research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(N,N′-di­methyl­thio­urea-κS)bis­­(thio­cyanato-κN)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: ajochim@ac.uni-kiel.de

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 10 August 2020; accepted 12 August 2020; online 18 August 2020)

During systematic investigations on the synthesis of coordination polymers with Co(NCS)2 involving different thio­urea derivatives as coligands, crystals of the title compound Co(NCS)2(N,N′-di­methyl­thio­urea)2, or [Co(C3H8N2S)2(NCS)2], were obtained. These crystals were non-merohedric twins and therefore, a twin refinement using data in HKLF-5 format was performed. In the crystal structure of this compound, the CoII cations are coordinated by two N-terminally bonded thio­cyanate anions as well as two S-bonding N,N′-di­methyl­thio­urea mol­ecules, forming two crystallographically independent discrete complexes each with a strongly distorted tetra­hedral geometry. An intricate network of inter­molecular N—H⋯S and C—H⋯S hydrogen bonds can be found between the complexes. The thermogravimetric curve of the title compound shows two discrete steps in which all coligand mol­ecules have been emitted, which is also accompanied by partial decomposition of the cobalt thio­cyanate. If the measurement is stopped after the first mass loss, only broad reflections of CoS can be found in the XRPD pattern of the residue, which proves that this compound decomposes completely upon heating. However, at lower temperatures an endothermic signal can be found in the DTA and DSC curve, which corresponds to melting, as proven by thermomicroscopy.

1. Chemical context

Investigations on the synthesis, crystal structures and magnetic properties of coordination polymers based on transition-metal thio­cyanates have become of increasing inter­est in recent years, which is due to the high structural diversity of the thio­cyanate anion and its ability to mediate reasonable magnetic exchange. Although many different transition-metal thio­cyanate coordination compounds are known, our main inter­ests focus on first-row transition-metal thio­cyanate compounds with the general composition M(NCS)2(L)2 in which paramagnetic metal cations M are connected by pairs of μ-1,3 bridging thio­cyanate anions into chains, while the remaining coordination sites are occupied by neutral coligands L, forming an octa­hedral coordination polyhedron. In most of these compounds, linear chains are formed in which all ligands are trans (Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Werner et al., 2015a[Werner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015a). Dalton Trans. 44, 14149-14158.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]), but other isomers are also possible. This includes compounds in which either the N-bonding thio­cyanates, the S-bonding thio­cyanates or the coligands are trans, while the other ligands are cis. These motifs are found, for example, in [M(NCS)2(4-benzyl­pyridine)2]n (M = Mn, Ni, Cd) (Suckert et al., 2015[Suckert, S., Wöhlert, S. & Näther, C. (2015). Inorg. Chim. Acta, 432, 96-102.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]; Neumann et al., 2018a[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018a). Inorg. Chim. Acta, 478, 15-24.]), [M(NCS)2(4-nitro­pyridine N-oxide)2]n (M = Mn, Co, Cd) (Shi et al., 2006[Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909-1913.], 2007[Shi, J.-M., Chen, J.-N., Wu, C.-J. & Ma, J.-P. (2007). J. Coord. Chem. 60, 2009-2013.]; Mautner et al., 2016[Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Polyhedron, 111, 86-93.]) and [M(NCS)2(4-benzoyl­pyridine)2]n (M = Co, Ni) (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]), in which different ciscistrans configurations can be found around the metal centers. The last possible isomer, in which all ligands are cis, is not found for the composition M(NCS)2(L)2, although it was observed in more ligand-deficient compounds of composition Co(NCS)2(L), with L representing either 4-methyl­pyridine N-oxide or 4-meth­oxy­pyridine N-oxide (Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398-m3400.],b[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506-m3608.]).

In those cases in which either only the N-bonding or the S-bonding thio­cyanate are cis, corrugated chains are formed instead of linear ones, which is also the case if all ligands are cis. Furthermore, in some compounds a mixture of these configurations can be found, as in [M(NCS)2(4-chloro­pyridine)2]n (M = Co, Ni, Cd) (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]; Goher et al., 2003[Goher, M. A. S., Mautner, F. A., Abu-Youssef, M. A. M., Hafez, A. K., Badr, A. M.-A. & Gspan, C. (2003). Polyhedron, 22, 3137-3143.]) or the high-temperature modification of [Ni(NCS)2(4-amino­pyridine)2]n (Neumann et al., 2018b[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018b). Inorg. Chem. 57, 3305-3314.]), in which an alternating arrangement of all-trans and ciscistrans-coordinated metal cations is present.

For some compounds of composition M(NCS)2(L)2 a completely different structure is observed, in which the metal cations are connected into layers of different topologies by the thio­cyanate anions. Only one topology is known for cobalt compounds of this composition, in which every two cobalt cations are connected by a pair of μ-1,3-bridging thio­cyanate anions, forming dimers, which are connected to four adjacent dimers by single μ-1,3-bridging thio­cyanate anions (Wöhlert & Näther, 2013[Wöhlert, S. & Näther, C. (2013). Inorg. Chim. Acta, 406, 196-204.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.], 2017[Suckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997-4005.]; Werner et al., 2015b[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015b). Inorg. Chem. 54, 2893-2901.]). Nevertheless, with other metal cations different layer topologies are known in which, for example, trimers are formed instead of dimers, which are connected by single μ-1,3-thio­cyanate bridges (Kozísková et al., 1990[Kozísková, Z., Kozisek, J. & Kabesová, M. (1990). Polyhedron, 9, 1029-1034.]; Kabešová et al., 1990[Kabešová, M., Kožíšková, Z. & Dunaj-Jurčo, M. (1990). Collect. Czech. Chem. Commun. 55, 1184-1192.]) or in which each metal cation is directly connected to four neighboring metal cations by single μ-1,3-thio­cyanate bridges (McElearney et al., 1979[McElearney, J. N., Balagot, L. L., Muir, J. A. & Spence, R. D. (1979). Phys. Rev. B, 19, 306-317.]; Werner et al., 2015c[Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015c). Eur. J. Inorg. Chem. pp. 3066-3075.]; Đaković et al., 2010[Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910-1917.]). Although it is not clear by which parameters the formation of either chains or layers is promoted, a third isomer of composition Co(NCS)2(L)2 exists in which the thio­cyanate anions are N-terminally coordinated, forming discrete tetra­hedral complexes (Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Neumann et al., 2018c[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018c). Eur. J. Inorg. Chem. pp. 4972-4981.]; Hannachi et al., 2019[Hannachi, A., Valkonen, A., Rzaigui, M. & Smirani, W. (2019). Polyhedron, 161, 222-230.]). In most of these compounds, electron-rich coligands are found, which might indicate that this type of compound is formed when a strong donor is used as coligand.

Most of the aforementioned compounds contain N-donor coligands, but in the course of our systematic work we became inter­ested in the influence of S-donor coligands based on thio­urea derivatives on the magnetic properties of Co(NCS)2 chain compounds, in which the metal cations are linked by pairs of μ-1,3-bridging thio­cyanate anions. With nickel, two compounds with the composition Ni(NCS)2(ethyl­ene­thio­urea)2 (Nardelli et al., 1966[Nardelli, M., Gasparri, G. F., Musatti, A. & Manfredotti, A. (1966). Acta Cryst. 21, 910-919.]) and Ni(NCS)2(thio­acetamide)2 (Capacchi et al., 1968[Capacchi, L., Gasparri, G. F., Nardelli, M. & Pelizzi, G. (1968). Acta Cryst. B24, 1199-1204.]) are known. We prepared the corres­ponding cobalt compound with ethyl­ene­thio­urea, which is isotypic to the nickel analogue (Jochim et al., 2020a[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971-8982.]). Only one additional polymeric compound with the composition [Co(NCS)2(thio­urea)2]n is known, in which the cobalt cations are connected by the sulfur atoms of the coligands, while the thio­cyanate anions are N-terminally coordinated (Rajarajan et al., 2012[Rajarajan, K., Sendil Kumar, K., Ramesh, V., Shihabuddeen, V. & Murugavel, S. (2012). Acta Cryst. E68, m1125-m1126.]; Muthu et al., 2015[Muthu, K., Meenatchi, V., Rajasekar, M., Kanagarajan, V., Madhurambal, G., Meenakshisundaram, S. P. & Mojumdar, S. C. (2015). J. Therm. Anal. Calorim. 119, 945-952.]). In further work we prepared Co(NCS)2(tetra­methyl­thio­urea)2, which surprisingly consists of discrete tetra­hedral complexes (Jochim et al., 2020b[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1373-1377.]).

[Scheme 1]

To further investigate this structural behavior, we used N,N′-di­methyl­thio­urea as coligand, which is between thio­urea and tetra­methyl­thio­urea considering the substitution with methyl groups, and during these investigations the title compound was obtained. Its IR spectrum shows that the C—N stretching vibration is found at 2064 cm−1, which is indicative of N-terminally bonded thio­cyanate anions, pointing to the formation of a tetra­hedral complex, as proven by single crystal X-ray diffraction (see Fig. S1 in the supporting information). Although the experimental XRPD pattern is very similar to that calculated for the title compound, some additional reflections are found, indicating some contamination (Fig. S2). This is surprising, because all samples were prepared in different ways and using a different ratio of Co(NCS)2 and di­methyl­thio­urea leads to an identical XRPD pattern. In the thermogravimetry curve (Fig. S3), two mass losses of 37.2% and 26.3% are observed, which in total is more than expected for the emission of both coligand mol­ecules (54.3%), indicating the decomposition of the thio­cyanate anions. This was proven by PXRD of the residue isolated after the first mass loss, which is mostly amorphous but which contains a small amount of crystalline CoS (Fig. S4). At low temperatures, an additional endothermic event can be found in the differential thermoanalysis curve, which is not accompanied by a mass change of the sample. This event corresponds to melting of the sample and is not reversible upon cooling, which was shown by differential scanning calorimetry (Fig. S5) and thermomicroscopy (Fig. S6).

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent complexes built up of two thio­cyanate anions and two N,N′-di­methyl­thio­urea mol­ecules in general positions as well as one cobalt(II) cation, which is situated on a twofold rotational axis in both crystallo­graphically independent complexes. Both metal cations are coordinated by two N-bonding thio­cyanate anions and two S-bonding N,N′-di­methyl­thio­urea mol­ecules, forming strongly distorted tetra­hedra (Fig. 1[link]), which becomes obvious from the tetra­hedral angle variance σθ〈tet〉2 = 73.2 (Co1) or 73.3 (Co2) and the mean tetra­hedral quadratic elongation 〈λtet〉 = 1.030 (Co1, Co2) (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). However, all bond lengths and angles are comparable to those reported for similar compounds in the literature (Neumann et al. 2018c[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018c). Eur. J. Inorg. Chem. pp. 4972-4981.]). Both N,N′-di­methyl­thio­urea mol­ecules are nearly planar with CMe—N—C—N torsion angles of 177.7 (3) and −0.5 (4)° for the complex containing Co1 and 178.9 (3) and −1.2 (4)° for that containing Co2. Both N,N′-di­methyl­thio­urea planes within each complex are slightly tilted relative to each other, leading to an angle of 9.51 (10)° between the normal vectors of the N,N′-di­methyl­thio­urea planes in the complex containing Co1, while the corresponding angle for the complex containing Co2 is 13.52 (8)°. Similar values are observed for the corresponding angles between the N,N′-di­methyl­thio­urea planes of different crystallographically independent complexes.

[Figure 1]
Figure 1
View of the two crystallographically independent molecules in the asymmetric unit of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x + 1, y, −z + [3\over2]; (ii) −x, y, −z + [1\over2].

3. Supra­molecular features

The discrete complexes are connected via relatively weak N—H⋯SNCS hydrogen bonds (Table 1[link]), forming chains along the [101] direction in which the two crystallographically independent discrete complexes alternate. For both complexes, either only the thio­cyanate anions (Co1) or the N,N′-di­methyl­thio­urea mol­ecules (Co2) are involved in the formation of this structure. Two neighboring chains are connected into double chains by pairs of additional N—H⋯SNCS hydrogen bonds involving only the complexes containing Co1 (Fig. 2[link]). In a similar way, chains built up of an alternating sequence of complexes containing either Co1 or Co2 are formed, which run along the a-axis direction, but in this case, in the complexes containing Co1, only the N,N′-di­methyl­thio­urea mol­ecules participate in the N—H⋯SNCS hydrogen bonds, while in the complex containing Co2, only the thio­cyanate anions are involved. Within these chains, additional C—H⋯S hydrogen bonds between the N,N′-di­methyl­thio­urea mol­ecules of adjacent complexes can be found (Fig. 3[link]). The two types of chain are connected via C—H⋯S hydrogen bonds between the N,N′-di­methyl­thio­urea mol­ecules, forming layers parallel to the ac plane (Fig. 4[link]), which are further connected into a three-dimensional network by additional N—H⋯SNCS hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯S1i 0.88 2.65 3.341 (2) 136
N12—H12⋯N1 0.88 2.69 3.282 (3) 126
N12—H12⋯S2ii 0.88 2.88 3.582 (2) 138
C13—H13B⋯S21iii 0.98 2.80 3.578 (3) 137
N21—H21⋯S1 0.88 2.61 3.372 (2) 146
C22—H22A⋯S2iv 0.98 3.01 3.591 (3) 120
C22—H22A⋯S21iii 0.98 3.02 3.752 (4) 132
N22—H22⋯S2v 0.88 2.79 3.486 (3) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
Crystal structure of the title compound with a view of the chains that extend along [101]. Inter­molecular N—H⋯S hydrogen bonding is shown as dashed lines.
[Figure 3]
Figure 3
Crystal structure of the title compound with a view of the chains that extend along the a-axis direction. Inter­molecular N—H⋯S and C—H⋯S hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
Crystal structure of the title compound with a view perpendicular to the layers parallel to the crystallographic ac plane. Inter­molecular N—H⋯S and C—H⋯S hydrogen bonds are shown as dashed lines.

4. Database survey

In the Cambridge Structure Database (Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), only one trans­ition-metal thio­cyanate compound with N,N′-di­methyl­thio­urea is reported, which has the composition Cu(NCS)(N,N′-di­meth­yl­thio­urea)[propane-1,3-diylbis(di­phenyl­phosphine)] (Wattanakanjana et al., 2015[Wattanakanjana, Y., Nimthong-Roldán, A. & Ratthiwan, J. (2015). Acta Cryst. E71, m61-m62.]). In this compound, the CuI cations are tetra­hedrally coordinated by one thio­cyanate anion, one N,N′-di­methyl­thio­urea mol­ecule and one propane-1,3-diylbis(di­phenyl­phosphine) mol­ecule, with both phosphines coordinating to the metal center. In total, only 49 compounds containing a transition-metal cation and N,N′-di­methyl­thio­urea are known, none of which contains cobalt. In fact, 28 of these compounds involve more chalcophilic second or third row transition-metal cations, while nearly half of the remaining compounds contain copper.

Considering compounds that contain cobalt thio­cyanate, over one thousand compounds are found, most of which show either an octa­hedral or a tetra­hedral coordination geometry with the octa­hedral coordination geometry being the most common. Nevertheless, approximately 200 compounds with tetra­hedral coordination geometry are known, making it the second most common coordination geometry for cobalt thio­cyanate compounds.

5. Synthesis and crystallization

General

N,N′-di­methyl­thio­urea was purchased from Sigma Aldrich, while Co(NCS)2 was purchased from Alfa Aesar. All chemicals were used without further purification.

Synthesis

Single crystals were obtained by reacting Co(NCS)2 (0.15 mmol, 26.3 mg) with N,N′-di­methyl­thio­urea (0.3 mmol, 31.3 mg) in 0.4 mL of water. After approximately one week, deep-blue crystals were obtained, which were suitable for single crystal analysis. The same procedure was used to obtain powder samples using a higher amount of Co(NCS)2 (1.00 mmol, 175.1 mg), N,N′-di­methyl­thio­urea (2.0 mmol, 208.4 mg) and water (0.75 mL). The resulting crystals were ground into powder. In some cases, no crystallization of the mixture occurred, which was prevented by storing the reaction mixture at 281 K. Elemental analysis calculated for C8H16N6CoS4 (383.45 g/mol) C 25.06%, H 4.21%, N 21.92%, S 33.45%, found: C 24.79%, H 4.34%, N 21.75%, S 32.16%.

Experimental details

Elemental analysis was performed using a EURO EA elemental analyzer fabricated by EURO VECTOR Instruments.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

DTA–TG measurements were performed in a dynamic nitro­gen atmosphere (100 sccm) in Al2O3 crucibles using a STA-PT 1600 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

The DSC measurements were performed with a DSC 1 Star System with STARe Excellence Software from Mettler–Toledo AG. The instrument was calibrated using standard reference materials.

Thermomicroscopic measurements were performed using an FP82 hot stage from Mettler and a BX60 microscope from Olympus, using the analysis software package from Mettler.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. The C—H H atoms were positioned with idealized geometry and refined isotropically with Uiso(H) = 1.5Ueq(C), allowing them to rotate, but not to tip. The N—H H atoms were located in the difference map, their bond lengths were set to ideal values and finally they were refined using a riding model [Uiso(H) = 1.2Ueq(N)]. As the crystal studied was twinned by non-merohedry, a twin refinement using data in HKLF 5 format was performed. The corres­ponding files were generated by PLATON (Spek 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C3H8N2S)2(NCS)2]
Mr 383.44
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 16.8070 (8), 14.4212 (6), 15.5669 (9)
β (°) 118.744 (4)
V3) 3308.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.54
Crystal size (mm) 0.10 × 0.08 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
No. of measured, independent and observed [I > 2σ(I)] reflections 3218, 3218, 2767
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.07
No. of reflections 3218
No. of parameters 178
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.40
Computer programs: X-AREA and XP (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(N,N'-dimethylthiourea-κS)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(C3H8N2S)2(NCS)2]F(000) = 1576
Mr = 383.44Dx = 1.540 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.8070 (8) ÅCell parameters from 3218 reflections
b = 14.4212 (6) Åθ = 2.0–26.0°
c = 15.5669 (9) ŵ = 1.54 mm1
β = 118.744 (4)°T = 200 K
V = 3308.1 (3) Å3Block, blue
Z = 80.10 × 0.08 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
θmax = 26.0°, θmin = 2.0°
ω scansh = 2019
3218 measured reflectionsk = 1717
3218 independent reflectionsl = 219
2767 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0632P)2 + 1.3645P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3218 reflectionsΔρmax = 0.72 e Å3
178 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.35611 (3)0.7500000.04070 (15)
Co20.0000000.64084 (3)0.2500000.04322 (15)
N10.38555 (14)0.28706 (15)0.69242 (15)0.0454 (5)
C10.30981 (16)0.26507 (16)0.65171 (17)0.0399 (5)
S10.20412 (4)0.23531 (6)0.59318 (5)0.0602 (2)
N20.11433 (14)0.70960 (15)0.30776 (16)0.0488 (5)
C20.19017 (16)0.73153 (16)0.34319 (17)0.0414 (5)
S20.29563 (4)0.76089 (6)0.39174 (6)0.0609 (2)
S110.52044 (4)0.43897 (5)0.88607 (5)0.05212 (19)
C110.41958 (16)0.49900 (16)0.84464 (17)0.0404 (5)
N110.41916 (14)0.58993 (14)0.85125 (16)0.0464 (5)
H110.3668180.6183160.8310860.056*
C120.5004 (2)0.64714 (19)0.8938 (3)0.0603 (7)
H12A0.5390730.6293830.9623350.090*
H12B0.4832010.7125090.8904190.090*
H12C0.5336580.6380910.8571650.090*
N120.34179 (14)0.45328 (15)0.80762 (17)0.0525 (5)
H120.3466930.3924610.8098380.063*
C130.25300 (16)0.4945 (2)0.7730 (2)0.0596 (7)
H13A0.2476600.5187240.8288100.089*
H13B0.2061260.4474720.7389400.089*
H13C0.2451260.5453090.7277130.089*
S210.01638 (5)0.55786 (6)0.36690 (6)0.0628 (2)
C210.08297 (16)0.49509 (18)0.42795 (17)0.0448 (5)
N210.08038 (14)0.40531 (15)0.43729 (16)0.0494 (5)
H210.1312080.3773250.4781470.059*
C220.0021 (2)0.3505 (2)0.3986 (3)0.0710 (9)
H22A0.0375730.3691320.4305110.107*
H22B0.0136440.2846670.4113310.107*
H22C0.0379340.3607330.3278160.107*
N220.16179 (14)0.53884 (16)0.46741 (18)0.0562 (6)
H220.1589160.5997500.4680780.067*
C230.24956 (16)0.4953 (2)0.5241 (2)0.0584 (7)
H23A0.2546230.4710540.5853120.088*
H23B0.2975630.5410350.5389530.088*
H23C0.2558990.4442060.4862320.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0279 (2)0.0390 (3)0.0494 (3)0.0000.0138 (2)0.000
Co20.0258 (2)0.0420 (3)0.0532 (3)0.0000.0121 (2)0.000
N10.0382 (11)0.0428 (11)0.0500 (11)0.0038 (9)0.0171 (9)0.0013 (9)
C10.0369 (12)0.0355 (11)0.0441 (11)0.0007 (9)0.0169 (10)0.0046 (9)
S10.0349 (4)0.0658 (5)0.0642 (4)0.0127 (3)0.0112 (3)0.0176 (3)
N20.0359 (11)0.0480 (12)0.0564 (12)0.0041 (9)0.0173 (9)0.0074 (9)
C20.0343 (12)0.0383 (12)0.0472 (12)0.0009 (9)0.0162 (10)0.0027 (10)
S20.0338 (4)0.0657 (5)0.0756 (5)0.0133 (3)0.0202 (3)0.0155 (4)
S110.0319 (3)0.0517 (4)0.0584 (4)0.0053 (3)0.0103 (3)0.0126 (3)
C110.0342 (12)0.0430 (13)0.0427 (11)0.0007 (9)0.0174 (10)0.0042 (9)
N110.0359 (10)0.0408 (11)0.0594 (12)0.0012 (8)0.0204 (9)0.0004 (9)
C120.0480 (16)0.0447 (15)0.0811 (19)0.0081 (12)0.0252 (14)0.0004 (13)
N120.0337 (11)0.0430 (11)0.0722 (14)0.0023 (9)0.0185 (10)0.0081 (10)
C130.0315 (15)0.065 (2)0.0759 (18)0.0008 (11)0.0205 (13)0.0055 (14)
S210.0330 (3)0.0697 (5)0.0821 (5)0.0105 (3)0.0248 (3)0.0292 (4)
C210.0336 (12)0.0530 (15)0.0435 (12)0.0003 (10)0.0152 (10)0.0039 (10)
N210.0381 (11)0.0438 (12)0.0560 (12)0.0009 (9)0.0145 (10)0.0041 (9)
C220.0503 (18)0.0550 (18)0.094 (2)0.0149 (14)0.0233 (16)0.0172 (16)
N220.0337 (11)0.0455 (12)0.0771 (15)0.0016 (9)0.0169 (11)0.0117 (11)
C230.0309 (15)0.061 (2)0.0665 (16)0.0046 (11)0.0103 (12)0.0036 (13)
Geometric parameters (Å, º) top
Co1—N1i1.959 (2)C2—S21.614 (2)
Co1—N11.959 (2)S11—C111.728 (2)
Co1—S112.3093 (7)C11—N111.316 (3)
Co1—S11i2.3093 (7)C11—N121.323 (3)
Co2—N2ii1.955 (2)N11—C121.454 (4)
Co2—N21.955 (2)N12—C131.448 (3)
Co2—S212.3024 (8)S21—C211.728 (3)
Co2—S21ii2.3024 (8)C21—N211.306 (3)
N1—C11.161 (3)C21—N221.322 (3)
C1—S11.616 (2)N21—C221.451 (4)
N2—C21.163 (3)N22—C231.448 (3)
N1i—Co1—N1118.89 (13)C2—N2—Co2165.2 (2)
N1i—Co1—S1199.39 (6)N2—C2—S2179.3 (2)
N1—Co1—S11111.28 (6)C11—S11—Co1103.32 (8)
N1i—Co1—S11i111.28 (6)N11—C11—N12119.3 (2)
N1—Co1—S11i99.39 (6)N11—C11—S11120.75 (18)
S11—Co1—S11i117.68 (4)N12—C11—S11119.95 (18)
N2ii—Co2—N2119.05 (13)C11—N11—C12124.2 (2)
N2ii—Co2—S2199.35 (7)C11—N12—C13125.6 (2)
N2—Co2—S21111.39 (7)C21—S21—Co2104.82 (8)
N2ii—Co2—S21ii111.39 (7)N21—C21—N22120.1 (2)
N2—Co2—S21ii99.35 (7)N21—C21—S21120.37 (18)
S21—Co2—S21ii117.37 (5)N22—C21—S21119.5 (2)
C1—N1—Co1165.2 (2)C21—N21—C22124.8 (2)
N1—C1—S1178.9 (2)C21—N22—C23125.1 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···S1iii0.882.653.341 (2)136
N12—H12···N10.882.693.282 (3)126
N12—H12···S2iv0.882.883.582 (2)138
C13—H13B···S21v0.982.803.578 (3)137
N21—H21···S10.882.613.372 (2)146
C22—H22A···S2vi0.983.013.591 (3)120
C22—H22A···S21v0.983.023.752 (4)132
N22—H22···S2vii0.882.793.486 (3)137
Symmetry codes: (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z+1/2; (v) x, y+1, z+1; (vi) x1/2, y1/2, z; (vii) x+1/2, y+3/2, z+1.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5–2) and the State of Schleswig-Holstein.

References

First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCapacchi, L., Gasparri, G. F., Nardelli, M. & Pelizzi, G. (1968). Acta Cryst. B24, 1199–1204.  CSD CrossRef IUCr Journals Google Scholar
First citationĐaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917.  Google Scholar
First citationGoher, M. A. S., Mautner, F. A., Abu-Youssef, M. A. M., Hafez, A. K., Badr, A. M.-A. & Gspan, C. (2003). Polyhedron, 22, 3137–3143.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHannachi, A., Valkonen, A., Rzaigui, M. & Smirani, W. (2019). Polyhedron, 161, 222–230.  CSD CrossRef CAS Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971–8982.  CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1373–1377.  CSD CrossRef IUCr Journals Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationKabešová, M., Kožíšková, Z. & Dunaj-Jurčo, M. (1990). Collect. Czech. Chem. Commun. 55, 1184–1192.  Google Scholar
First citationKozísková, Z., Kozisek, J. & Kabesová, M. (1990). Polyhedron, 9, 1029–1034.  Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Polyhedron, 111, 86–93.  CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcElearney, J. N., Balagot, L. L., Muir, J. A. & Spence, R. D. (1979). Phys. Rev. B, 19, 306–317.  CrossRef CAS Web of Science Google Scholar
First citationMuthu, K., Meenatchi, V., Rajasekar, M., Kanagarajan, V., Madhurambal, G., Meenakshisundaram, S. P. & Mojumdar, S. C. (2015). J. Therm. Anal. Calorim. 119, 945–952.  CSD CrossRef CAS Google Scholar
First citationNardelli, M., Gasparri, G. F., Musatti, A. & Manfredotti, A. (1966). Acta Cryst. 21, 910–919.  CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018b). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018a). Inorg. Chim. Acta, 478, 15–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018c). Eur. J. Inorg. Chem. pp. 4972–4981.  CSD CrossRef Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajarajan, K., Sendil Kumar, K., Ramesh, V., Shihabuddeen, V. & Murugavel, S. (2012). Acta Cryst. E68, m1125–m1126.  CSD CrossRef IUCr Journals Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909–1913.  CAS Google Scholar
First citationShi, J.-M., Chen, J.-N., Wu, C.-J. & Ma, J.-P. (2007). J. Coord. Chem. 60, 2009–2013.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997–4005.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuckert, S., Wöhlert, S. & Näther, C. (2015). Inorg. Chim. Acta, 432, 96–102.  CSD CrossRef CAS Google Scholar
First citationWattanakanjana, Y., Nimthong-Roldán, A. & Ratthiwan, J. (2015). Acta Cryst. E71, m61–m62.  CSD CrossRef IUCr Journals Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015b). Inorg. Chem. 54, 2893–2901.  CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015c). Eur. J. Inorg. Chem. pp. 3066–3075.  Web of Science CSD CrossRef Google Scholar
First citationWerner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015a). Dalton Trans. 44, 14149–14158.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S. & Näther, C. (2013). Inorg. Chim. Acta, 406, 196–204.  Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398–m3400.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506–m3608.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds