM(2)<rM(1) <rA(1)<rA(2)). In this structure, the first site A(1) can host a mono- or divalent cation and a vacancy (□), while the second site, A(2) contains a vacancy (□) as well as a monovalent cation (Moore & Ito, 1979[Moore, P. B. & Ito, J. (1979). Miner. Mag. 43, 227-235.]). The other sites, M(1) and M(2), display octa­hedral geometries, which may contain a distribution of di- and trivalent cations. The natural alluaudite studied by Moore exhibits the following chemical formula: Na2.5Li0.1Ca0.5Mn4.52+Mg0.2Fe7.93+(PO4)12 and crystallizes in the monoclinic system, space group C2/c. In the structure of this compound, the cations are distributed over the four types of site as follows: A(1): 2.5Na+ + 0.7Mn2+ + 0.5Ca2+ + 0.3□, A(2): 4□, M(1): 3.8Mn2+ + 0.1Mg2+ + 0.1Li+, M(2): 7.9Fe3+ + 0.1Mg2+. Later, Hatert et al. (2000[Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847-857.]) proposed a complex and more accurate general formula for the alluaudite structure in order to take into account the different cationic sites available within the channels in the structure.

The main characteristic of the alluaudite structure is the remarkable flexibility of its anionic framework, which is amenable to various cationic substitutions in the A and M sites (Chaalia et al., 2012[Chaalia, S., Ayed, B. & Haddad, A. (2012). J. Chem. Crystallogr. 42, 941-946.]). As a result, a large number of alluaudite compounds with inter­esting physical properties have been synthesized and systematically characterized. Indeed, the existence of transition metals in the structure is often the origin of inter­esting properties viz. magnetic (Hatert et al., 2004[Hatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487-506.]), heterogeneous catalysis [e.g., the role of AgCaCdMg2(PO4)3 and AgCd2Mg2(PO4)3 in the conversion of butan-2-ol] (Kacimi et al., 2005[Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682-693.]), electronic conductivity and significant ionic mobility (Richardson, 2003[Richardson, T. J. (2003). J. Power Sources, 119-121, 262-265.]).

Accordingly, our efforts have mainly focused on the development and characterization of new alluaudite-type phosphates in M2O–M′O–P2O5 systems (M = monovalent cation, M′ = divalent cation). The hydro­thermal study of the pseudo-ternary system Na2O–MgO–P2O5 allowed the isolation of the alluaudite based on sodium and magnesium: NaMg3(PO4)(HPO4)2 (Ould Saleck et al., 2015[Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813-815.]). Similarly, the investigation of the two pseudo-quaternary systems Na2O–CoO–Fe2O3–P2O5 and Na2O–ZnO–Fe2O3–P2O5, made it possible to obtain two new phases: Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]), by a solid-state route. Herein we report the synthesis of the new phosphate Ag1.64Zn1.64Fe1.36(PO4)3 and its structural characterization by single crystal X-ray diffraction. The suggested structural model is supported by means of bond-valence-sum (BVS) (Altermatt & Brown, 1985[Altermatt, D. & Brown, I. D. (1985). Acta Cryst. B41, 240-244.]) and charge-distribution (CHARDI) (Nespolo et al., 2001[Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652-664.]) validation methods.

2. Structural commentary

The isolated phosphate, Ag1.64Zn1.64Fe1.36(PO4)3, crystallizes in the alluaudite structure type. The fundamental building units of the crystal structure are [Ag1O8] and [Ag2O8] polyhedra, [(Fe1/Zn1)O6] and [Zn2O6] octa­hedra and two PO4 tetra­hedra, as shown in Fig. 1[link]. In this structure, the Wyckoff position 4e (twofold) is partially occupied by Ag1 with an occupancy of 64%, while the 4a ([\overline{1}]) site is entirely occupied by Ag2. The remaining 4e (twofold) sites are completely filled by P2 and Zn2 atoms. The general position occupied by Fe1/Zn1 exhibits substitutional disorder with statistical distribution of Fe1/Zn1 = 0.68/0.32. The values of the occupancies of these sites were rounded and fixed after the last refinement cycle to respect the electrical neutrality of the structure. The crystal structure consists of extended kinked chains of two edge-sharing [(Fe1/Zn1)O6] octa­hedra, leading to the formation of [(Fe1/Zn1)2O10] dimers. These dimers are connected by a common edge to [Zn2O6] units, as depicted in Fig. 2[link]. Adjacent chains are held together through common vertices with the PO4 tetra­hedral groups, to form stacked sheets perpendicular to [010] (Fig. 3[link]). The resulting three-dimensional framework delimits two types of channel that extend along the [001] direction, hosting Ag+ cations (Fig. 4[link]). Although these cationic sites display the same coordination sphere (CN = 8), their morphologies are clearly different. Indeed, Ag1 adopts a gable disphenoid morphology while Ag2 occupies the centre of a deformed cube. The Ag1—O and Ag2—O inter­atomic distances are in the ranges of 2.495 (2)–2.916 (2) Å, and 2.387 (2)–2.946 (2) Å, respectively. A close examination of effective coordination number (ECoN) for [Ag1]/CN[Ag1] = 7.35/8 versus [Ag2]/CN[Ag1] = 6.47/8 ratios reveals a more pronounced distortion in the Ag2O8 than in the Ag1O8 polyhedra. The mixed-occupancy [Fe1/Zn1] site [occupancy ratio Fe1:Zn1 = 0.68:0.32], is closely surrounded by six oxygen atoms with Fe1/Zn1—O bond lengths ranging from 1.947 (2) Å to 2.246 (2) Å. The second zinc cation Zn2 exhibits a similar coordination sphere with inter­atomic distances varying between 2.091 (2) and 2.198 (2) Å. Both octa­hedral geometries are strongly deformed, with a notable axial compression in [Fe1/Zn1]O6 compared to Zn2O6. The P—O bond lengths within the regular PO4 tetra­hedral units vary between 1.522 (2) and 1.553 (2) Å. Their mean distances <P1—O> = 1.540 Å and <P2—O> = 1.542 Å, are in a good agreement with the <P—O> length usually reported in orthophosphate groups (Baur, 1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) −x + 2, y, −z + [{3\over 2}]; (ii) −x + 2, −y + 1, −z + 1; (iii) x, −y + 1, z + [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (v) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (vi) −x + 1, −y + 1, −z; (vii) x, −y + 1, z − [{1\over 2}]; (viii) −x + 1, y, −z + [{1\over 2}]; (ix) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (x) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (xi) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}].
[Figure 2]
Figure 2
Edge-sharing [(Fe1/Zn1)O6] and Zn2O6 octa­hedra forming a zigzag chain parallel to the [10[\overline{1}]] direction.
[Figure 3]
Figure 3
A layer perpendicular to the b axis, resulting from the connection of vertices between chains and the PO4 tetra­hedra.
[Figure 4]
Figure 4
Perspective view of the crystal structure of Ag1.64Zn1.64Fe1.34(PO4)3, showing the channels running along the [001] direction in which the Ag+ are located.

3. Structural model validation

In order to support the current crystal structure determination, CHARDI (CHARge-DIstribution) and BVS (Bond-Valence-Sum) analyses were performed using CHARDI2015 (Nespolo & Guillot, 2016[Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317-321.]) and EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]) programs, respectively. The results are summarized in Tables 1[link] and 2[link]. For the proposed structural model, BVS were calculated for all constituent atoms using the dual concept: bond lengths/bond strengths. This robust validation method estimates the oxidation states of atoms [valence: V(i)], evaluates effectively the quality of the crystal structure elucidation and predicts the level of structural strains. In this model, all the nearest ion–counter ion distances less than 3 Å are considered as bonds and taken into account. The CHARDI method is a modern generalization of Pauling's concept of bond strength (Pauling, 1929[Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.]). This approach introduces directly the inter-atomic bond distances in a self-consistent computation to assign a geometrically defined bond strength to each bond. This method adopts a Madelung-type approximation of the crystal structures by attributing point charges to the atoms (the formal charge is equal to the oxidation number; Eon & Nespolo, 2015[Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34-47.]). The CHARDI analysis also involves the distribution of computed ECoN of a central atom among all the neighbouring ligands (Hoppe, 1979[Hoppe, R. (1979). Z. Kristallogr. 150, 23-52.]). The determination of non-integer ECoN is directly inter­preted in terms of atomic charge distribution in crystalline structures. For a well refined structure, the calculated valences V(i) and the Q(i) charges according to BVS and CHARDI concepts must converge towards the weighted oxidation number q(i)·sof(i) of each atom [where q(i) = formal oxidation number and sof(i) = site occupancy]. The resulting values from both conceptions confirm the expected formal ionic charges of Ag+, Zn2+, Fe3+, P5+ and O2−. In the thirteen independent atomic sites within the asymmetric unit, the cationic charges are located at seven sites, while in the remaining sites the oxygen atoms balance the charges. For all cations, the inter­nal criterion q(i)/Q(i) ∼ 1, where Q(i) represents the computed charge, imply the correctness of the structure determination (Nespolo et al., 1999[Nespolo, M., Ferraris, G. & Ohashi, H. (1999). Acta Cryst. B55, 902-916.]). In the structure, all oxygen atoms exhibit a lower over or under bonding (OUB) effect with the exception of atoms O2 and O5, which deviate slightly from the formal value of −2 (Table 1[link]). To estimate the convergence of the (CHARDI) model, the mean absolute percentage deviation (MAPD) was computed. MAPD measures the agreement between the q(i) and Q(i) charges for the whole sets of PC (polyhedron-centring) atoms and of V (vertex) atoms (Nespolo, 2016[Nespolo, M. (2016). Acta Cryst. B72, 51-66.]),

[{\rm MAPD} ={100\over N}\sum_{i=1}^{N}\bigg|{{q(i) - Q(i)}\over{q(i)}}\bigg|]

where N is the number of polyhedron-centring or vertex atoms in the asymmetric unit. Respecting this experimental distribution scheme, the resulting values of MAPD for the cationic and anion charges are only 1.1% and 2.4%, respectively. This result supports the applicability and adequacy of the current model.

Table 1
CHARDI and BVS analysis for the cations in the title compound

q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.

Cation q(i)·sof(i) CN(i) ECoN(i) V(i) Q(i) q(i)/Q(i)
Ag1 0.41 8 6.92 0.82 0.63 1.01
Ag2 1 8 6.47 1.23 0.98 1.02
Fe1/Zn1 2.68 6 5.57 2.67 2.69 1.00
Zn2 2 6 5.91 1.83 2.00 1.00
P1 5 4 3.99 4.94 5.06 0.99
P2 5 4 4.00 4.91 4.89 1.02

Table 2
CHARDI calculation for the oxygen anions in the title compound

Anion q(i)·sof(i) Q(i) q(i)/Q(i)
O1 −2 −2.00 1.00
O2 −2 −1.87 1.07
O3 −2 −2.01 1.00
O4 −2 −2.03 0.98
O5 −2 −2.10 0.95
O6 −2 −1.99 1.01

In order to prove the chemical plausibility of the crystal structure we have also calculated the Global Instability Index (GII; Salinas-Sanchez et al., 1992[Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201-211.]). The GII index

[GII = \sqrt{\sum_{i=1}^{N}[(\sum_{j}S_{ij}-V_{i})^{2}/N]}]

estimates the coherence of the structure and measures the deviation of the bond-valence sums from the formal valence V(i) averaged over all N atoms of the asymmetric unit. In our case, we found a very good GII index of 0.087 v.u., indicating the stability and the rigidity of the proposed structural model.

4. Database survey

The structure determination of the new phosphate, Ag1.64Zn1.64Fe1.36 (PO4)3, confirms it to be isotypic with the alluaudite structure. The observed deviation of the chemical formulation from the stoichiometric composition is often encountered in phosphate materials of the alluaudite type viz. Na1.50Mn2.48Al0.85(PO4)3 (Hatert, 2006[Hatert, F. (2006). Acta Cryst. C62, i1-i2.]), Na1.25Mg1.10Fe1.90(PO4)3 (Hidouri et al., 2008[Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Amara, M. B. (2008). J. Alloys Compd. 450, 301-305.]), NaFe3.67(PO4)3 (Korzenski et al., 1998[Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152-160.]), Na1.79Mg1.79Fe1.21(PO4)3 (Hidouri et al., 2003[Hidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7-i9.]), Na0.38Ca0.31MgFe2(PO4)3 (Zid et al., 2005[Zid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46-i48.]), α-Na0.67FePO4 (Kim et al., 2013[Kim, J., Kim, H., Park, I., Park, Y. U., Yoo, J. K., Park, K. Y., Lee, S. & Kang, K. (2013). Energy Environ. Sci. 6, 830-834.]), Li0.5Na0.5MnFe2(PO4)3 (Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Inorg. Chem. 49, 10378-10389.]), Na1.5Mn1.5Fe1.5(PO4)3 (Hatert, 2004[Hatert, F. (2004). Mineral. Petrol. 81, 205-217.]), Na1.86Fe3(PO4)3 (Essehli et al., 2016[Essehli, R., Ben Yahia, H., Maher, K., Sougrati, M. T., Abouimrane, A., Park, J. B., Sun, Y. K., Al-Maadeed, M. A. & Belharouak, I. (2016). J. Power Sources, 324, 657-664.]), Na1.85Mg1.85In1.15(PO4)3&Ag1.69Mg1.69In1.31(PO4)3 (Ould Saleck et al., 2018[Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2018). Acta Cryst. E74, 1358-1361.]), Ag1.655Co1.647Fe1.352(PO4)3 (Bouraima et al., 2017[Bouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 890-892.]). Generally, in this structure the inter­connected sheets produce two types of hexa­gonal channels parallel to the c-axis direction (Hatert, 2008[Hatert, F. (2008). J. Solid State Chem. 181, 1258-1272.]): channel (1) at (½, 0, z) and (0, ½, z), while channel (2) is located at (0, 0, z) and (½, ½, z) (Leroux et al., 1995[Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206-212.]). Both channels host two kinds of site: A(1) and A(2)′. Although A(1) and A(2)′ are likely to display CN = 8 coordination, they adopt different geometries. For instance in the Ag1.64Zn1.64Fe1.36(PO4)3 structure, the Ag(2) and Ag(1) cations occupy the A(1) and A(2)′ sites respectively. However, the morphology of the A sites remains a controversial subject. Indeed, Antenucci et al. (1995[Antenucci, D., Fransolet, A. M., Miehe, G. & Tarte, P. (1995). Eur. J. Mineral. 7, 175-182.]), brought a restriction on certain cation–oxygen bonds: A(1)—O and A(2)′—O (A—O ∼ 3 Å). Thus the A sites can adopt the coordination CN = 6, which implies the passage towards an irregular octa­hedron and deformed trigonal prism for A(1) and A(2)′, respectively. The evolution from AO8 to AO6 polyhedra was also reported by Khorari et al. (1997[Khorari, S., Rulmont, A., Tarte, P., Miehe, G., Antenucci, D. & Gilbert, B. (1997). J. Solid State Chem. 131, 298-304.]) for a study on the alluaudite NaCaCdMg2(AsO4)3. On the other hand, according to Hatert et al. (2006[Hatert, F., Fransolet, A. M. & Maresch, W. V. (2006). Contrib. Mineral. Petrol. 152, 399-419.]), the A(1) site is distorted cubic, while A(2)′ would have a first coordination sphere of only four atoms.

5. Synthesis and crystallization

Single crystals of Ag1.64Zn1.64Fe1.36(PO4)6 were synthesized by means of a classical solid-state reaction in air. Appropriate amounts of the starting reagents: AgNO3, Zn(NO3)2·6H2O, Fe(NO3)3·9H2O, H3PO4 (85%) were taken in the following molar ratios Ag:Zn:Fe:P = 2:2:1:3. The mixture was dissolved in concentrated nitric acid, stirred at room temperature for 24 h and subsequently evaporated to dryness. The obtained solid was carefully milled in an agate mortar, placed in a platinum crucible and heated up to the melting point of 1223 K. The molten product was maintained at this temperature for 1 h then cooled down slowly to 920 K at rate of 5 K h−1 and then rapidly to room temperature by turning off the oven. The title compound was isolated as yellow parallelepiped-shaped crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The refinement of all the variable parameters leads to well-defined displacement ellipsoids. In the final refinement cycles, the mixed-occupancy (Fe1/Zn1) site was refined with fixed complementary occupancies of 0.68/0.32. This cationic distribution scheme satisfies the electrical neutrality requirement and leads to the corresponding non-stoichiometric compound. The highest peak and the deepest hole in the last difference Fourier map were 0.63 and 0.56 Å from Ag1 and P1, respectively.

Table 3
Experimental details

Crystal data
Chemical formula Ag1.64Zn1.64Fe1.36(PO4)3
Mr 644.97
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 11.8151 (5), 12.6367 (6), 6.4056 (3)
β (°) 113.431 (2)
V3) 877.52 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.84
Crystal size (mm) 0.36 × 0.27 × 0.20
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25488, 1924, 1585
Rint 0.060
(sin θ/λ)max−1) 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.044, 1.07
No. of reflections 1924
No. of parameters 95
Δρmax, Δρmin (e Å−3) 1.41, −0.90
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Silver zinc iron phosphate (1.64/1.64/1.36/3) top
Crystal data top
Ag1.64Zn1.64Fe1.36(PO4)3F(000) = 1211
Mr = 644.97Dx = 4.882 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.8151 (5) ÅCell parameters from 1924 reflections
b = 12.6367 (6) Åθ = 2.5–35.0°
c = 6.4056 (3) ŵ = 10.84 mm1
β = 113.431 (2)°T = 296 K
V = 877.52 (7) Å3Parallelepiped, yellow
Z = 40.36 × 0.27 × 0.20 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
1924 independent reflections
Radiation source: INCOATEC IµS micro-focus source1585 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.060
Detector resolution: 10.4167 pixels mm-1θmax = 35.0°, θmin = 2.5°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.638, Tmax = 0.746l = 1010
25488 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0142P)2 + 2.467P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.001
wR(F2) = 0.044Δρmax = 1.41 e Å3
S = 1.07Δρmin = 0.90 e Å3
1924 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
95 parametersExtinction coefficient: 0.00124 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag11.0000000.49101 (4)0.7500000.02841 (12)0.64
Ag20.5000000.5000000.0000000.01591 (7)
Zn10.78254 (3)0.34690 (2)0.37235 (5)0.00670 (6)0.32
Fe10.78254 (3)0.34690 (2)0.37235 (5)0.00670 (6)0.68
Zn20.5000000.73456 (3)0.2500000.01000 (8)
P10.76144 (5)0.61144 (4)0.37475 (8)0.00534 (10)
P20.5000000.28593 (6)0.2500000.00479 (13)
O10.83549 (14)0.66439 (12)0.6084 (2)0.0081 (3)
O20.77834 (14)0.67712 (12)0.1861 (3)0.0096 (3)
O30.62482 (14)0.60856 (12)0.3287 (3)0.0092 (3)
O40.81553 (16)0.50008 (12)0.3824 (3)0.0135 (3)
O50.60368 (13)0.35972 (12)0.2534 (3)0.0084 (3)
O60.45827 (13)0.21643 (12)0.0329 (2)0.0073 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01096 (18)0.0277 (3)0.0355 (3)0.0000.00255 (17)0.000
Ag20.02498 (14)0.00877 (11)0.00979 (11)0.00478 (9)0.00245 (9)0.00065 (8)
Zn10.00572 (12)0.00818 (13)0.00660 (12)0.00103 (10)0.00288 (9)0.00078 (10)
Fe10.00572 (12)0.00818 (13)0.00660 (12)0.00103 (10)0.00288 (9)0.00078 (10)
Zn20.01101 (17)0.00984 (17)0.01111 (17)0.0000.00646 (14)0.000
P10.0065 (2)0.0055 (2)0.0040 (2)0.00099 (18)0.00202 (18)0.00037 (18)
P20.0051 (3)0.0052 (3)0.0036 (3)0.0000.0013 (2)0.000
O10.0102 (7)0.0082 (7)0.0054 (6)0.0012 (5)0.0024 (5)0.0016 (5)
O20.0093 (7)0.0129 (7)0.0066 (7)0.0034 (6)0.0031 (5)0.0005 (5)
O30.0067 (6)0.0108 (7)0.0106 (7)0.0015 (5)0.0039 (6)0.0003 (6)
O40.0163 (8)0.0086 (7)0.0156 (8)0.0028 (6)0.0063 (6)0.0023 (6)
O50.0062 (6)0.0079 (7)0.0101 (7)0.0005 (5)0.0021 (5)0.0023 (5)
O60.0061 (6)0.0086 (7)0.0062 (6)0.0003 (5)0.0015 (5)0.0015 (5)
Geometric parameters (Å, º) top
Ag1—O42.4953 (17)Zn1—O1vii2.0275 (15)
Ag1—O4i2.4953 (17)Zn1—O2iii2.0525 (15)
Ag1—O4ii2.6368 (18)Zn1—O6iv2.0762 (15)
Ag1—O4iii2.6368 (18)Zn1—O2ix2.2463 (16)
Ag1—O1i2.8281 (16)Zn2—O32.0911 (16)
Ag1—O12.8282 (16)Zn2—O3viii2.0911 (16)
Ag1—O6iv2.9160 (15)Zn2—O6iii2.1497 (15)
Ag1—O6v2.9160 (15)Zn2—O6vi2.1497 (15)
Ag2—O5vi2.3866 (15)Zn2—O1x2.1975 (15)
Ag2—O52.3866 (15)Zn2—O1xi2.1975 (15)
Ag2—O32.4538 (15)P1—O31.5217 (15)
Ag2—O3vi2.4538 (15)P1—O41.5382 (16)
Ag2—O3vii2.5587 (15)P1—O21.5431 (16)
Ag2—O3viii2.5587 (15)P1—O11.5532 (15)
Ag2—O5vii2.9459 (16)P2—O51.5328 (15)
Ag2—O5viii2.9459 (16)P2—O5viii1.5328 (15)
Zn1—O51.9473 (15)P2—O61.5502 (15)
Zn1—O41.9706 (16)P2—O6viii1.5503 (15)
O4—Ag1—O4i174.74 (8)O5—Zn1—O495.79 (7)
O4—Ag1—O4ii102.59 (5)O5—Zn1—O1vii109.03 (6)
O4i—Ag1—O4ii77.17 (5)O4—Zn1—O1vii88.50 (6)
O4—Ag1—O4iii77.17 (5)O5—Zn1—O2iii87.17 (6)
O4i—Ag1—O4iii102.60 (5)O4—Zn1—O2iii101.23 (7)
O4ii—Ag1—O4iii175.11 (7)O1vii—Zn1—O2iii160.33 (6)
O4—Ag1—O1i119.87 (5)O5—Zn1—O6iv160.35 (6)
O4i—Ag1—O1i55.31 (5)O4—Zn1—O6iv102.51 (6)
O4ii—Ag1—O1i61.28 (5)O1vii—Zn1—O6iv78.85 (6)
O4iii—Ag1—O1i114.48 (5)O2iii—Zn1—O6iv82.34 (6)
O4—Ag1—O155.31 (5)O5—Zn1—O2ix77.79 (6)
O4i—Ag1—O1119.87 (5)O4—Zn1—O2ix171.76 (6)
O4ii—Ag1—O1114.48 (5)O1vii—Zn1—O2ix88.76 (6)
O4iii—Ag1—O161.28 (5)O2iii—Zn1—O2ix83.75 (6)
O1i—Ag1—O178.45 (6)O6iv—Zn1—O2ix84.57 (6)
O4—Ag1—O6iv70.89 (5)O3—Zn2—O3viii80.82 (8)
O4i—Ag1—O6iv114.20 (5)O3—Zn2—O6iii113.09 (6)
O4ii—Ag1—O6iv83.66 (5)O3viii—Zn2—O6iii92.67 (6)
O4iii—Ag1—O6iv100.79 (5)O3—Zn2—O6vi92.67 (6)
O1i—Ag1—O6iv144.45 (4)O3viii—Zn2—O6vi113.09 (6)
O1—Ag1—O6iv125.39 (4)O6iii—Zn2—O6vi146.50 (8)
O4—Ag1—O6v114.20 (5)O3—Zn2—O1x85.40 (6)
O4i—Ag1—O6v70.89 (5)O3viii—Zn2—O1x164.84 (6)
O4ii—Ag1—O6v100.79 (5)O6iii—Zn2—O1x86.93 (6)
O4iii—Ag1—O6v83.66 (5)O6vi—Zn2—O1x73.66 (5)
O1i—Ag1—O6v125.39 (4)O3—Zn2—O1xi164.84 (6)
O1—Ag1—O6v144.45 (4)O3viii—Zn2—O1xi85.40 (6)
O6iv—Ag1—O6v51.96 (6)O6iii—Zn2—O1xi73.66 (5)
O5vi—Ag2—O5180.0O6vi—Zn2—O1xi86.93 (6)
O5vi—Ag2—O398.00 (5)O1x—Zn2—O1xi108.94 (8)
O5—Ag2—O382.00 (5)O3—Zn2—O5vi84.84 (5)
O5vi—Ag2—O3vi82.00 (5)O3viii—Zn2—O5vi61.40 (5)
O5—Ag2—O3vi98.00 (5)O6iii—Zn2—O5vi146.63 (5)
O3—Ag2—O3vi180.0O6vi—Zn2—O5vi51.69 (5)
O5vi—Ag2—O3vii109.52 (5)O1x—Zn2—O5vi123.73 (5)
O5—Ag2—O3vii70.48 (5)O1xi—Zn2—O5vi83.04 (5)
O3—Ag2—O3vii114.55 (6)O3—Zn2—O5iii61.40 (5)
O3vi—Ag2—O3vii65.45 (6)O3viii—Zn2—O5iii84.84 (5)
O5vi—Ag2—O3viii70.48 (5)O6iii—Zn2—O5iii51.69 (5)
O5—Ag2—O3viii109.52 (5)O6vi—Zn2—O5iii146.63 (5)
O3—Ag2—O3viii65.45 (6)O1x—Zn2—O5iii83.04 (5)
O3vi—Ag2—O3viii114.55 (6)O1xi—Zn2—O5iii123.73 (5)
O3vii—Ag2—O3viii180.0O5vi—Zn2—O5iii136.14 (5)
O5vi—Ag2—O5vii53.05 (6)O3—P1—O4112.31 (9)
O5—Ag2—O5vii126.95 (6)O3—P1—O2108.59 (9)
O3—Ag2—O5vii83.55 (5)O4—P1—O2109.61 (9)
O3vi—Ag2—O5vii96.45 (5)O3—P1—O1110.16 (9)
O3vii—Ag2—O5vii70.07 (5)O4—P1—O1107.20 (9)
O3viii—Ag2—O5vii109.93 (5)O2—P1—O1108.92 (9)
O5vi—Ag2—O5viii126.95 (6)O5—P2—O5viii105.07 (12)
O5—Ag2—O5viii53.05 (6)O5—P2—O6108.94 (8)
O3—Ag2—O5viii96.45 (5)O5viii—P2—O6111.39 (8)
O3vi—Ag2—O5viii83.55 (5)O5—P2—O6viii111.39 (8)
O3vii—Ag2—O5viii109.93 (5)O5viii—P2—O6viii108.94 (8)
O3viii—Ag2—O5viii70.07 (5)O6—P2—O6viii110.98 (12)
O5vii—Ag2—O5viii180.0
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+2, y+1, z+1; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y+1/2, z+1; (vi) x+1, y+1, z; (vii) x, y+1, z1/2; (viii) x+1, y, z+1/2; (ix) x+3/2, y1/2, z+1/2; (x) x+3/2, y+3/2, z+1; (xi) x1/2, y+3/2, z1/2.
CHARDI and BVS analysis for the cations in the title compound top
q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.
Cationq(i)·sof(i)CN(i)ECoN(i)V(i)Q(i)q(i)/Q(i)
Ag10.4186.920.820.631.01
Ag2186.471.230.981.02
Fe1/Zn12.6865.572.672.691.00
Zn2265.911.832.001.00
P1543.994.945.060.99
P2544.004.914.891.02
CHARDI calculation for the oxygen anions in the title compound top
Anionq(i)·sof(i)Q(i)q(i)/Q(i)
O1-2-2.001.00
O2-2-1.871.07
O3-2-2.011.00
O4-2-2.030.98
O5-2-2.100.95
O6-2-1.991.01
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

References

First citationAltermatt, D. & Brown, I. D. (1985). Acta Cryst. B41, 240–244.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAntenucci, D., Fransolet, A. M., Miehe, G. & Tarte, P. (1995). Eur. J. Mineral. 7, 175–182.  CAS Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationBouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 890–892.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaalia, S., Ayed, B. & Haddad, A. (2012). J. Chem. Crystallogr. 42, 941–946.  Web of Science CrossRef ICSD CAS Google Scholar
First citationEon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEssehli, R., Ben Yahia, H., Maher, K., Sougrati, M. T., Abouimrane, A., Park, J. B., Sun, Y. K., Al-Maadeed, M. A. & Belharouak, I. (2016). J. Power Sources, 324, 657–664.  CrossRef ICSD CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFisher, D. J. (1955). Am. Mineral. 40, 1100–1109.  CAS Google Scholar
First citationHatert, F. (2004). Mineral. Petrol. 81, 205–217.  Web of Science CrossRef ICSD CAS Google Scholar
First citationHatert, F. (2006). Acta Cryst. C62, i1–i2.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationHatert, F. (2008). J. Solid State Chem. 181, 1258–1272.  Web of Science CrossRef ICSD CAS Google Scholar
First citationHatert, F., Fransolet, A. M. & Maresch, W. V. (2006). Contrib. Mineral. Petrol. 152, 399–419.  Web of Science CrossRef CAS Google Scholar
First citationHatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847–857.  CrossRef CAS Google Scholar
First citationHatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.  Web of Science CrossRef ICSD CAS Google Scholar
First citationHidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7–i9.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationHidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Amara, M. B. (2008). J. Alloys Compd. 450, 301–305.  CrossRef ICSD CAS Google Scholar
First citationHoppe, R. (1979). Z. Kristallogr. 150, 23–52.  CrossRef CAS Web of Science Google Scholar
First citationKacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKhorari, S., Rulmont, A., Tarte, P., Miehe, G., Antenucci, D. & Gilbert, B. (1997). J. Solid State Chem. 131, 298–304.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKim, J., Kim, H., Park, I., Park, Y. U., Yoo, J. K., Park, K. Y., Lee, S. & Kang, K. (2013). Energy Environ. Sci. 6, 830–834.  CrossRef CAS Google Scholar
First citationKorzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152–160.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLeroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206–212.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationMoore, P. B. & Ito, J. (1979). Miner. Mag. 43, 227–235.  CrossRef CAS Web of Science Google Scholar
First citationNespolo, M. (2016). Acta Cryst. B72, 51–66.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652–664.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNespolo, M., Ferraris, G. & Ohashi, H. (1999). Acta Cryst. B55, 902–916.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuld Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationOuld Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2018). Acta Cryst. E74, 1358–1361.  CrossRef ICSD IUCr Journals Google Scholar
First citationPauling, L. (1929). J. Am. Chem. Soc. 51, 1010–1026.  CrossRef CAS Google Scholar
First citationRichardson, T. J. (2003). J. Power Sources, 119–121, 262–265.  CrossRef CAS Google Scholar
First citationSalinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Inorg. Chem. 49, 10378–10389.  CrossRef ICSD CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46–i48.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds