research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld analysis of 3′-bromo-4-methyl­chalcone and 3′-cyano-4-methyl­chalcone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Gonzaga University, 502 E Boone Ave, Spokane, WA 99258, USA, bDepartment of Chemistry, Whitworth University, 300 W. Hawthorne Rd, Spokane, WA 99251, USA, and cSchool of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, England
*Correspondence e-mail: cremeens@gonzaga.edu

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 21 July 2020; accepted 13 August 2020; online 25 August 2020)

Two crystal structures of chalcones, or 1,3-di­aryl­prop-2-en-1-ones, are presented; both contain a methyl substitution on the 3-Ring, but differ on the 1-Ring, bromo versus cyano. The compounds are 3′-bromo-4-methyl­chalcone [systematic name: 1-(2-bromo­phen­yl)-3-(4-methyl­phen­yl)prop-2-en-1-one], C16H13BrO, and 3′-cyano-4-methyl­chalcone {systematic name: 2-[3-(4-methyl­phen­yl)prop-2-eno­yl]benzo­nitrile}, C17H13NO. Both chalcones meaningfully add to the large dataset of chalcone structures. The crystal structure of 3′-cyano-4-methyl­chalcone exhibits close contacts with the cyano nitro­gen that do not appear in previously reported disubstituted cyano­chalcones, namely inter­actions between the cyano nitro­gen atom and a ring hydrogen atom as well as a methyl hydrogen atom. The structure of 3′-bromo-4-methyl­chalcone exhibits a type I halogen bond, similar to that found in a previously reported structure for 4-bromo-3′-methyl­chalcone.

1. Chemical context

Chalcones are organic mol­ecules commonly found in nature consisting of two phenyl rings connected by an α,β-unsaturated ketone, or enone. Inter­est in chalcone mol­ecules has risen because of their potential pharmaceutical properties, electronic properties, and straightforward synthesis via a Claisen–Schmidt condensation between a benzaldehyde and aceto­phenone (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]). Pharmaceutical attributes shown by some chalcones include anti­oxidant, anti-inflammatory, anti-cancer, and cytotoxic properties (Sahu et al., 2012[Sahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209-225.]). Additionally, some chalcones have been shown to be fluorescent, making them potential probes for mechanistic investigations and imaging (Lee et al., 2012[Lee, S. C., Kang, N. Y., Park, S. J., Yun, S. W., Chandran, Y. & Chang, Y. T. (2012). Chem. Commun. 48, 6681-6683.]).

[Scheme 1]

This paper compares the structure and packing of two newly crystallized chalcone mol­ecules, 3′-cyano-4-methyl­chalcone [Sm6p] or m′CNpCH3 and 3′-bromo-4-methyl­chalcone [Dm6p] or m′BrpCH3, where Sm6p and Dm6p are inter­nal codes tied to a large, long-term project. Each chalcone examined consists of a variable meta substitution at C6 of the 1-Ring, and methyl substitution at C13 of the 3-Ring, see Figs. 1[link] and 2[link]. Substitution on the 1-Ring has been utilized to further understand the packing and structure of chalcone crystals based upon their ring substituents.

[Figure 1]
Figure 1
Three key dihedrals describing the chalcone planarity for 3′-cyano-4-methyl­chalcone (m′CNpCH3) and 3′-bromo-4-methyl­chalcone (m′BrpCH3); the 1-Ring and 3-Ring are labelled, where R = CN, Br.
[Figure 2]
Figure 2
The asymmetric units of m′CNpCH3 (left) and m′BrpCH3 (right) showing the atom labeling with displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

The chalcones under observation, m′CNpCH3 and m′BrpCH3, differ at the meta position on the 1-Ring, cyano and bromo respectively, Figs. 1[link] and 2[link]. Note that the following summary of dihedrals, which represents the planarity of the chalcones, references data in Table 1[link] where non-rounded angles and errors can be found. The enone core exhibits small (10–11°) deviations from planarity (Φ2) for m′CNpCH3 and m′BrpCH3. The 1-Ring/carbonyl twists (Φ1) show similar deviations from planarity (25–27°) for m′CNpCH3 and m′BrpCH3. The 3-Ring/alkene twists (Φ3) also show similar deviations from planarity (16–18°) for m′CNpCH3 and m′BrpCH3. m′CNpCH3 and m′BrpCH3 exhibit similar 1-Ring/3-Ring twist angles (approximately 49°) and fold angles (1–2°). Based on the angle values, m′CNpCH3 and m′BrpCH3 do not vary greatly in torsions despite their different substituents. Both chalcones are similarly twisted and show a pairwise anti­parallel arrangement of the enone core (Fig. 3[link]), which are related by inversion symmetry. A closer look at the supra­molecular properties (see below) reveals similarities and differences for the crystal structures.

Table 1
Selected angles (°)

The Φ1, Φ2, and Φ3 dihedrals are defined by C5—C4—C1—C2, C4—C1—C2—C3, and C2—C3—C10—C11, respectively.

Chalcone Φ1 Φ2 Φ3 1-Ring 3-Ring Twist 1-Ring 3-Ring Fold
m′CNpCH3 −154.58 (10) −169.15 (10) −163.34 (10) 49.11 (4) 0.67 (4)
m′BrpCH3 −153.51 (16) −169.73 (17) −161.99 (18) 49.15 (6) 1.55 (6)
[Figure 3]
Figure 3
The unit cells of m′CNpCH3 (P21/c space group, left) and m′BrpCH3 (P[\overline{1}] space group, right), with the a, b, and c axes indicated in red, green, and blue, respectively.

3. Supra­molecular features

Electrostatic potentials are shown in Fig. 4[link], and Hirshfeld analyses are presented in Figs. 5[link]–7[link][link] for m′CNpCH3 and m′BrpCH3. The electrostatic potentials show a greater polarization for m′CNpCH3 than for m′BrpCH3, which is expected because the cyano functional group is a stronger electron-withdrawing group than bromine. Consequently, the 1-Ring hydrogen atoms of m′CNpCH3 exhibit greater partial positive character; nonetheless, the 1-Rings for both m′CNpCH3 and m′BrpCH3 show C—H⋯π inter­actions, see discussion below. Additionally, the small and slightly positive region on Br1 (Fig. 4[link], right) hints toward a σ-hole and an opportunity for a halogen bond in m′BrpCH3. The Hirshfeld analyses below highlight the main inter­molecular inter­actions found in m′CNpCH3 and m′BrpCH3 (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]); see the supporting information for fingerprint plots showing the percentage distribution of the inter­molecular inter­actions represented by the dnorm surface in Fig. 5[link].

[Figure 4]
Figure 4
Electrostatic potentials at the wB97XD/6–311++G(d,p) level of theory for m′CNpCH3 (left) and m′BrpCH3 (middle and right). The range for all three plots is from −1.0 eV (red) to +1.0 eV (blue); electrostatic potential maps were plotted on the 0.0004 SCF density surface. Single point energy calculations were performed on the geometric coordinates of the asymmetric unit (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision D. 01. Gaussian Inc., Wallingford, CT, USA.]).
[Figure 5]
Figure 5
Hirshfeld surfaces of m′CNpCH3 (top) and m′BrpCH3 (bottom). Surfaces are mapped with dnorm (left), the shape-index (middle), and de (right). Note that close contacts involving the aromatic rings visualized in dnorm are also supported in both the shape-index and de, as indicated by the red regions over the rings.
[Figure 6]
Figure 6
Hirshfeld short contact (dnorm) plots of m′CNpCH3 (left) and m′BrpCH3 (right) showing the C8—H8⋯C11 (top) and C11—H11⋯·C7 (bottom) inter­actions. Red, white, and blue surface colors indicate contacts less than the sum of the van der Waals radii, close to, or greater than, respectively. For m′CNpCH3 and m′BrpCH3, the inter­acting chalcone mol­ecules are anti­parallel to one another with the carbonyl groups facing opposite each other.
[Figure 7]
Figure 7
Hirshfeld short contact (dnorm) plots of m′CNpCH3 (left) and m′BrpCH3 (right) showing the C17—H17A⋯N1 and C16—H16A⋯Br1 (top), as well as C7—H7⋯N1, C7—H7⋯Br1, and C6—Br1⋯Br1 (bottom) inter­actions. Red, white, and blue surface colors indicate contacts less than the sum of the van der Waals radii, equal to, or greater than, respectively. Note that the C7—H7⋯N1 inter­action for m′CNpCH3 involves three mol­ecules, while for m′BrpCH3 both C7—H7⋯Br1 and Br⋯Br1 inter­actions are needed to support a similar three-mol­ecule arrangement.

From a Hirshfeld analysis, the dnorm surfaces indicate close contacts (red regions) near H7, H8, H11, H17A, C7, C11, and N1 for m′CNpCH3 and H8, C11, and Br1 for m′BrpCH3. Upon closer inspection of these atoms, m′CNpCH3 and m′BrpCH3 contain multiple C—H⋯π inter­actions, which can be seen in Fig. 6[link] as red regions. Note that the following summary of short contacts between two atoms, which have distances less than the sum of their van der Waals (vdW) radii, references data found in Table 2[link] where non-rounded distances and errors can also be found. Notable hydrogen–carbon short contacts for m′CNpCH3 are C8—H8⋯C11iv (2.88 Å) and C11—H11⋯C7iii (2.82 Å). In comparison, similar short contacts for m′BrpCH3 are C8—H8⋯C11iii (2.80 Å) and C11—H11⋯C7ii (2.89 Å). m′CNpCH3 contains some notable C—H⋯N inter­actions, which can be seen in Fig. 7[link] as red regions. The hydrogen–nitro­gen short contacts for m′CNpCH3 are C7—H7⋯N1ii (2.60 Å) and C17—H17A⋯N1i (2.62 Å). For the sake of comparison to m′CNpCH3, C7—H7⋯Br1v (3.24 Å) and C16—H16A⋯Br1i (3.10 Å) in m′BrpCH3, which can be seen in Fig. 7[link] as white regions, have distances that are greater than the sum of bromine and hydrogen vdW radii (3.05 Å). Nonetheless, m′BrpCH3 contains a Br⋯Br inter­action, see the red region associated with Br1 in Fig. 7[link]. This type I halogen bond exhibits a short contact for Br1⋯Br1iv of 3.5565 (5) Å (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]).

Table 2
Distances (Å) for close contacts

Distances to the 1-Ring and 3-Ring reflect the distances to the centroids of those rings. The sums of the van der Waals radii (Å) for hydrogen plus carbon, nitro­gen, or bromine are 2.9, 2.75, and 3.05, respectively, while the sum for bromine plus bromine is 3.7. The symmetry codes apply to those mol­ecules inter­acting with the asymmetric unit. Estimated standard deviations are listed in parentheses.

m′CNpCH3 Distance m′BrpCH3 Distance
C8—H8⋯C11iv 2.8835 (11) C8—H8⋯C11iii 2.8019 (16)
C8—H8⋯3-Ringiv 2.7391 (4) C8—H8⋯3-Ringiii 2.709 (2)
C11—H11⋯C7iii 2.8187 (11) C11—H11⋯C7ii 2.8936 (17)
C11—H11⋯1-Ringiii 2.8866 (4) C11—H11⋯1-Ringii 3.061 (2)
1-Ring⋯3-Ringiv 4.6036 (6) 1-Ring⋯3-Ringiii 4.5176 (10)
3-Ring⋯1-Ringiii 4.7132 (6) 3-Ring⋯1-Ringii 4.8989 (11)
C7—H7⋯N1ii 2.5999 (9) C7—H7⋯Br1v 3.2379 (4)
C17—H17A⋯N1i 2.6168 (11) C16—H16A⋯Br1i 3.0962 (3)
    Br1⋯Br1iv 3.5556 (5)
Symmetry codes for m′CNpCH3: (i) 1 − x, 1 − y, 1 − z; (ii) −x, −[{1\over 2}] + y, [{1\over 2}] − z; (iii) −x, 1 − y, 1 − z; (iv) −x, −y, 1 − z. Symmetry codes for m′BrpCH3: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 2 − y, 1 − z; (iii) −x, 2 − y, 1 − z; (iv) 2 − x, 2 − y, −z; (v) 1 − x, 2 − y, −z.

For aromatic rings, π-stacking can exhibit multiple orientations, e.g. sandwich, parallel-displaced, and edge-to-face (Wheeler, 2011[Wheeler, S. E. (2011). J. Am. Chem. Soc. 133, 10262-10274.]), arising largely from dispersion and/or electrostatic inter­actions. The C—H⋯π inter­actions of m′CNpCH3 and m′BrpCH3 resemble the edge-to-face orientation, which is also referred to as a T-shaped orientation. More specifically, the H8⋯3-Ring and H11⋯1-Ring inter­actions of m′CNpCH3 and m′BrpCH3 resemble a bent T-shaped orientation, or the so-called B-T1 orientation as defined by Dinadayalane & Leszczynski (2009[Dinadayalane, T. & Leszczynski, J. (2009). Struct. Chem. 20, 11-20.]). A computationally derived centroid-to-centroid distance for the B-T1 orientation is 4.63 Å (Dinadayalane & Leszczynski, 2009[Dinadayalane, T. & Leszczynski, J. (2009). Struct. Chem. 20, 11-20.]), which is close to the centroid distances for the 1-Ring⋯3-Ringiv of m′CNpCH3 (4.60 Å), the 1-Ring⋯3-Ringiii of m′BrpCH3 (4.52 Å), the 3-Ring⋯1-Ringiii of m′CNpCH3 (4.71 Å), and the 3-Ring⋯1-Ringii of m′BrpCH3 (4.90 Å). See Table 2[link] for non-rounded distances and errors.

Inspection of packing diagrams indicate that the m′CNpCH3 mol­ecules form anti­parallel sheets, Fig. 8[link]. The inter­actions that contribute the most to this stacking are the C—H⋯π inter­actions (C8—H8⋯C11iv or 1-Ring⋯3-Ringiv and C11—H11⋯C7iii or 3-Ring⋯1-Ringiii) and C—H⋯N inter­actions (C17—H17A⋯N1i), Figs. 6[link] and 7[link]. All of these short contacts are less than their respective sum of vdW radii and are expected to contribute to the packing structure. Packing diagrams for m′BrpCH3 also show anti­parallel sheets, Fig. 8[link]. Similar to m′CNpCH3, the C—H⋯π inter­actions (C8—H8⋯C11iii or 1-Ring⋯3-Ringiii and C11—H11⋯C7ii or 3-Ring⋯1-Ringii) are also contributors to this stacking arrangement. Both chalcones have strong inter­actions that contribute to the lateral arrangement of mol­ecules in the packing diagrams. For m′CNpCH3 this inter­action is the C7—H7⋯N1i inter­action visualized in Fig. 7[link]. For m′BrpCH3, the Br1⋯Br1iv inter­action, or type 1 halogen bond, contributes to the lateral arrangement.

[Figure 8]
Figure 8
Selected packing displays for m′CNpCH3 (left) and m′BrpCH3 (right) showing identical lateral inter­actions for C16—N1⋯H7 and the Br1⋯Br1 type I halogen bond (top), as well as the stacking inter­actions N1⋯H17A, C11⋯H8, C7⋯H11, and Br1⋯H16A (bottom). The symmetry codes apply to those mol­ecules inter­acting with the asymmetric unit. Additional N1⋯H7 and Br1⋯Br1 inter­actions are included to serve as a visual aid. Symmetry codes for m′CNpCH3: (i) 1 − x, 1 − y, 1 − z; (ii) −x, −[{1\over 2}] + y, [{1\over 2}] − z; (iii) −x, 1 − y, 1 − z; (iv) −x, −y, 1 - z. Symmetry codes for m′BrpCH3: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 2 − y, 1 − z; (iii) −x, 2 − y, 1 − z; (iv) 2 − x, 2 − y, −z.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), which excluded chalcones substituted with additional rings, did not yield any mono-substituted cyano­chalcone structures. The only disubstituted cyano­chalcones found contained a pCN group on the 3-Ring; 4-cyano-2′-fluoro­chalcone [Bo19p] (LERXOW; P[\overline{1}]; Braun et al., 2006a[Braun, R. U., Ansorge, M. & Müller, T. J. J. (2006a). Chem. Eur. J. 12, 9081-9094.]) and 4-cyano-4′-di­ethyl­amino­chalcone [Qp19p] (NAWCEU; P21/c; Braun et al., 2006b[Braun, R. U., Müller, T. J. J. & Polborn, K. (2006b). Private communication (refcode NAWCEU). CCDC, Cambridge, England.]). Two of the CN structures, NAWCEU and m′CNpCH3 [Sm6p], share the same space group, P21/c, while LERXOW belongs to the P[\overline{1}] space group. m′CNpCH3 is the first cyano­chalcone crystal structure with a meta-cyano substituent and is the first disubstituted cyano-methyl-chalcone structure. Analysis of the close contacts for LERXOW and NAWCEU reveals different inter­actions than for m′CNpCH3. Both structures display no strong inter­actions involving the cyano substituent, and instead both have strong inter­actions involving the carbonyl oxygen and the aromatic hydrogen atoms. LERXOW has a strong inter­action between O1 and H3 and H11, while the oxygen inter­action of note for NAWCEU is between O1 and H14. Additionally, C–H⋯π inter­actions have a lesser impact on the packing structure, as indicated by Hirshfeld analysis. More data are required to assess whether these differences are a function of meta versus para cyano substitution.

The same survey, again excluding mol­ecules containing additional rings, showed multiple chalcones containing a bromo substitution, nine of which are substituted in the meta position of the 1-Ring, and two of which are disubstituted with a bromo and a methyl group. 3′-Bromo­chalcone [Dm-1] (CICLUW; P[\overline{1}]; Rosli et al., 2007[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2501.]) and m′BrpCH3 [Dm6p] belong to the same space group, P[\overline{1}]. The two disubstituted chalcones most similar to m′BrpCH3, 4′-bromo-4-methyl­chalcone [Dp6p] (IZEFOI; P21/c; Wang et al., 2004[Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696-o698.]) and 3-bromo-4′-methyl­chalcone [Fp4m] (IGAPAI; P[\overline{1}]; Li et al., 2008[Li, H., Sarojini, B. K., Raj, C. G. D., Madhu, L. N. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2238.]), are the only disubstituted Br/CH3 chalcones. Of the two disubstituted chalcones, only IGAPAI shares the same space group as m′BrpCH3, and IGAPAI also exhibits a type I halogen bond (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]), similar to m′BrpCH3. IZEFOI does display C—H⋯π inter­actions, but these support a parallel arrangement, with the 3-Ring forming close contacts with the 3-Ring of a neighboring mol­ecule, as opposed to the anti­parallel nature of the C—H⋯π inter­actions for m′BrpCH3. m′BrpCH3 is the first methyl-substituted chalcone structure with an m′Br atom. Note that the codes Bo19p, Dm-1, Dm6p, Dp6p, Fp4m, Qp19p, and Sm6p are inter­nal codes tied to a large, long-term project.

5. Synthesis and crystallization

Synthesis. The preparations of m′CNpCH3 [Sm6p] (Merchant et al., 1965[Merchant, J. R., Mehta, J. B. & Desai, V. B. (1965). Indian J. Chem. 3, 561-4.]) and m′BrpCH3 [Dm6p] have previously been reported (Budakoti et al., 2008[Budakoti, A., Bhat, A. R., Athar, F. & Azam, A. (2008). Eur. J. Med. Chem. 43, 1749-1757.]; Ellsworth et al., 2008[Ellsworth, B. A., Meng, W., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Hagan, D. L., Obermeier, M. T., Humphreys, W. G., Robertson, J. G., Wang, A., Han, S., Waldron, T. L., Morgan, N. N., Whaley, J. M. & Washburn, W. N. (2008). Bioorg. Med. Chem. Lett. 18, 4770-4773.]; Rangarajan et al., 2016[Rangarajan, T. M., Devi, K., Verma, A. K., Singh, R. P. & Singh, R. P. (2016). J. Fluor. Chem. 186, 101-110.]; Soni & Patel, 2017[Soni, H. I. & Patel, N. B. (2017). Asia. J. Pharm. Clin. Res. 10, 209-214.]; Zhang et al., 2017[Zhang, M., Xi, J., Ruzi, R., Li, N., Wu, Z., Li, W. & Zhu, C. (2017). J. Org. Chem. 82, 9305-9311.]). Ethanol (1.5 mL, 95%) and a magnetic stir bar were added to two separate Biotage microwave vials (2–5 mL); one contained 4-methyl­benzaldehyde (3 mmol) and the other contained 3′-aceto­phenone (3 mmol). Each vial was heated gently over a hot plate until complete dissolution and then cooled to room temperature; solids may precipitate upon cooling depending on the solubility of the starting material. Once cooled, NaOH (aq) (0.4 mL, 50% by wgt) was added to a benzaldehyde–aceto­phenone mixture. The resulting reaction mixture was vigorously agitated with a microspatula until a slurry formed. Water (2 mL) was added to the vial and its contents were agitated. The vial was capped, centrifuged for one minute, and deca­nted. This trituration was repeated three times. Methanol (2 mL) was added to the vessel and sealed; the microwave-safe vials are safe at high pressures, up to 30 bar. Over a hot plate while stirring, the contents were heated until complete dissolution. Once removed from the heat, the vial was allowed to cool, and crystal growth was observed. Crystals were isolated and dried using vacuum filtration. 1H NMR (400 MHz, CDCl3, referenced to TMS): δ (ppm) for m′BrpCH3 are 8.13 (t, 1H, J = 1.7 Hz), 7.93 (ddd, 1H, J = 7.8, 1.4, 1.0 Hz), 7.80 (d, 1H, J = 15.6 Hz), 7.70 (ddd, 1H, J = 8.0, 2.0, 1.0 Hz), 7.55 (d, 2H, J = 8.1 Hz), 7.40 (m, 2H), 7.23 (d, 2H, J = 8.0 Hz), 2.40 (s, 3H); and for m′CNpCH3 are 8.28 (t, 1H, J = 1.2 Hz), 8.23 (ddd, 1H, J = 7.9, 1,7, 1.2 Hz), 7.84 (m, 2H), 7.64 (t, 1H, J = 7.9 Hz), 7.56 (d, 2H, J = 8.1 Hz), 7.43 (d, 1H, J = 15.6 Hz), 7.25 (d, 2H, J = 8.5 Hz), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl3, referenced to solvent, 77.16 ppm): δ (ppm) for m′BrpCH3 are 189.25, 145.97, 141.63, 140.29, 135.63, 132.01, 131.60, 130.32, 129.91, 128.77, 127.10, 123.07, 120.51, 21.72; and for m′CNpCH3 are 188.48, 146.82, 142.01, 139.29, 135.65, 132.53, 132.20, 131.73, 129.98, 129.77, 128.87, 119.83, 118.21, 113.20, 21.74.

Crystallization. m′BrpCH3 and m′CNpCH3 were crystallized through slow cooling in a Dewar hemispherical low-form flask. Chalcone (20 mg), methanol (0.5 mL), and a magnetic spin vane were added to a conical Biotage microwave vial (0.5–2 mL) and sealed. The tube was placed in boiling water for 1–5 minutes until complete dissolution. While the tube was submerged, two Dewar hemispherical low-form flasks were filled with boiling water and allowed to sit. When the chalcone had nearly dissolved, the Dewar flasks were emptied, and one was placed in a Styrofoam cooler. The Biotage microwave vial was removed from boiling water and placed in the Dewar inside the cooler. The Dewar was filled with boiling water to completely submerge the microwave vial. A round silicone gasket was placed to cover the rim of this Dewar flask before inverting the second Dewar and placing it on top to create a chamber. The cooler was closed with a Styrofoam lid on a low-vibration table in a temperature-regulated room. After 24 h, the vials were removed from the Dewar and crystals were collected using vacuum filtration.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The X-ray intensity data for each chalcone derivative was measured at 100 K on a Bruker Photon II D8 Venture diffractometer equipped with both IμS-Cu and IμS-Mo microfocus X-ray sources. The Cu Kα (λ = 1.54178 Å) source was used for all crystallographic investigations. Data sets were corrected for Lorentz and polarization effects as well as absorption. The criterion for observed reflections is I > 2σ(I). Lattice parameters were determined from least-squares analysis of reflection data. Empirical absorption corrections were applied using SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). Structures were solved by direct methods and refined by full-matrix least-squares analysis on F2 using X-SEED equipped with SHELXT (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.] and Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F2 using the SHELXL program (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). H atoms (for OH and NH) were located in a difference-Fourier synthesis and refined isotropically with independent O/N—H distances or restrained to 0.85 (2) Å. The remaining H atoms were included in idealized geometric positions with Uiso(H) = 1.2Ueq(parent atom) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

  m′CNpCH3 m′BrpCH3
Crystal data
Chemical formula C17H13NO C16H13BrO
Mr 247.28 301.17
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 7.2986 (1), 5.8504 (1), 29.7783 (5) 5.9282 (6), 7.3614 (8), 14.6747 (16)
α, β, γ (°) 90, 94.525 (1), 90 88.532 (3), 82.199 (3), 87.457 (3)
V3) 1267.56 (4) 633.73 (12)
Z 4 2
Dx (Mg m−3) 1.296 1.578
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.64 4.28
Crystal shape Transparent plate Transparent plate
Colour Colourless Colorless
Crystal size (mm) 0.35 × 0.21 × 0.09 0.39 × 0.25 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.676, 0.754 0.531, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 13801, 2494, 2213 8397, 2461, 2440
Rint 0.028 0.023
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.03 0.026, 0.065, 1.09
No. of reflections 2494 2461
No. of parameters 173 164
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.18 0.63, −0.40
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Unit cells were visualized with Mercury 2020.1 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), Hirshfeld analyses were executed with Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]), while distance/angle measurements as well as ORTEP images were captured using OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

2-[3-(4-Methylphenyl)prop-2-enoyl]benzonitrile (I) top
Crystal data top
C17H13NOF(000) = 520
Mr = 247.28Dx = 1.296 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.2986 (1) ÅCell parameters from 7537 reflections
b = 5.8504 (1) Åθ = 3.0–72.1°
c = 29.7783 (5) ŵ = 0.64 mm1
β = 94.525 (1)°T = 100 K
V = 1267.56 (4) Å3Transparent plate, colourless
Z = 40.35 × 0.21 × 0.09 mm
Data collection top
Bruker D8 Venture
diffractometer
2494 independent reflections
Radiation source: Microsource IuS Incoatec 3.02213 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.028
Detector resolution: 7.9 pixels mm-1θmax = 72.1°, θmin = 3.0°
φ and ω scansh = 98
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 77
Tmin = 0.676, Tmax = 0.754l = 3636
13801 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4265P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2494 reflectionsΔρmax = 0.21 e Å3
173 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All nonhydrogen atoms were located in a single difference Fourier electron density map and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms (1.5xUeqiv for methyl groups).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22192 (11)0.72690 (13)0.47783 (2)0.02168 (19)
N10.13188 (15)0.75910 (19)0.27529 (3)0.0286 (2)
C10.21471 (14)0.52052 (18)0.47083 (3)0.0165 (2)
C20.26906 (14)0.35011 (18)0.50599 (3)0.0174 (2)
H20.2825760.1943030.4978940.021*
C30.29943 (14)0.41308 (18)0.54913 (3)0.0160 (2)
H30.2820670.5701730.5556700.019*
C40.14995 (14)0.43210 (18)0.42488 (3)0.0159 (2)
C50.16826 (14)0.57332 (18)0.38769 (3)0.0163 (2)
H50.2215010.7208720.3915770.020*
C60.10757 (14)0.49562 (19)0.34474 (3)0.0171 (2)
C70.02732 (14)0.27968 (19)0.33848 (4)0.0187 (2)
H70.0130000.2278300.3091150.022*
C80.00746 (14)0.14251 (19)0.37570 (4)0.0189 (2)
H80.0491840.0031340.3718740.023*
C90.06980 (14)0.21624 (18)0.41866 (4)0.0176 (2)
H90.0578220.1193960.4438640.021*
C100.35662 (14)0.26495 (18)0.58726 (3)0.0152 (2)
C110.33577 (14)0.34331 (19)0.63106 (3)0.0173 (2)
H110.2870020.4916280.6352910.021*
C120.38509 (15)0.20805 (19)0.66834 (3)0.0186 (2)
H120.3667650.2634930.6976390.022*
C130.46133 (14)0.00854 (19)0.66336 (3)0.0173 (2)
C140.48597 (14)0.08447 (18)0.61969 (4)0.0171 (2)
H140.5400260.2299710.6156180.021*
C150.43333 (14)0.04771 (18)0.58221 (3)0.0164 (2)
H150.4493730.0093840.5529150.020*
C160.12291 (15)0.6427 (2)0.30610 (4)0.0206 (2)
C170.51598 (16)0.1542 (2)0.70393 (4)0.0227 (2)
H17A0.6275580.0916020.7198260.034*
H17B0.5395510.3107600.6942100.034*
H17C0.4163820.1549590.7241640.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0290 (4)0.0159 (4)0.0197 (4)0.0010 (3)0.0009 (3)0.0006 (3)
N10.0352 (6)0.0302 (6)0.0197 (5)0.0055 (5)0.0016 (4)0.0035 (4)
C10.0144 (5)0.0176 (5)0.0178 (5)0.0007 (4)0.0024 (4)0.0003 (4)
C20.0185 (5)0.0157 (5)0.0179 (5)0.0019 (4)0.0012 (4)0.0001 (4)
C30.0137 (5)0.0149 (5)0.0196 (5)0.0004 (4)0.0019 (4)0.0003 (4)
C40.0139 (5)0.0163 (5)0.0174 (5)0.0035 (4)0.0011 (4)0.0000 (4)
C50.0146 (5)0.0149 (5)0.0192 (5)0.0016 (4)0.0007 (4)0.0000 (4)
C60.0155 (5)0.0186 (5)0.0172 (5)0.0031 (4)0.0010 (4)0.0015 (4)
C70.0171 (5)0.0205 (5)0.0182 (5)0.0033 (4)0.0013 (4)0.0039 (4)
C80.0168 (5)0.0152 (5)0.0244 (5)0.0006 (4)0.0003 (4)0.0013 (4)
C90.0164 (5)0.0162 (5)0.0202 (5)0.0022 (4)0.0014 (4)0.0023 (4)
C100.0128 (5)0.0164 (5)0.0161 (5)0.0023 (4)0.0005 (4)0.0005 (4)
C110.0167 (5)0.0156 (5)0.0195 (5)0.0010 (4)0.0018 (4)0.0023 (4)
C120.0205 (5)0.0209 (5)0.0146 (5)0.0024 (4)0.0017 (4)0.0034 (4)
C130.0160 (5)0.0193 (5)0.0164 (5)0.0036 (4)0.0004 (4)0.0015 (4)
C140.0162 (5)0.0148 (5)0.0205 (5)0.0001 (4)0.0020 (4)0.0004 (4)
C150.0158 (5)0.0185 (5)0.0150 (5)0.0010 (4)0.0021 (4)0.0014 (4)
C160.0210 (5)0.0222 (6)0.0182 (5)0.0011 (4)0.0013 (4)0.0024 (5)
C170.0260 (6)0.0230 (6)0.0188 (5)0.0008 (5)0.0001 (4)0.0039 (4)
Geometric parameters (Å, º) top
O1—C11.2257 (13)C8—H80.9500
N1—C161.1487 (15)C9—H90.9500
C1—C21.4771 (15)C10—C151.4017 (15)
C1—C41.5038 (14)C10—C111.4021 (14)
C2—C31.3380 (15)C11—C121.3875 (15)
C2—H20.9500C11—H110.9500
C3—C101.4629 (14)C12—C131.3965 (16)
C3—H30.9500C12—H120.9500
C4—C51.3966 (15)C13—C141.3992 (15)
C4—C91.3980 (15)C13—C171.5062 (14)
C5—C61.3961 (14)C14—C151.3869 (15)
C5—H50.9500C14—H140.9500
C6—C71.3988 (16)C15—H150.9500
C6—C161.4482 (15)C17—H17A0.9800
C7—C81.3852 (16)C17—H17B0.9800
C7—H70.9500C17—H17C0.9800
C8—C91.3920 (15)
O1—C1—C2122.61 (10)C4—C9—H9119.8
O1—C1—C4119.98 (9)C15—C10—C11118.03 (9)
C2—C1—C4117.41 (9)C15—C10—C3123.08 (9)
C3—C2—C1120.63 (10)C11—C10—C3118.89 (10)
C3—C2—H2119.7C12—C11—C10121.16 (10)
C1—C2—H2119.7C12—C11—H11119.4
C2—C3—C10126.70 (10)C10—C11—H11119.4
C2—C3—H3116.6C11—C12—C13120.86 (10)
C10—C3—H3116.6C11—C12—H12119.6
C5—C4—C9119.63 (10)C13—C12—H12119.6
C5—C4—C1118.38 (10)C12—C13—C14117.92 (9)
C9—C4—C1121.98 (9)C12—C13—C17120.70 (9)
C6—C5—C4119.38 (10)C14—C13—C17121.37 (10)
C6—C5—H5120.3C15—C14—C13121.54 (10)
C4—C5—H5120.3C15—C14—H14119.2
C5—C6—C7121.03 (10)C13—C14—H14119.2
C5—C6—C16119.71 (10)C14—C15—C10120.45 (10)
C7—C6—C16119.24 (9)C14—C15—H15119.8
C8—C7—C6119.06 (10)C10—C15—H15119.8
C8—C7—H7120.5N1—C16—C6178.83 (12)
C6—C7—H7120.5C13—C17—H17A109.5
C7—C8—C9120.57 (10)C13—C17—H17B109.5
C7—C8—H8119.7H17A—C17—H17B109.5
C9—C8—H8119.7C13—C17—H17C109.5
C8—C9—C4120.32 (10)H17A—C17—H17C109.5
C8—C9—H9119.8H17B—C17—H17C109.5
O1—C1—C2—C311.34 (17)C5—C4—C9—C80.38 (15)
C4—C1—C2—C3169.15 (10)C1—C4—C9—C8178.43 (9)
C1—C2—C3—C10178.91 (9)C2—C3—C10—C1517.24 (17)
O1—C1—C4—C524.95 (15)C2—C3—C10—C11163.34 (10)
C2—C1—C4—C5154.58 (10)C15—C10—C11—C121.61 (15)
O1—C1—C4—C9153.88 (10)C3—C10—C11—C12178.95 (9)
C2—C1—C4—C926.59 (14)C10—C11—C12—C131.57 (16)
C9—C4—C5—C60.58 (15)C11—C12—C13—C140.10 (16)
C1—C4—C5—C6179.43 (9)C11—C12—C13—C17179.55 (10)
C4—C5—C6—C70.60 (16)C12—C13—C14—C151.32 (16)
C4—C5—C6—C16178.85 (9)C17—C13—C14—C15179.03 (10)
C5—C6—C7—C80.34 (16)C13—C14—C15—C101.28 (16)
C16—C6—C7—C8177.92 (10)C11—C10—C15—C140.19 (15)
C6—C7—C8—C91.30 (16)C3—C10—C15—C14179.62 (10)
C7—C8—C9—C41.34 (16)
1-(2-Bromophenyl)-3-(4-methylphenyl)prop-2-en-1-one (II) top
Crystal data top
C16H13BrOZ = 2
Mr = 301.17F(000) = 304
Triclinic, P1Dx = 1.578 Mg m3
a = 5.9282 (6) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.3614 (8) ÅCell parameters from 1318 reflections
c = 14.6747 (16) Åθ = 6.0–71.7°
α = 88.532 (3)°µ = 4.28 mm1
β = 82.199 (3)°T = 100 K
γ = 87.457 (3)°Transparent plate, colorless
V = 633.73 (12) Å30.39 × 0.25 × 0.11 mm
Data collection top
Bruker D8 Venture
diffractometer
2461 independent reflections
Radiation source: Microsource IuS Incoatec 3.02440 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.023
Detector resolution: 7.9 pixels mm-1θmax = 72.2°, θmin = 3.0°
φ and ω scansh = 67
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.531, Tmax = 0.754l = 1818
8397 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.5783P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2461 reflectionsΔρmax = 0.63 e Å3
164 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All nonhydrogen atoms were located in a single difference Fourier electron density map and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms (1.5xUeqiv for methyl groups).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.80035 (3)0.89029 (3)0.08237 (2)0.02192 (9)
O10.7329 (2)0.7890 (2)0.45698 (9)0.0223 (3)
C10.5354 (3)0.7917 (2)0.44225 (13)0.0170 (4)
C20.3466 (3)0.7319 (3)0.51279 (13)0.0192 (4)
H20.1992450.7187700.4957590.023*
C30.3817 (3)0.6965 (2)0.59951 (13)0.0186 (4)
H30.5307960.7130330.6139150.022*
C40.4726 (3)0.8590 (2)0.35130 (13)0.0155 (3)
C50.6366 (3)0.8439 (2)0.27330 (13)0.0161 (3)
H50.7839800.7913100.2779570.019*
C60.5803 (3)0.9069 (2)0.18959 (12)0.0167 (3)
C70.3658 (3)0.9867 (2)0.18070 (13)0.0189 (4)
H70.3302431.0292080.1224490.023*
C80.2067 (3)1.0024 (2)0.25840 (14)0.0192 (4)
H80.0610521.0581890.2535820.023*
C90.2567 (3)0.9378 (2)0.34359 (13)0.0175 (4)
H90.1447300.9470600.3962860.021*
C100.2121 (3)0.6346 (2)0.67464 (13)0.0180 (4)
C110.2535 (3)0.6525 (2)0.76554 (14)0.0197 (4)
H110.3934740.6991150.7771890.024*
C120.0940 (3)0.6036 (3)0.83870 (13)0.0204 (4)
H120.1241420.6203600.8998100.025*
C130.1104 (3)0.5301 (2)0.82409 (13)0.0188 (4)
C140.1492 (3)0.5068 (2)0.73322 (13)0.0191 (4)
H140.2857120.4539910.7217860.023*
C150.0076 (3)0.5594 (3)0.65972 (13)0.0195 (4)
H150.0236520.5442470.5986350.023*
C160.2846 (4)0.4761 (3)0.90371 (14)0.0243 (4)
H16A0.2385350.3577020.9288660.036*
H16B0.4333930.4679340.8823600.036*
H16C0.2951020.5675810.9516230.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02062 (13)0.02741 (13)0.01669 (12)0.00258 (8)0.00161 (8)0.00044 (8)
O10.0152 (7)0.0321 (7)0.0196 (7)0.0023 (5)0.0024 (5)0.0007 (5)
C10.0174 (9)0.0142 (8)0.0194 (9)0.0018 (7)0.0019 (7)0.0021 (6)
C20.0175 (9)0.0191 (9)0.0206 (9)0.0019 (7)0.0008 (7)0.0013 (7)
C30.0176 (9)0.0142 (8)0.0237 (9)0.0005 (7)0.0015 (7)0.0026 (7)
C40.0150 (8)0.0131 (8)0.0188 (9)0.0030 (6)0.0025 (7)0.0012 (6)
C50.0136 (8)0.0143 (8)0.0205 (9)0.0026 (6)0.0024 (7)0.0016 (7)
C60.0163 (9)0.0167 (8)0.0168 (8)0.0043 (7)0.0005 (7)0.0012 (6)
C70.0198 (9)0.0174 (8)0.0208 (9)0.0042 (7)0.0070 (7)0.0020 (7)
C80.0140 (9)0.0167 (8)0.0275 (10)0.0003 (7)0.0048 (7)0.0008 (7)
C90.0147 (9)0.0157 (8)0.0215 (9)0.0018 (7)0.0001 (7)0.0021 (7)
C100.0183 (9)0.0148 (8)0.0209 (9)0.0002 (7)0.0026 (7)0.0011 (7)
C110.0196 (9)0.0155 (8)0.0259 (10)0.0007 (7)0.0099 (8)0.0010 (7)
C120.0245 (10)0.0175 (9)0.0207 (9)0.0020 (7)0.0092 (8)0.0001 (7)
C130.0206 (9)0.0142 (8)0.0218 (9)0.0030 (7)0.0045 (7)0.0000 (7)
C140.0187 (9)0.0167 (8)0.0230 (9)0.0025 (7)0.0058 (7)0.0003 (7)
C150.0217 (10)0.0189 (9)0.0189 (9)0.0027 (7)0.0054 (7)0.0012 (7)
C160.0244 (10)0.0272 (10)0.0211 (9)0.0001 (8)0.0027 (8)0.0006 (8)
Geometric parameters (Å, º) top
Br1—C61.9053 (18)C8—H80.9500
O1—C11.219 (2)C9—H90.9500
C1—C21.491 (3)C10—C111.399 (3)
C1—C41.500 (3)C10—C151.401 (3)
C2—C31.334 (3)C11—C121.382 (3)
C2—H20.9500C11—H110.9500
C3—C101.465 (3)C12—C131.393 (3)
C3—H30.9500C12—H120.9500
C4—C91.399 (3)C13—C141.400 (3)
C4—C51.401 (3)C13—C161.508 (3)
C5—C61.380 (3)C14—C151.384 (3)
C5—H50.9500C14—H140.9500
C6—C71.398 (3)C15—H150.9500
C7—C81.382 (3)C16—H16A0.9800
C7—H70.9500C16—H16B0.9800
C8—C91.391 (3)C16—H16C0.9800
O1—C1—C2122.32 (17)C4—C9—H9120.2
O1—C1—C4120.48 (17)C11—C10—C15118.05 (18)
C2—C1—C4117.20 (16)C11—C10—C3119.08 (17)
C3—C2—C1120.92 (17)C15—C10—C3122.87 (17)
C3—C2—H2119.5C12—C11—C10121.11 (18)
C1—C2—H2119.5C12—C11—H11119.4
C2—C3—C10126.21 (18)C10—C11—H11119.4
C2—C3—H3116.9C11—C12—C13120.94 (18)
C10—C3—H3116.9C11—C12—H12119.5
C9—C4—C5120.03 (17)C13—C12—H12119.5
C9—C4—C1121.39 (17)C12—C13—C14118.08 (18)
C5—C4—C1118.57 (16)C12—C13—C16121.12 (18)
C6—C5—C4118.80 (17)C14—C13—C16120.80 (18)
C6—C5—H5120.6C15—C14—C13121.21 (18)
C4—C5—H5120.6C15—C14—H14119.4
C5—C6—C7121.94 (17)C13—C14—H14119.4
C5—C6—Br1119.84 (14)C14—C15—C10120.57 (18)
C7—C6—Br1118.21 (14)C14—C15—H15119.7
C8—C7—C6118.60 (17)C10—C15—H15119.7
C8—C7—H7120.7C13—C16—H16A109.5
C6—C7—H7120.7C13—C16—H16B109.5
C7—C8—C9120.93 (17)H16A—C16—H16B109.5
C7—C8—H8119.5C13—C16—H16C109.5
C9—C8—H8119.5H16A—C16—H16C109.5
C8—C9—C4119.69 (17)H16B—C16—H16C109.5
C8—C9—H9120.2
O1—C1—C2—C39.4 (3)C5—C4—C9—C80.6 (3)
C4—C1—C2—C3169.73 (17)C1—C4—C9—C8178.53 (16)
C1—C2—C3—C10179.08 (17)C2—C3—C10—C11161.99 (18)
O1—C1—C4—C9151.81 (18)C2—C3—C10—C1517.3 (3)
C2—C1—C4—C927.3 (2)C15—C10—C11—C122.3 (3)
O1—C1—C4—C527.4 (3)C3—C10—C11—C12177.07 (16)
C2—C1—C4—C5153.51 (16)C10—C11—C12—C131.8 (3)
C9—C4—C5—C60.4 (3)C11—C12—C13—C140.2 (3)
C1—C4—C5—C6179.54 (16)C11—C12—C13—C16179.84 (17)
C4—C5—C6—C70.7 (3)C12—C13—C14—C151.6 (3)
C4—C5—C6—Br1179.46 (13)C16—C13—C14—C15178.69 (17)
C5—C6—C7—C80.0 (3)C13—C14—C15—C101.1 (3)
Br1—C6—C7—C8178.79 (13)C11—C10—C15—C140.8 (3)
C6—C7—C8—C91.0 (3)C3—C10—C15—C14178.51 (17)
C7—C8—C9—C41.3 (3)
Selected angles (°) top
The Φ1, Φ2, and Φ3 dihedrals are defined by C5—C4—C1—C2, C4—C1—C2—C3, and C2—C3—C10—C11, respectively.
ChalconeΦ1Φ2Φ31-Ring 3-Ring Twist1-Ring 3-Ring Fold
m'CNpCH3-154.58 (10)-169.15 (10)-163.34 (10)49.11 (4)0.67 (4)
m'BrpCH3-153.51 (16)-169.73 (17)-161.99 (18)49.15 (6)1.55 (6)
Distances (Å) for close contacts top
Distances to the 1-Ring and 3-Ring reflect the distances to the centroids of those rings. The sums of the van der Waals radii (Å) for hydrogen plus carbon, nitrogen, or bromine are 2.9, 2.75, and 3.05, respectively, while the sum for bromine plus bromine is 3.7. The symmetry codes apply to those molecules interacting with the asymmetric unit. Estimated standard deviations are listed in parentheses.
m'CNpCH3Distancem'BrpCH3Distance
C8—H8···C11iv2.8835 (11)C8—H8···C11iii2.8019 (16)
C8—H8···3-Ringiv2.7391 (4)C8—H8···3-Ringiii2.709 (2)
C11—H11···C7iii2.8187 (11)C11—H11···C7ii2.8936 (17)
C11—H11···1-Ringiii2.8866 (4)C11—H11···1-Ringii3.061 (2)
1-Ring···3-Ringiv4.6036 (6)1-Ring···3-Ringiii4.5176 (10)
3-Ring···1-Ringiii4.7132 (6)3-Ring···1-Ringii4.8989 (11)
C7—H7···N1ii2.5999 (9)C7—H7···Br1v3.2379 (4)
C17—H17A···N1i2.6168 (11)C16—H16A···Br1i3.0962 (3)
Br1···Br1iv3.5556 (5)
Symmetry codes for m'CNpCH3: (i) 1 - x, 1 - y, 1 - z; (ii) -x, -1/2 + y, 1/2 - z; (iii) -x, 1 - y, 1 - z; (iv) -x, -y, 1 - z. Symmetry codes for m'BrpCH3: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z; (iii) -x, 2 - y, 1 - z; (iv) 2 - x, 2 - y, -z; (v) 1 - x, 2 - y, -z.
 

Footnotes

Authors contributed equally.

Acknowledgements

The GU co-authors thank S. Economu, B. Hendricks, A. Hinz, J. Hazen, C. Sciammas, M. Plese, T. Cherry, A. Fijalka, and C. Mozo-Olazcon for their assistance, as well as the Howard Hughes Medical Institute for supporting equipment acquisition through its Undergraduate Science Education Program. Support also came from the Gonzaga Science Research Program as well as Gonzaga's Department of Chemistry and Biochemistry.

Funding information

Funding for this research was provided by: EPSRC (grant No. EP/L015544/1 to C. L. Hall; grant No. EP/L016648/1 to V. Hamilton); European Union's Horizon 2020 Research and Innovation Programme (grant No. 736899); funding for the Bruker Photon II D8 Venture diffractometer was provided by NSF-MRI #1827313.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBraun, R. U., Ansorge, M. & Müller, T. J. J. (2006a). Chem. Eur. J. 12, 9081–9094.  CSD CrossRef PubMed CAS Google Scholar
First citationBraun, R. U., Müller, T. J. J. & Polborn, K. (2006b). Private communication (refcode NAWCEU). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudakoti, A., Bhat, A. R., Athar, F. & Azam, A. (2008). Eur. J. Med. Chem. 43, 1749–1757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDinadayalane, T. & Leszczynski, J. (2009). Struct. Chem. 20, 11–20.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllsworth, B. A., Meng, W., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Hagan, D. L., Obermeier, M. T., Humphreys, W. G., Robertson, J. G., Wang, A., Han, S., Waldron, T. L., Morgan, N. N., Whaley, J. M. & Washburn, W. N. (2008). Bioorg. Med. Chem. Lett. 18, 4770–4773.  CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision D. 01. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, S. C., Kang, N. Y., Park, S. J., Yun, S. W., Chandran, Y. & Chang, Y. T. (2012). Chem. Commun. 48, 6681–6683.  CrossRef CAS Google Scholar
First citationLi, H., Sarojini, B. K., Raj, C. G. D., Madhu, L. N. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerchant, J. R., Mehta, J. B. & Desai, V. B. (1965). Indian J. Chem. 3, 561–4.  CAS Google Scholar
First citationRangarajan, T. M., Devi, K., Verma, A. K., Singh, R. P. & Singh, R. P. (2016). J. Fluor. Chem. 186, 101–110.  CrossRef CAS Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209–225.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoni, H. I. & Patel, N. B. (2017). Asia. J. Pharm. Clin. Res. 10, 209–214.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWheeler, S. E. (2011). J. Am. Chem. Soc. 133, 10262–10274.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, M., Xi, J., Ruzi, R., Li, N., Wu, Z., Li, W. & Zhu, C. (2017). J. Org. Chem. 82, 9305–9311.  CrossRef CAS PubMed Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds