research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-Chloro-3-nitro-5-(tri­fluoro­meth­yl)phen­yl](piperidin-1-yl)methanone: structural characterization of a side product in benzo­thia­zinone synthesis

CROSSMARK_Color_square_no_text.svg

aInstitut für Pharmazie, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 14 July 2020; accepted 3 August 2020; online 11 August 2020)

1,3-Benzo­thia­zin-4-ones (BTZs) are a promising new class of anti-tuberculosis drug candidates, some of which have reached clinical trials. The title compound, the benzamide derivative [2-chloro-3-nitro-5-(tri­fluoro­meth­yl)phen­yl](piper­id­in-1-yl)methanone, C13H12ClF3N2O3, occurs as a side product as a result of competitive reaction pathways in the nucleophilic attack during the synthesis of the BTZ 8-nitro-2-(piperidin-1-yl)-6-(tri­fluoro­meth­yl)-1,3-benzo­thia­zin-4-one, following the original synthetic route, whereby the corresponding benzoyl iso­thio­cyanate is reacted with piperidine as secondary amine. In the title compound, the nitro group and the nearly planar amide group are significantly twisted out of the plane of the benzene ring. The piperidine ring adopts a chair conformation. The tri­fluoro­methyl group exhibits slight rotational disorder with a refined ratio of occupancies of 0.972 (2):0.028 (2). There is structural evidence for inter­molecular weak C—H⋯O hydrogen bonds.

1. Chemical context

1,3-Benzo­thia­zin-4-ones (BTZs) are promising anti-tuberculosis drug candidates, some of which have already reached clinical trials (Mikušová et al., 2014[Mikušová, K., Makarov, V. & Neres, J. (2014). Curr. Pharm. Des. 20, 4379-4403.]; Makarov & Mikušová, 2020[Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.]). Various methods for the synthesis of BTZs have been reported (Makarov et al., 2007[Makarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.]; Moellmann et al., 2009[Moellmann, U., Makarov, V. & Cole, S. T. (2009). PCT Int. Appl. WO 2009010163 A1.]; Makarov, 2011[Makarov, V. (2011). PCT Int. Appl. WO 2011132070 A1.]; Rudolph, 2014[Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.]; Rudolph et al., 2016[Rudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331.]; Zhang & Aldrich, 2019[Zhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031-1035.]). In the original synthesis, 2-chloro­benzoyl chloride derivatives are reacted with ammonium or alkali metal thio­cyanates to form the corresponding 2-chloro­benzoyl iso­thio­cyanates (Makarov et al., 2007[Makarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.]; Moellmann et al., 2009[Moellmann, U., Makarov, V. & Cole, S. T. (2009). PCT Int. Appl. WO 2009010163 A1.]). These are reactive species and are treated in situ with secondary amines to afford the corresponding thio­urea deriv­atives, which undergo ring closure to give 1,3-thia­zin-4-ones via an intra­molecular nucleophilic substitution reaction. The latter step is favoured when electron-withdrawing substituents are present on the benzene ring.

[Scheme 1]

Fig. 1[link] depicts the synthesis following the original procedure for a BTZ previously reported by us (Rudolph, 2014[Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.]; Rudolph et al., 2016[Rudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331.]; Richter, Rudolph et al., 2018[Richter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.]). After treatment of 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoic acid (1) with thionyl chloride and subsequently ammonium thio­cyanate, the corresponding 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoyl iso­thio­cyanate (2) was reacted with piperidine. As illustrated, nucleophilic attack of the piperidine nitro­gen atom at the iso­thio­cyanate carbon atom leads to the anti­cipated 8-nitro-2-(piperidin-1-yl)-6-(tri­fluoro­meth­yl)-1,3-benzo­thia­zin-4-one (3). The alternative nucleophilic attack at the carbonyl carbon atom affords the side product (2-chloro-3-nitro-5-(tri­fluoro­meth­yl)phen­yl)(piperidin-1-yl)methanone (4), which was structurally characterized by X-ray crystallography in the present work. The ratio of 3 to 4 was found to vary depending on the reaction conditions. Temperatures at or below 283 K favour the formation of the anti­cipated 3, whereas substantial amounts of 4 form at elevated temperatures (Rudolph, 2014[Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.]). Since BTZs are in clinical development [see, for example, Makarov & Mikušová (2020[Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.]) or Mariandyshev et al. (2020[Mariandyshev, A. O., Khokhlov, A. L., Smerdin, S. V., Shcherbakova, V. S., Igumnova, O. V., Ozerova, I. V., Bolgarina, A. A. & Nikitina, N. A. (2020). Ter. Arkh. 92, 61-72.])], this observation is not only important for the improvement of synthetic yields but also for the compilation of known synthetic side products for drug quality control.

[Figure 1]
Figure 1
Synthetic pathway from 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoic acid (1) to BTZ 3 and side product 4, illustrating the two different points of nucleophilic attack of piperidine at the inter­mediate 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoyl iso­thio­cyanate (2), resulting in 3 and 4 (Rudolph, 2014[Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.]).

It is inter­esting to note that di­nitro­benzamide derivatives related to 4 have been found to have some anti-mycobacterial activity (Christophe et al., 2009[Christophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J.-P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Škovierová, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., Kempf, M., Joly-Guillou, M.-L., Oh, T., Shin, W. K., No, Z., Nehrbass, U., Brosch, R., Cole, S. T. & Brodin, P. (2009). PLoS Pathog. 5, e1000645.]; Trefzer et al., 2010[Trefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663-13665.]; Tiwari et al., 2013[Tiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539-3549.]), and the non-chlorinated analogue of 4 was reported to have anti­coccidial activity (Welch et al., 1969[Welch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299-303.]).

2. Structural commentary

Fig. 2[link] shows the mol­ecular structure of 4 in the solid state. Selected geometric parameters are listed in Table 1[link]. The dihedral angle between the plane of the nitro group and the mean plane of the benzene ring is 38.1 (2)°, which can be attributed to the steric demand of the neighbouring chloro substituent at the benzene ring. The tri­fluoro­methyl group exhibits rotational disorder over two sites with 97.2 (2)% occupancy for the major site. The plane of the amide group, as defined by C8, O3 and N2, is tilted out of the mean plane of the benzene ring by 79.6 (1)°. The Winkler–Dunitz parameters for the amide linkage τ (twist angle) = 1.2° and χN (pyramidalization at nitro­gen) = 4.0° indicate an almost planar amide group (Winkler & Dunitz, 1971[Winkler, F. K. & Dunitz, J. D. (1971). J. Mol. Biol. 59, 169-182.]). In the IR spectrum (see supporting information), the band at 1639 cm−1 can be assigned to the C=O stretching vibration of the amide group. The mol­ecule is axially chiral, although the centrosymmetric crystal structure contains both enanti­omers. The 13C NMR spectrum of 4 in methanol-d4 as well as chloro­form-d at room temperature (see supporting information) displays five distinct signals in the aliphatic region, which are assigned to the piperidine carbon atoms, indicating that the rotation about the amide C—N bond is slow in solution under these conditions. The 13C NMR chemical shift of the α-carbon atom C13 syn to the carbonyl oxygen atom of the amide group is shielded compared with that of the anti α-carbon atom C9. In chloro­form-d, the observed shielding magnitude of ΔδC = 5.0 ppm is within the range expected for a benzoyl­piperidine (Rubiralta et al., 1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). 7 - N-Acylpiperidines. A Useful Tool for Stereocontrol in Organic Synthesis. In: Studies in Organic Chemistry, vol. 43, pp. 193-224. Amsterdam: Elsevier.]). In the corresponding 1H NMR spectrum, the syn protons with respect to the amide carbonyl oxygen atom are deshielded compared with those in the anti position (ΔδH = 0.58 ppm). Complete assignments of 1H and 13C NMR data in chloro­form-d by 13C,1H-HSQC and -HMBC NMR spectra can be found in the supporting information. Notably, the two separated methyl­ene 1H NMR signals assigned to C10 in chloro­form-d appear as one signal in methanol-d4.

Table 1
Selected geometric parameters (Å, °)

C1—C8 1.510 (3) C7—F3 1.328 (3)
C2—Cl1 1.725 (2) C7—F2 1.336 (3)
C3—N1 1.468 (3) C8—O3 1.234 (2)
C5—C7 1.497 (3) C8—N2 1.342 (3)
C7—F1 1.325 (3)    
       
C4—C3—N1 116.41 (17) N2—C9—C10 110.59 (18)
C2—C3—N1 122.35 (18) C9—C10—C11 110.61 (19)
F1—C7—F3 107.69 (19) C12—C11—C10 109.74 (18)
F1—C7—F2 105.98 (19) C13—C12—C11 111.01 (18)
F3—C7—F2 105.59 (17) N2—C13—C12 111.35 (17)
F1—C7—C5 112.43 (17) O2—N1—O1 124.48 (17)
F3—C7—C5 112.80 (18) O2—N1—C3 117.04 (17)
F2—C7—C5 111.86 (17) O1—N1—C3 118.44 (16)
O3—C8—N2 124.72 (18) C8—N2—C13 120.26 (16)
O3—C8—C1 118.43 (18) C8—N2—C9 124.74 (16)
N2—C8—C1 116.85 (17) C13—N2—C9 114.89 (16)
       
C4—C3—N1—O2 36.6 (2) O3—C8—N2—C13 3.0 (3)
C2—C3—N1—O2 −143.29 (19) C1—C8—N2—C13 −176.62 (17)
C4—C3—N1—O1 −141.34 (18) O3—C8—N2—C9 179.0 (2)
C2—C3—N1—O1 38.8 (3) C1—C8—N2—C9 −0.6 (3)
[Figure 2]
Figure 2
Mol­ecular structure of 4. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radii. The minor occupancy component of the disordered tri­fluoro­methyl group is depicted by empty ellipsoids.

In the solid state, the piperidine ring in 4 adopts a low-energy chair conformation with some minor angular deviations from ideal tetra­hedral values, resulting from planarity at N2 due to involvement in the amide linkage. The puckering parameters of the piperidine six-membered ring, as calculated with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), are Q = 0.555 (2) Å, θ = 4.1 (2)° and φ = 161 (3)°. By way of comparison, the total puckering amplitude Q is 0.63 Å and the magnitude of distortion θ is 0° for an ideal cyclo­hexane chair (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

3. Supra­molecular features

In general, the crystal structure of 4 appears to be dominated by close packing. According to Kitaigorodskii (1973[Kitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. London: Academic Press.]), the space group Pbca is among those available for the densest packing of mol­ecules of arbitrary shape. Nevertheless, the solid-state supra­molecular structure features C—H⋯O contacts between an aromatic CH moiety and the amide oxygen atom of an adjacent mol­ecule (Fig. 3[link]a). The corres­ponding geometric parameters (Table 2[link]) support the inter­pretation as a weak hydrogen bond (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In: Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25-48. Oxford: Elsevier.]). These inter­actions link the mol­ecules into strands extending by 21 screw symmetry in the [010] direction. The α-methyl­ene groups of the piperidine ring, on which the amide group should exert an electron-withdrawing effect, also form inter­molecular C—H⋯O and C—H⋯π contacts, respectively, to the nitro group and the benzene ring of adjacent mol­ecules (Fig. 3[link]bd). The corresponding geometric parameters (Table 2[link]), however, reveal that these contacts may not have the same significance here as the aforementioned Caromatic—H⋯Oamide short contact (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). It is also worth noting that ππ stacking of the aromatic rings is not observed.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.59 3.526 (3) 169
C9—H9A⋯O1ii 0.99 2.45 3.361 (3) 154
C9—H9B⋯O1iii 0.99 2.58 3.369 (3) 137
C13—H13ACg(C1–C6)iv 0.99 2.92 3.447 (2) 114
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x, y+1, z; (iv) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
Short contacts (dashed lines) between adjacent mol­ecules in the crystal structure of 4. The minor component of the disordered tri­fluoro­methyl group is omitted for clarity. Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{1\over 2}], y + [{1\over 2}], z; (iii) x, y + 1, z; (iv) x + [{3\over 2}], −y + [{1\over 2}], −z.

4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.41 with March 2020 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related substituted N-benzoyl-piperidine compounds revealed about 30 structures, of which (2-chloro-3,5-di­nitro­phen­yl)(piperidin-1-yl)methanone (CSD refcode: URALIJ; Luo et al., 2011[Luo, X., Huang, Y.-C., Gao, C. & Yu, L.-T. (2011). Acta Cryst. E67, o1066.]) is structurally most related to 4. Similar to 4, the 3-nitro group with the neighbouring chloro substituent is tilted out of the mean plane of the benzene ring by 36.2°. At 75.8°, the dihedral angle between the amide plane and the mean plane of the benzene ring is comparable with that in 4. Likewise, the piperidine ring exhibits a chair conformation with a planar structure at the nitro­gen atom. In contrast to 4, the solid-state supra­molecular structure of URALIJ exhibits ππ stacking of the aromatic rings. Inter­estingly, a CSD search for the 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)phenyl moiety present in 4 led to only one structure, viz. 2-chloro-1,3-di­nitro-5-(tri­fluoro­meth­yl)benzene (JIHNUM; del Casino et al., 2018[Casino, A. del, Lukinović, V., Bhatt, R., Randle, L. E., Dascombe, M. J., Fennell, B. J., Drew, M. G. B., Bell, A., Fielding, A. J. & Ismail, F. M. D. (2018). ChemistrySelect 3, 7572-7580.]), also known as chloralin, which is active against Plasmodium, but which also shows toxicity in mice.

5. Anti-mycobacterial evaluation

The anti-mycobacterial activity of 4 was evaluated against Mycobacterium smegmatis mc2 155 and Mycobacterium abscessus ATCC19977, using broth microdilution assays [for the assay protocols, see the supporting information and Richter, Strauch et al. (2018[Richter, A., Strauch, A., Chao, J., Ko, M. & Av-Gay, Y. (2018). Antimicrob. Agents Chemother. 62, e00828-18.])]. For both mycobacterial species, no growth inhibition was detectable up to a concentration of 100 µM. For M. smegmatis, the findings are consistent with the activity data for a related nitro­benzamide derivative reported by Tiwari et al. (2013[Tiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539-3549.]). CT319, a 3-nitro-5-(tri­fluoro­meth­yl)benzamide derivative, however, showed activity against M. smegmatis mc2 155 and other mycobacterial strains (Trefzer et al., 2010[Trefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663-13665.]).

6. Synthesis and crystallization

Chemicals were purchased and used as received. The synthesis of 1 is described elsewhere (Welch et al., 1969[Welch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299-303.]). Solvents were of reagent grade and were distilled before use. The IR spectrum was measured on a Bruker TENSOR II FT–IR spectrometer at a resolution of 4 cm−1. NMR spectra were recorded at room temperature on an Agilent Technologies VNMRS 400 MHz NMR spectrometer (abbreviations: d = doublet, q = quartet, m = multiplet). Chemical shifts are referenced to the residual signals of methanol-d4 (δH = 3.35 ppm, δC = 49.3 ppm) or chloro­form-d (δH = 7.26 ppm, δC = 77.2 ppm).

2.7 mL (37.0 mmol) of SOCl2 were added to a stirred solution of 1 (5.00 g,18.5 mmol) in toluene, and the mixture was heated to reflux for two h. The solvent was subsequently removed under reduced pressure, and the acid chloride thus obtained was used without purification. The residue was taken up in 6.5 mL of aceto­nitrile and a solution of 1.41 g (18.5 mmol) NH4SCN in 55 mL of aceto­nitrile was added dropwise with stirring to obtain 2 in situ. After stirring for 5 min at 313 K, the resulting NH4Cl precipitate was filtered off, and 3.7 mL (37.0 mmol) of piperidine were added. The mixture was refluxed overnight, and then the solvent was removed under reduced pressure. Water was added to the residue and, after extraction with di­chloro­methane, the organic phase was washed with 10% aqueous NaHCO3 and dried over MgSO4. After removal of the solvent, the crude product was subjected to flash chromatography on silica gel, eluting with ethyl acetate/n-heptane (gradient 10–50% v/v), to isolate 1.09 g (3.0 mmol, 16%) of 3 and a minor amount of the side product 4. 1H and 13C NMR spectroscopic and mass spectrometric data of 3 were in agreement with those in the literature (Rudolph, 2014[Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.]; Rudolph et al., 2016[Rudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331.]). Crystals of 4 suitable for X-ray crystallography were obtained from a solution in ethyl acetate/heptane (1:1) by slow evaporation of the solvents at room temperature. NMR spectroscopic data for 4:

1H NMR (400 MHz, CD3OD) δ 8.42 (d, 4Jmeta = 2.2 Hz, 1H, Ar—H), 8.09 (d, 4Jmeta = 2.2 Hz, 1H, Ar—H), 3.88–3.71 (m, 2H, N—CH2), 3.33–3.21 (m, 2H, N—CH2), 1.76 (m, 4H, CH2), 1.64 (m, 2H, CH2) ppm; 13C NMR (101 MHz, CD3OD) δ 165.5, 150.7, 141.8, 132.3 (q, 2JC,F = 35 Hz), 129.2 (q, 3JC,F = 4 Hz), 128.1, 124.4 (q, 3JC,F = 4 Hz), 124.1 (q, 1JC,F = 273 Hz), 49.5, 44.3, 27.6, 26.7, 25.5 ppm.

1H NMR (400 MHz, CDCl3 δ) 8.07 (d, 4Jmeta = 2.0 Hz, 1H, C4—H), 7.73 (d, 4Jmeta = 2.0 Hz, 1H, C6—H), 3.83–3.68 (m, 2H, C13—CH2), 3.22 (ddd, 2Jgem = 13.2 Hz, 3Jvic = 7.1, 4.0 Hz, 1H, C9—CH2), 3.15 (ddd, 2Jgem = 13.2 Hz, 3Jvic = 7.1, 4.0 Hz, 1H, C9—CH2), 1.70 (m, 4H, C11, C12—CH2), 1.65–1.57 (m, 1H, C10—CH2), 1.56–1.47 (m, 1H, C10—CH2) ppm; 13C NMR (101 MHz, CDCl3 δ) 163.5 (C8, C=O), 148.9 (C3), 141.1 (C1), 131.2 (q, 2JC,F = 35 Hz, C5), 127.8 (q, 3JC,F = 4 Hz, C6), 127.6 (C2), 122.7 (q, 3JC,F = 4 Hz, C4), 122.4 (q, 1JC,F = 273 Hz, C7), 48.3 (C9), 43.3 (C13), 26.7 (C10), 25.7 (C12), 24.6 (C11) ppm.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The rotational disorder of the tri­fluoro­methyl group was refined using a split model with similar distance restraints on the 1,2- and 1,3-distances and equal atomic displacement parameters for opposite fluorine atoms belonging to different disorder sites. Refinement of the ratio of occupancies by means of a free variable resulted in 0.972 (2):0.028 (2). Hydrogen-atom positions were calculated geometrically with Ca—H = 0.95 Å and Cm—H = 0.99 Å (a = aromatic and m = methyl­ene), and refined with the appropriate riding model and Uiso(H) = 1.2 Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C13H12ClF3N2O3
Mr 336.70
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 18.0904 (7), 7.8971 (3), 19.8043 (8)
V3) 2829.28 (19)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.88
Crystal size (mm) 0.59 × 0.50 × 0.44
 
Data collection
Diffractometer Bruker Kappa Mach3 APEXII
Absorption correction Gaussian (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.297, 0.586
No. of measured, independent and observed [I > 2σ(I)] reflections 49954, 2784, 2699
Rint 0.041
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.15
No. of reflections 2784
No. of parameters 209
No. of restraints 45
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.32
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

[2-Chloro-3-nitro-5-(trifluoromethyl)phenyl](piperidin-1-yl)methanone top
Crystal data top
C13H12ClF3N2O3Dx = 1.581 Mg m3
Mr = 336.70Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9968 reflections
a = 18.0904 (7) Åθ = 4.9–71.6°
b = 7.8971 (3) ŵ = 2.88 mm1
c = 19.8043 (8) ÅT = 100 K
V = 2829.28 (19) Å3Block, colourless
Z = 80.59 × 0.50 × 0.44 mm
F(000) = 1376
Data collection top
Bruker Kappa Mach3 APEXII
diffractometer
2784 independent reflections
Radiation source: 0.2 × 2 mm2 focus rotating anode2699 reflections with I > 2σ(I)
MONTEL graded multilayer optics monochromatorRint = 0.041
Detector resolution: 66.67 pixels mm-1θmax = 72.2°, θmin = 4.9°
φ– and ω–scansh = 2122
Absorption correction: gaussian
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.297, Tmax = 0.586l = 2424
49954 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0508P)2 + 2.7994P]
where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.32 e Å3
45 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.41556 (10)0.3250 (3)0.23581 (10)0.0230 (4)
C20.38370 (10)0.1651 (3)0.23833 (10)0.0224 (4)
C30.35007 (10)0.1004 (3)0.18023 (10)0.0227 (4)
C40.34763 (10)0.1927 (3)0.12111 (10)0.0243 (4)
H40.3252150.1464580.0818470.029*
C50.37831 (10)0.3541 (3)0.11961 (10)0.0242 (4)
C60.41190 (11)0.4206 (3)0.17666 (10)0.0250 (4)
H60.4324170.5313210.1754870.030*
C70.37425 (12)0.4549 (3)0.05572 (11)0.0298 (5)
C80.45848 (10)0.3906 (2)0.29575 (10)0.0232 (4)
C90.34929 (13)0.5683 (3)0.32422 (11)0.0327 (5)
H9A0.3254970.5034250.2873810.039*
H9B0.3517450.6885680.3102770.039*
C100.30335 (12)0.5528 (3)0.38813 (13)0.0404 (6)
H10A0.2963500.4316470.3993040.048*
H10B0.2540210.6036270.3805590.048*
C110.34134 (13)0.6421 (3)0.44689 (11)0.0373 (5)
H11A0.3448260.7649520.4374120.045*
H11B0.3118980.6267770.4885810.045*
C120.41843 (12)0.5691 (3)0.45695 (10)0.0294 (5)
H12A0.4439550.6320470.4933650.035*
H12B0.4144640.4491640.4709780.035*
C130.46343 (11)0.5807 (3)0.39245 (10)0.0277 (4)
H13A0.4737540.7011220.3822050.033*
H13B0.5113330.5223520.3989820.033*
N10.31581 (9)0.0681 (2)0.17845 (9)0.0253 (4)
N20.42423 (9)0.5038 (2)0.33544 (8)0.0249 (4)
O10.28104 (8)0.1161 (2)0.22819 (8)0.0324 (4)
O20.32229 (8)0.1493 (2)0.12611 (8)0.0341 (4)
O30.52198 (7)0.33806 (19)0.30471 (7)0.0288 (3)
F10.38438 (14)0.3603 (2)0.00122 (7)0.0711 (7)0.972 (2)
F20.30831 (8)0.52847 (19)0.04797 (8)0.0418 (4)0.972 (2)
F30.42321 (8)0.5801 (2)0.05379 (8)0.0470 (4)0.972 (2)
F1'0.352 (3)0.612 (3)0.0688 (18)0.0711 (7)0.028 (2)
F2'0.4387 (11)0.472 (6)0.0269 (18)0.0418 (4)0.028 (2)
F3'0.325 (2)0.397 (5)0.0129 (15)0.0470 (4)0.028 (2)
Cl10.38924 (3)0.05417 (6)0.31320 (2)0.02635 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0194 (9)0.0250 (9)0.0246 (9)0.0021 (7)0.0012 (7)0.0019 (8)
C20.0186 (8)0.0246 (9)0.0239 (9)0.0021 (7)0.0011 (7)0.0002 (8)
C30.0166 (8)0.0219 (9)0.0296 (10)0.0011 (7)0.0009 (7)0.0021 (8)
C40.0202 (9)0.0288 (10)0.0239 (9)0.0050 (8)0.0004 (7)0.0031 (8)
C50.0219 (9)0.0261 (10)0.0247 (10)0.0056 (8)0.0021 (7)0.0011 (8)
C60.0248 (10)0.0226 (9)0.0277 (10)0.0006 (8)0.0004 (8)0.0002 (8)
C70.0350 (11)0.0292 (11)0.0251 (10)0.0056 (9)0.0005 (8)0.0002 (8)
C80.0225 (9)0.0226 (9)0.0245 (9)0.0035 (8)0.0003 (7)0.0033 (8)
C90.0335 (11)0.0298 (11)0.0347 (11)0.0094 (9)0.0117 (9)0.0088 (9)
C100.0200 (10)0.0517 (15)0.0495 (14)0.0058 (9)0.0038 (9)0.0188 (11)
C110.0324 (11)0.0474 (14)0.0322 (11)0.0039 (10)0.0011 (9)0.0114 (10)
C120.0308 (11)0.0327 (11)0.0247 (10)0.0010 (9)0.0013 (8)0.0002 (8)
C130.0267 (10)0.0306 (10)0.0257 (10)0.0070 (8)0.0028 (8)0.0018 (8)
N10.0190 (8)0.0260 (9)0.0310 (9)0.0009 (6)0.0037 (7)0.0016 (7)
N20.0213 (8)0.0277 (9)0.0257 (8)0.0010 (7)0.0042 (7)0.0030 (7)
O10.0267 (7)0.0334 (8)0.0371 (8)0.0062 (6)0.0010 (6)0.0028 (7)
O20.0348 (8)0.0320 (8)0.0356 (8)0.0010 (6)0.0045 (6)0.0098 (7)
O30.0204 (7)0.0324 (8)0.0337 (8)0.0005 (6)0.0017 (6)0.0003 (6)
F10.151 (2)0.0382 (9)0.0239 (7)0.0278 (10)0.0154 (9)0.0002 (6)
F20.0336 (7)0.0457 (8)0.0460 (8)0.0053 (6)0.0056 (6)0.0175 (7)
F30.0389 (8)0.0567 (10)0.0453 (8)0.0142 (7)0.0052 (6)0.0251 (7)
F1'0.151 (2)0.0382 (9)0.0239 (7)0.0278 (10)0.0154 (9)0.0002 (6)
F2'0.0336 (7)0.0457 (8)0.0460 (8)0.0053 (6)0.0056 (6)0.0175 (7)
F3'0.0389 (8)0.0567 (10)0.0453 (8)0.0142 (7)0.0052 (6)0.0251 (7)
Cl10.0267 (3)0.0273 (3)0.0250 (3)0.00271 (18)0.00002 (17)0.00364 (17)
Geometric parameters (Å, º) top
C1—C21.389 (3)C8—N21.342 (3)
C1—C61.395 (3)C9—N21.465 (3)
C1—C81.510 (3)C9—C101.519 (3)
C2—C31.398 (3)C9—H9A0.9900
C2—Cl11.725 (2)C9—H9B0.9900
C3—C41.380 (3)C10—C111.525 (3)
C3—N11.468 (3)C10—H10A0.9900
C4—C51.390 (3)C10—H10B0.9900
C4—H40.9500C11—C121.522 (3)
C5—C61.386 (3)C11—H11A0.9900
C5—C71.497 (3)C11—H11B0.9900
C6—H60.9500C12—C131.518 (3)
C7—F2'1.304 (14)C12—H12A0.9900
C7—F3'1.314 (14)C12—H12B0.9900
C7—F11.325 (3)C13—N21.465 (2)
C7—F31.328 (3)C13—H13A0.9900
C7—F1'1.332 (14)C13—H13B0.9900
C7—F21.336 (3)N1—O21.225 (2)
C8—O31.234 (2)N1—O11.229 (2)
C2—C1—C6120.16 (18)C10—C9—H9A109.5
C2—C1—C8119.82 (17)N2—C9—H9B109.5
C6—C1—C8119.90 (17)C10—C9—H9B109.5
C1—C2—C3118.92 (18)H9A—C9—H9B108.1
C1—C2—Cl1117.93 (15)C9—C10—C11110.61 (19)
C3—C2—Cl1123.13 (16)C9—C10—H10A109.5
C4—C3—C2121.24 (18)C11—C10—H10A109.5
C4—C3—N1116.41 (17)C9—C10—H10B109.5
C2—C3—N1122.35 (18)C11—C10—H10B109.5
C3—C4—C5119.32 (18)H10A—C10—H10B108.1
C3—C4—H4120.3C12—C11—C10109.74 (18)
C5—C4—H4120.3C12—C11—H11A109.7
C6—C5—C4120.33 (18)C10—C11—H11A109.7
C6—C5—C7120.58 (19)C12—C11—H11B109.7
C4—C5—C7119.09 (18)C10—C11—H11B109.7
C5—C6—C1119.98 (19)H11A—C11—H11B108.2
C5—C6—H6120.0C13—C12—C11111.01 (18)
C1—C6—H6120.0C13—C12—H12A109.4
F2'—C7—F3'111.1 (19)C11—C12—H12A109.4
F1—C7—F3107.69 (19)C13—C12—H12B109.4
F2'—C7—F1'105.2 (19)C11—C12—H12B109.4
F3'—C7—F1'104.0 (19)H12A—C12—H12B108.0
F1—C7—F2105.98 (19)N2—C13—C12111.35 (17)
F3—C7—F2105.59 (17)N2—C13—H13A109.4
F2'—C7—C5112.3 (15)C12—C13—H13A109.4
F3'—C7—C5113.2 (15)N2—C13—H13B109.4
F1—C7—C5112.43 (17)C12—C13—H13B109.4
F3—C7—C5112.80 (18)H13A—C13—H13B108.0
F1'—C7—C5110.3 (15)O2—N1—O1124.48 (17)
F2—C7—C5111.86 (17)O2—N1—C3117.04 (17)
O3—C8—N2124.72 (18)O1—N1—C3118.44 (16)
O3—C8—C1118.43 (18)C8—N2—C13120.26 (16)
N2—C8—C1116.85 (17)C8—N2—C9124.74 (16)
N2—C9—C10110.59 (18)C13—N2—C9114.89 (16)
N2—C9—H9A109.5
C6—C1—C2—C31.9 (3)C6—C5—C7—F1'47 (3)
C8—C1—C2—C3174.16 (17)C4—C5—C7—F1'133 (3)
C6—C1—C2—Cl1179.32 (15)C6—C5—C7—F299.4 (2)
C8—C1—C2—Cl14.6 (2)C4—C5—C7—F280.3 (2)
C1—C2—C3—C40.5 (3)C2—C1—C8—O377.8 (2)
Cl1—C2—C3—C4179.22 (14)C6—C1—C8—O398.3 (2)
C1—C2—C3—N1179.37 (16)C2—C1—C8—N2102.6 (2)
Cl1—C2—C3—N10.6 (3)C6—C1—C8—N281.4 (2)
C2—C3—C4—C50.9 (3)N2—C9—C10—C1155.5 (3)
N1—C3—C4—C5179.25 (16)C9—C10—C11—C1256.9 (3)
C3—C4—C5—C60.9 (3)C10—C11—C12—C1355.8 (3)
C3—C4—C5—C7178.87 (18)C11—C12—C13—N253.4 (2)
C4—C5—C6—C10.5 (3)C4—C3—N1—O236.6 (2)
C7—C5—C6—C1179.75 (18)C2—C3—N1—O2143.29 (19)
C2—C1—C6—C51.9 (3)C4—C3—N1—O1141.34 (18)
C8—C1—C6—C5174.13 (18)C2—C3—N1—O138.8 (3)
C6—C5—C7—F2'70 (2)O3—C8—N2—C133.0 (3)
C4—C5—C7—F2'110 (2)C1—C8—N2—C13176.62 (17)
C6—C5—C7—F3'163 (2)O3—C8—N2—C9179.0 (2)
C4—C5—C7—F3'17 (2)C1—C8—N2—C90.6 (3)
C6—C5—C7—F1141.5 (2)C12—C13—N2—C8130.0 (2)
C4—C5—C7—F138.8 (3)C12—C13—N2—C953.6 (2)
C6—C5—C7—F319.5 (3)C10—C9—N2—C8129.2 (2)
C4—C5—C7—F3160.82 (18)C10—C9—N2—C1354.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.593.526 (3)169
C9—H9A···O1ii0.992.453.361 (3)154
C9—H9B···O1iii0.992.583.369 (3)137
C13—H13A···Cg(C1–C6)iv0.992.923.447 (2)114
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) x+3/2, y+1/2, z.
 

Acknowledgements

We thank Professor Christian W. Lehmann for providing access to the X-ray diffraction facility and Heike Schucht for technical assistance.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasino, A. del, Lukinović, V., Bhatt, R., Randle, L. E., Dascombe, M. J., Fennell, B. J., Drew, M. G. B., Bell, A., Fielding, A. J. & Ismail, F. M. D. (2018). ChemistrySelect 3, 7572–7580.  Web of Science CSD CrossRef CAS Google Scholar
First citationChristophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J.-P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Škovierová, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., Kempf, M., Joly-Guillou, M.-L., Oh, T., Shin, W. K., No, Z., Nehrbass, U., Brosch, R., Cole, S. T. & Brodin, P. (2009). PLoS Pathog. 5, e1000645.  Web of Science CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. London: Academic Press.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLuo, X., Huang, Y.-C., Gao, C. & Yu, L.-T. (2011). Acta Cryst. E67, o1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMakarov, V. (2011). PCT Int. Appl. WO 2011132070 A1.  Google Scholar
First citationMakarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.  Google Scholar
First citationMakarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.  Web of Science CrossRef Google Scholar
First citationMariandyshev, A. O., Khokhlov, A. L., Smerdin, S. V., Shcherbakova, V. S., Igumnova, O. V., Ozerova, I. V., Bolgarina, A. A. & Nikitina, N. A. (2020). Ter. Arkh. 92, 61–72.  Web of Science CAS PubMed Google Scholar
First citationMikušová, K., Makarov, V. & Neres, J. (2014). Curr. Pharm. Des. 20, 4379–4403.  Web of Science PubMed Google Scholar
First citationMoellmann, U., Makarov, V. & Cole, S. T. (2009). PCT Int. Appl. WO 2009010163 A1.  Google Scholar
First citationRichter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.  Web of Science CrossRef PubMed Google Scholar
First citationRichter, A., Strauch, A., Chao, J., Ko, M. & Av-Gay, Y. (2018). Antimicrob. Agents Chemother. 62, e00828–18.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). 7 - N-Acylpiperidines. A Useful Tool for Stereocontrol in Organic Synthesis. In: Studies in Organic Chemistry, vol. 43, pp. 193–224. Amsterdam: Elsevier.  Google Scholar
First citationRudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.  Google Scholar
First citationRudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In: Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationTiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539–3549.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTrefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663–13665.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWelch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299–303.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinkler, F. K. & Dunitz, J. D. (1971). J. Mol. Biol. 59, 169–182.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationZhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031–1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds