research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures, Hirshfeld atom refinements and Hirshfeld surface analyses of tris­­(4,5-di­hydro­furan-2-yl)methyl­silane and tris­­(4,5-di­hydro­furan-2-yl)phenyl­silane

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 May 2020; accepted 21 August 2020; online 28 August 2020)

The title compounds, C13H18O3Si (1) and C18H20O3Si (2), represent functional­izable di­hydro­furan­ylsilanes, which permit substitution by a variety of nucleophiles. The crystal structures of 1 and 2 display weak inter­molecular C—H⋯O hydrogen-bonding inter­actions (qu­anti­fied by Hirshfeld surface analysis), leading to a two-dimensional supra­molecular network for 1 and a one-dimensional supra­molecular network for 2. The crystal structures of 1 and 2 were refined both on the basis of the independent atom model (IAM) and the Hirshfeld atom refinement (HAR) approach, and the results are comparatively discussed.

1. Chemical context

Tris(4,5-di­hydro­furan-2-yl)methyl­silane (1) and -phenyl­silane (2) are inter­esting starting materials for the selective synthesis of functionalized organosilanes in mol­ecular chemistry.

[Scheme 1]

In the 1980s, Lukevits and co-workers first introduced the di­hydro­furanyl group (DHF) as a substitutable silicon-carbon leaving group (Gevorgyan et al., 1989[Gevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19-21.]). The DHF group allows substitution by a number of nucleophiles including hydrides, li­thia­ted amides, lithium alkyls and alcohols (Lukevits et al., 1993[Lukevits, E., Borisova, L. & Gevorgyan, V. (1993). Chem. Heterocycl. Compd. 29, 735-743.]). Multiple nucleophilic substitutions using chloro­silanes show high reactivity and low selectivity. In general, the Si—O bond shows high reactivity and selectivity compared to the less or even non-reactive Si—C bond. Nonetheless, the DHF group shows a significant increase in reactivity and selectivity in the bond cleavage of Si—C bonds, which can extend the selectivity profile of functionalized organosilanes (Koller et al., 2017[Koller, S. G., Bauer, J. O. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 7991-7994.]). Furthermore, the pre-coordination by a meth­oxy group plays an important role in the control of reactions with metal-containing nucleophiles and leads to the question of whether this also applies to the DHF group (Barth et al., 2019[Barth, E. R., Krupp, A., Langenohl, F., Brieger, L. & Strohmann, C. (2019). Chem. Commun. 48, 11285-11291.]). In order to understand the coordination possibilities, the alignment of the di­hydro­furanyl group and thus the arrangement of the oxygen atoms in the crystal structure are inter­esting. In this context, we here report the crystal structures of 1 and 2, both refined on basis of the independent atom model (IAM) and a Hirshfeld atom refinement (HAR) approach.

2. Structural commentary

The mol­ecular structure of compound 1 is illustrated in Fig. 1[link], and selected bond lengths and angles using the results of IAM and HAR refinements are given in Table 1[link]. In the mol­ecule of 1, the Si—C bond lengths of the silicon–DHF groups are in a typical range and slightly longer than the silicon–methyl bond length. However, all Si—C bonds are as expected (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The silicon atom in 1 has a slightly distorted tetra­hedral environment, as shown by the deviation of the C—Si—C angles from the ideal value of 109.47°. This flexibility is often observed for Si—C single bonds (Otte et al., 2017[Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44-48.]; Glidewell & Sheldrick, 1971[Glidewell, C. & Sheldrick, G. M. (1971). J. Chem. Soc. A, pp. 3127-3129.]; Kückmann et al., 2005[Kückmann, T., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, o3030-o3031.]). The length of each of the C=C double bonds of the DHF groups (C1=C2, C5=C6, C9=C10) also corresponds well with the literature (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

Table 1
Selected geometric parameters of compound 1 (Å, °)

  IAM HAR   IAM HAR
Si1—C1 1.8664 (8) 1.8663 (5) C1—Si1—C5 111.25 (4) 111.33 (2)
Si1—C5 1.8640 (8) 1.8643 (5) C1—Si1—C9 106.48 (4) 106.55 (2)
Si1—C9 1.8610 (8) 1.8628 (5) C1—Si1—C13 109.38 (4) 109.36 (2)
Si1—C13 1.8559 (9) 1.8570 (5) C5—Si1—C9 107.10 (4) 107.14 (2)
      C5—Si1—C13 110.92 (4) 110.86 (2)
C1—C2 1.3312 (11) 1.3356 (6) C9—Si1—C13 111.61 (4) 111.52 (2)
C5—C6 1.3315 (12) 1.3357 (6)      
C9—C10 1.3273 (12) 1.3294 (7)      
[Figure 1]
Figure 1
The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level.

The mol­ecular structure of compound 2 is depicted in Fig. 2[link], and selected bond lengths and angles using the results of IAM and HAR refinements are collated in Table 2[link]. The Si—C bond lengths and angles in the mol­ecule of 2 differ only marginally from those of 1. In 2, there is a weak intra­molecular C2—H2⋯O3 hydrogen-bonding inter­action between the H2 atom of the C1=C2 group of one DHF mol­ecule and the O3 atom of a neighbouring DHF group (Table 4[link]), leading to a graph-set motif S11(6) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

Table 2
Selected geometric parameters of compound 2 (Å, °)

  IAM HAR   IAM HAR
Si1—C1 1.8633 (9) 1.8643 (5) C1—Si1—C5 107.26 (4) 107.29 (2)
Si1—C5 1.8638 (9) 1.8646 (5) C1—Si1—C9 107.99 (4) 108.03 (2)
Si1—C9 1.8670 (9) 1.8680 (5) C1—Si1—C13 112.97 (4) 112.96 (2)
Si1—C13 1.8662 (9) 1.8672 (5) C5—Si1—C9 112.15 (4) 112.08 (2)
      C5—Si1—C13 109.53 (4) 109.47 (2)
C1—C2 1.3314 (12) 1.3350 (7) C9—Si1—C13 107.01 (4) 107.08 (2)
C5—C6 1.3317 (12) 1.3348 (7)      
C9—C10 1.3348 (12) 1.3356 (7)      

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.987 (18) 2.474 (18) 3.4394 (13) 165.9 (15)
C2—H2⋯O3 0.995 (17) 2.809 (17) 3.4238 (13) 120.6 (12)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.

The Si—C bond lengths and C—Si—C angles of the IAM and HAR refinements coincide well. Slight deviations in the C=C double bond of the DHF group can be observed and the trend shows that the double bonds from HAR refinement are slightly longer.

3. Hirshfeld atom refinements

The independent atom model (IAM) approach for crystal-structure refinement cannot reliably model bonding electrons or any distortion of the electron density. An approach that takes this into consideration is Hirshfeld atom refinement (HAR), which uses aspherical atomic scattering factors calculated from tailor-made ab initio quantum-mechanical electron densities. This approach allows for an accurate localization of hydrogen atoms, bonding electrons and an anisotropic refinement of hydrogen atoms (Jayatilaka & Dittrich, 2008[Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.]; Capelli et al., 2014[Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361-379.]).

In previous (unpublished) structure refinements of compounds with di­hydro­furanyl rings performed by our group, we observed slight disorders of the oxygen atom and the methine atom of the di­hydro­furanyl ring. Therefore, results of HARs for such compounds are inter­esting in order to draw conclusions about the residual electron densities to exclude and/or model disorder. For 1 and 2, the minimum and maximum values of residual electron density are significantly lower than those of IAM results (1: IAM Δρmin = −0.21 e Å−3, Δρmax = 0.55 e Å−3; HAR Δρmin,max = ±0.21 e Å−3; 2: IAM Δρmin = −0.23 e Å−3, Δρmax = 0.47 e Å−3; HAR Δρmin = −0.17 e Å−3, Δρmax = 0.26 e Å−3). In all cases, the residual densities do not indicate any disorder. For compound 1, the residual electron density on the basis of the HAR refinement is close to O1 and H8A and for 2 is near C15 and H3B. Another aim of the Hirshfeld atom refinement was the accurate localization of hydrogen atoms. From a comparison of the C—H bond lengths of the methine groups using IAM and HAR approaches, it can be clearly observed that the C—H bonds of the HAR model are significantly longer than those of the AIM model (Table 5[link]). Woińska et al. (2016[Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, 1-8.]) have already reported that the positions of hydrogen atoms and their corresponding bond lengths show a significantly improved agreement with neutron diffraction by refinement with HAR.

Table 5
C—H bond length (Å) of the methine groups for IAM and HAR for compounds 1 and 2

  1     2    
  C2—H2 C6—H6 C10—H10 C2—H2 C6—H6 C10—H10
IAM 0.9500 0.912 (15)a 0.9500 0.995 (17)a 0.9500 0.9500
HAR 1.084 (6) 1.070 (6) 1.088 (7) 1.079 (7) 1.077 (7) 1.049 (8)
Note: (a) Hydrogen atoms were refined independently.

When using HAR, an improved R1 value of 0.023 was observed for compound 1, compared to the refinement using IAM with an R1 value of 0.035 (compound 2: R1 for HAR = 0.024 versus IAM = 0.037).

4. Hirshfeld analyses and supra­molecular features

In the crystal of compound 1, the mol­ecules are linked by a number of C—H⋯O hydrogen bonds, forming a network along the [012] direction (Fig. 3[link], Table 3[link]). Considering the C⋯O distances, the strength of the hydrogen bonds can be classified as weak according to Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). Hydrogen bonds C6—H6⋯O1i and C11—H11A⋯O2i lead to the formation of chains described by the graph-set motifs C11(6) and C11(7), respectively. The third hydrogen bond, C8—H8A⋯O3ii, leads to rings with graph-set motif R22(14) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For the C11—H11A⋯O2i hydrogen bond, a significant inter­action can be visualized using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) generated by CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]), here indicated by the red spots (Fig. 4[link]). The Hirshfeld surface mapped over dnorm is in the range from −0.1450 to 1.0518 a.u. The contributions of different types of inter­molecular inter­actions for 1 are shown in the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) in Fig. 5[link]. On the Hirshfeld surface, the weak van der Waals H⋯H contacts appear in the largest region (73.5% contribution). The fingerprint plot for the O⋯H/H⋯O (18.9%) inter­actions shows sharp spikes, which highlight the hydrogen bond between two mol­ecules. The C⋯H/H⋯C (7.5%) inter­actions also appear as two spikes. In summary, H⋯H, C⋯H/H⋯C and especially O⋯H/H⋯O are significant contributors, suggesting the relevance of these contacts in the packing arrangement of the crystal structure.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.912 (15) 2.658 (15) 3.4264 (12) 142.5 (12)
C8—H8A⋯O3ii 1.005 (16) 2.587 (15) 3.3291 (13) 130.5 (11)
C11—H11A⋯O2i 0.944 (19) 2.538 (19) 3.4369 (14) 159.2 (15)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
The crystal packing of compound 1 in a view along the a axis. C—H⋯O hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x, −y + 1, −z + 1; (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]].
[Figure 4]
Figure 4
Hirshfeld surface analysis of 1 showing close contacts in the crystal. The weak hydrogen bond between oxygen atom O2 and the H11A hydrogen atom is labelled. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]].
[Figure 5]
Figure 5
(a) Two-dimensional fingerprint plots for compound 1, showing all contributions (a), and delineated (b)–(d) showing the contributions of atoms within specific inter­acting pairs (blue areas).

The crystal packing of compound 2 is illustrated in Fig. 6[link] and shows a ribbon-like supra­molecular network structure propagating along the b-axis direction. The mol­ecules are linked by a C—H⋯O hydrogen bond between the O2i atom of a DHF group and the C16—H16para group of the phenyl ring (Table 4[link]), leading to the formation of chains with graph-set motif C11(8). Compared to compound 1 where the methyl group shows no hydrogen-bonding inter­actions, the phenyl group is important for the crystal packing, as emphasized in Fig. 7[link]. Again, the strengths of the hydrogen bonds can be classified as weak (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). A Hirshfeld surface analysis of 2 was carried out with dnorm in the range from −0.1662 to 1.2663 a.u.. The characteristic red spots in Fig. 8[link] indicate the C16—H16⋯O2i inter­actions. The two-dimensional fingerprint plots are displayed in Fig. 9[link]. Compared to compound 1, the C⋯H/H⋯C contacts appear to be more important for 2 than the O⋯H/H⋯O contacts. Nevertheless, H⋯H, C⋯H/H⋯C and O⋯H/H⋯O are likewise significant contributors to the packing arrangement within the crystal structure.

[Figure 6]
Figure 6
The crystal packing of compound 2 in a partial view along the b axis. C—H⋯O hydrogen bonds are shown as dotted lines. [Symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]].
[Figure 7]
Figure 7
The crystal packing of compound 2 in a partial view along the a axis, showing inter­molecular and intra­molecular hydrogen bonds C16—H16⋯O2i and C2—H2⋯O3. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]].
[Figure 8]
Figure 8
Hirshfeld surface analysis of 2 showing close contacts in the crystal. The weak hydrogen bond between oxygen atom O2 and the H16 hydrogen atom is labelled. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]].
[Figure 9]
Figure 9
(a) Two-dimensional fingerprint plots of compound 2, showing all contributions, and delineated (b)–(e) showing the contributions of atoms within specific inter­acting pairs (blue areas).

5. Synthesis and crystallization

5-Li­thio-2,3-di­hydro­furan was prepared as described in the literature (Gevorgyan et al., 1990[Gevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57-67.]). The subsequent implementation of the li­thia­ted species with the chloro­silane was also carried out as previously described (Erchak et al., 1981[Erchak, N. P., Popelis, Y. Y., Pichler, I. & Lukevics, E. (1981). Zh. Obschch. Khim. 52, 1181-1187.]; Gevorgyan et al., 1997[Gevorgyan, V., Borisova, L., Vyater, A., Ryabova, V. & Lukevics, E. (1997). J. Organomet. Chem. 548, 149-155.]).

Tris(4,5-di­hydro­furan-2-yl)methyl­silane (1) is a colourless crystalline solid at room temperature:

1H NMR (400 MHz, C6H6): δ = 0.65 (s, 3H; SiCH3), 2.25 [dt, 3JHH = 2.57 Hz, 3JHH = 9.66 Hz, 6H; Si(CCHCH2)3], 4.06 [t, 3JHH = 9.66 Hz, 6H; Si(COCH2)3], 5.59 [t, 3JHH = 2.57 Hz, 3H; Si(CCH)3] ppm.

{1H}13C NMR (100 MHz, C6H6): δ = −5.7 (1C; SiCH3), 31.4 [3C; Si(CCHCH2)3], 70.9 [3C; Si(COCH2)3], 115.6 [3C; Si(CCH)3], 157.5 [3C; Si(CO)3] ppm.

{1H}29Si NMR (79 MHz, C6H6): −36.65 [1Si; Si(DHF)3] ppm.

GC/EI–MS tR = 5.40 min [353 K (1 min) – 40 K min−1 – 543 K (5.5 min)]; m/z (%): 250 (100) [M+], 207 (4) [(M − C2H3O)+], 121 (56) [(DHFSiCCH]+], 97 (13) [(SiDHF)+].

Tris(4,5-di­hydro­furan-2-yl)phenyl­silane (2) is a colourless crystalline solid at room temperature:

1H NMR (400 MHz, C6H6): δ = 2.25 [dt, 3JHH = 2.57 Hz, 3JHH = 9.66 Hz, 6H; Si(CCHCH2)3], 4.07 [t, 3JHH = 9.66 Hz, 6H; Si(COCH2)3], 5.72 [t, 3JHH = 2.57 Hz, 3H; Si(CCH)3], 7.18–7.27 (m, 3H; Ph–Hortho,para), 8.11–8.14 (m, 2H; Ph–Hmeta) ppm.

{1H}13C NMR (100 MHz, C6H6): δ = 31.4 [3C; Si(CCHCH2)3], 71.1 [3C; Si(COCH2)3]; 117.8 [3C; Si(CCH)3]; 128.4 (2C; Ph–Cortho); 130.8 (1C, Ph–Cpara); 134.3 (1C; Ph–Cipso); 136.3 (2C; Ph–Cmeta); 156.4 [3C; Si(CO)3] ppm.

{1H}29Si NMR (79 MHz, C6H6): −41.74 [1Si; Si(DHF)3] ppm.

GC/EI–MS tR = 6.88 min [353 K (1 min) – 40 K min−1 – 543 K(5.5 min)]; m/z (%): 312 (100) [M+], 255 (21) [(M − C3H5O)+], 105 (53) [(SiPh]+], 77 (12) [Ph+], 69 (6) [DHF+].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. For the IAM approach using SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), the H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms. Hydrogen atoms H6, H8A,B and H11A,B for compound 1 and H2 and H16 for compound 2 were refined independently.

Table 6
Experimental details

  1 (IAM) 1 (HAR) 2 (IAM) 2 (HAR)
Crystal data
Chemical formula C13H18O3Si C13H18O3Si C18H20O3Si C18H20O3Si
Mr 250.36 250.37 312.43 312.44
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100 100
a, b, c (Å) 7.9801 (4), 12.2381 (5), 13.3712 (7) 7.9801 (4), 12.2381 (5), 13.3712 (7) 9.4936 (6), 8.6802 (7), 19.747 (2) 9.4936 (6), 8.6802 (7), 19.747 (2)
β (°) 90.134 (2) 90.134 (2) 99.743 (4) 99.743 (4)
V3) 1305.84 (11) 1305.84 (11) 1603.8 (2) 1603.8 (2)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.17 0.17 0.16 0.16
Crystal size (mm) 0.39 × 0.14 × 0.07 0.39 × 0.14 × 0.07 1 × 0.58 × 0.36 1 × 0.58 × 0.36
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.536, 0.567 0.536, 0.567 0.484, 0.566 0.484, 0.566
No. of measured, independent and observed reflections 51391, 5737, 4936 [I > 2σ(I)] 51391, 4984, 4984 [F > 0 & F/σ(F) > 3.0 & |Fcalc| > 10−3] 25027, 5830, 5318 [I > 2σ(I)] 25027, 5359, 5359 [F > 0 & F/σ(F) > 3.0 & |Fcalc| > 10−3]
Rint 0.034 0.034 0.030 0.030
(sin θ/λ)max−1) 0.807 0.807 0.758 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.06 0.023, 0.017, 1.94 0.037, 0.105, 1.06 0.024, 0.021, 2.07
No. of reflections 5737 5737 5830 5830
No. of parameters 175 316 207 379
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.55, −0.21 0.21, −0.22 0.47, −0.23 0.26, −0.18
Computer programs: APEX2 (Bruker, 2018[Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TONTO (Jayatilaka & Grimwood, 2003[Jayatilaka, D. & Grimwood, D. J. (2003). Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography. In: Computational Science - ICCS 2003, Vol. 2660. Berlin, Heidelberg: Springer.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

HARs were performed with the HARt implementation in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), using the restricted Khom–Sham method with the basis set x2c-TZVP. The results of previous IAM refinements using - served as an input (Fugel et al., 2018[Fugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). IUCrJ, 5, 32-44.]). For the HAR approach, all H atoms were refined anistropically and independently.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2018) for (1), (2). Cell refinement: SAINT (Bruker, 2016) for (1), (2). Data reduction: SAINT (Bruker, 2016) for (1), (2). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL (Sheldrick, 2015b) for (1), (2); TONTO (Jayatilaka & Grimwood, 2003) for 1HAR, 2HAR. Molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020) for (1), (2). Software used to prepare material for publication: publCIF (Westrip, 2010) for (1), (2).

Tris(4,5-dihydrofuran-2-yl)methylsilane (1) top
Crystal data top
C13H18O3SiF(000) = 536
Mr = 250.36Dx = 1.273 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9801 (4) ÅCell parameters from 9906 reflections
b = 12.2381 (5) Åθ = 2.3–36.3°
c = 13.3712 (7) ŵ = 0.17 mm1
β = 90.134 (2)°T = 100 K
V = 1305.84 (11) Å3Block, colourless
Z = 40.39 × 0.14 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
5737 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4936 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.034
Detector resolution: 10.4167 pixels mm-1θmax = 35.0°, θmin = 2.3°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1919
Tmin = 0.536, Tmax = 0.567l = 2121
51391 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3601P]
where P = (Fo2 + 2Fc2)/3
5737 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.18345 (3)0.59411 (2)0.25638 (2)0.01471 (6)
O10.35857 (8)0.66915 (6)0.09264 (5)0.02745 (14)
O20.27937 (10)0.62127 (6)0.45636 (5)0.02791 (14)
O30.09090 (9)0.45569 (7)0.22765 (6)0.02990 (15)
C50.23012 (9)0.54481 (6)0.38536 (6)0.01714 (13)
C90.06571 (10)0.48340 (6)0.19167 (6)0.01715 (13)
C10.37989 (10)0.61563 (7)0.18350 (6)0.01739 (13)
C60.21595 (12)0.44438 (7)0.42270 (7)0.02353 (16)
C20.53927 (11)0.59006 (9)0.20150 (6)0.02569 (18)
H20.5784310.5528750.2593750.031*
C40.51776 (11)0.66560 (9)0.04067 (7)0.02635 (17)
H4A0.5466060.7387780.0142520.032*
H4B0.5123290.6135460.0159130.032*
C130.06191 (11)0.72335 (7)0.25968 (7)0.02361 (16)
H13A0.0457630.7105540.2927730.035*
H13B0.0421210.7489580.1912200.035*
H13C0.1251930.7787910.2967920.035*
C100.11013 (13)0.42563 (8)0.11202 (8)0.02825 (18)
H100.2138760.4329010.0779640.034*
C70.26064 (14)0.44446 (9)0.53240 (7)0.02880 (19)
H7A0.3652660.4032550.5452410.035*
H7B0.1692160.4133360.5734250.035*
C110.02632 (16)0.34719 (9)0.08321 (10)0.0370 (2)
C30.64834 (11)0.62855 (10)0.11701 (7)0.0310 (2)
H3A0.7184250.5685010.0904230.037*
H3B0.7214620.6897750.1380090.037*
C80.28359 (15)0.56597 (9)0.55268 (7)0.03038 (19)
C120.14684 (16)0.36115 (9)0.16999 (10)0.0395 (3)
H12A0.2621200.3730960.1447530.047*
H12B0.1465620.2948970.2124800.047*
H60.1832 (19)0.3836 (12)0.3884 (11)0.035 (4)*
H8A0.1907 (19)0.5968 (12)0.5948 (11)0.035 (4)*
H11A0.015 (2)0.2753 (16)0.0766 (12)0.053 (5)*
H8B0.392 (2)0.5853 (13)0.5845 (12)0.042 (4)*
H11B0.076 (2)0.3644 (14)0.0192 (13)0.047 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01370 (9)0.01620 (10)0.01424 (9)0.00092 (6)0.00108 (7)0.00036 (6)
O10.0200 (3)0.0374 (4)0.0249 (3)0.0039 (2)0.0039 (2)0.0152 (3)
O20.0421 (4)0.0257 (3)0.0159 (3)0.0068 (3)0.0033 (3)0.0018 (2)
O30.0213 (3)0.0398 (4)0.0286 (3)0.0118 (3)0.0024 (2)0.0029 (3)
C50.0158 (3)0.0207 (3)0.0149 (3)0.0010 (2)0.0013 (2)0.0010 (2)
C90.0165 (3)0.0180 (3)0.0169 (3)0.0002 (2)0.0007 (2)0.0012 (2)
C10.0163 (3)0.0204 (3)0.0154 (3)0.0006 (2)0.0012 (2)0.0017 (2)
C60.0299 (4)0.0217 (4)0.0190 (3)0.0017 (3)0.0001 (3)0.0010 (3)
C20.0161 (3)0.0447 (5)0.0162 (3)0.0010 (3)0.0006 (3)0.0068 (3)
C40.0208 (4)0.0371 (5)0.0211 (4)0.0031 (3)0.0030 (3)0.0080 (3)
C130.0232 (4)0.0205 (3)0.0271 (4)0.0054 (3)0.0017 (3)0.0009 (3)
C100.0278 (4)0.0302 (4)0.0267 (4)0.0011 (3)0.0006 (3)0.0112 (3)
C70.0354 (5)0.0320 (4)0.0190 (4)0.0062 (4)0.0005 (3)0.0060 (3)
C110.0436 (6)0.0244 (4)0.0428 (6)0.0007 (4)0.0175 (5)0.0110 (4)
C30.0160 (3)0.0553 (6)0.0218 (4)0.0025 (4)0.0017 (3)0.0088 (4)
C80.0380 (5)0.0382 (5)0.0149 (3)0.0043 (4)0.0022 (3)0.0001 (3)
C120.0399 (6)0.0301 (5)0.0486 (7)0.0174 (4)0.0110 (5)0.0057 (4)
Geometric parameters (Å, º) top
Si1—C51.8640 (8)C4—C31.5259 (13)
Si1—C91.8610 (8)C13—H13A0.9800
Si1—C11.8664 (8)C13—H13B0.9800
Si1—C131.8559 (9)C13—H13C0.9800
O1—C11.3904 (10)C10—H100.9500
O1—C41.4500 (11)C10—C111.5011 (15)
O2—C51.3892 (10)C7—H7A0.9900
O2—C81.4552 (12)C7—H7B0.9900
O3—C91.3825 (10)C7—C81.5226 (16)
O3—C121.4596 (13)C11—C121.519 (2)
C5—C61.3315 (12)C11—H11A0.944 (19)
C9—C101.3273 (12)C11—H11B0.966 (18)
C1—C21.3312 (11)C3—H3A0.9900
C6—C71.5088 (13)C3—H3B0.9900
C6—H60.912 (15)C8—H8A1.005 (16)
C2—H20.9500C8—H8B0.995 (17)
C2—C31.5034 (13)C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900
C5—Si1—C1111.25 (4)H13B—C13—H13C109.5
C9—Si1—C5107.10 (4)C9—C10—H10124.7
C9—Si1—C1106.48 (4)C9—C10—C11110.59 (9)
C13—Si1—C5110.92 (4)C11—C10—H10124.7
C13—Si1—C9111.61 (4)C6—C7—H7A111.4
C13—Si1—C1109.38 (4)C6—C7—H7B111.4
C1—O1—C4107.40 (6)C6—C7—C8101.64 (7)
C5—O2—C8107.31 (7)H7A—C7—H7B109.3
C9—O3—C12106.64 (8)C8—C7—H7A111.4
O2—C5—Si1118.03 (6)C8—C7—H7B111.4
C6—C5—Si1128.96 (6)C10—C11—C12101.09 (8)
C6—C5—O2112.93 (7)C10—C11—H11A111.5 (11)
O3—C9—Si1118.21 (6)C10—C11—H11B112.6 (10)
C10—C9—Si1128.71 (7)C12—C11—H11A113.5 (10)
C10—C9—O3113.07 (8)C12—C11—H11B113.2 (10)
O1—C1—Si1114.93 (6)H11A—C11—H11B105.3 (14)
C2—C1—Si1132.51 (6)C2—C3—C4101.55 (7)
C2—C1—O1112.56 (7)C2—C3—H3A111.5
C5—C6—C7110.11 (8)C2—C3—H3B111.5
C5—C6—H6126.0 (10)C4—C3—H3A111.5
C7—C6—H6123.9 (10)C4—C3—H3B111.5
C1—C2—H2124.9H3A—C3—H3B109.3
C1—C2—C3110.19 (8)O2—C8—C7107.10 (7)
C3—C2—H2124.9O2—C8—H8A107.8 (9)
O1—C4—H4A110.4O2—C8—H8B106.7 (9)
O1—C4—H4B110.4C7—C8—H8A112.2 (8)
O1—C4—C3106.62 (7)C7—C8—H8B114.4 (9)
H4A—C4—H4B108.6H8A—C8—H8B108.4 (13)
C3—C4—H4A110.4O3—C12—C11107.41 (8)
C3—C4—H4B110.4O3—C12—H12A110.2
Si1—C13—H13A109.5O3—C12—H12B110.2
Si1—C13—H13B109.5C11—C12—H12A110.2
Si1—C13—H13C109.5C11—C12—H12B110.2
H13A—C13—H13B109.5H12A—C12—H12B108.5
H13A—C13—H13C109.5
Si1—C5—C6—C7177.42 (7)C1—Si1—C5—C6103.58 (9)
Si1—C9—C10—C11178.07 (7)C1—Si1—C9—O3176.31 (6)
Si1—C1—C2—C3179.13 (8)C1—Si1—C9—C102.60 (9)
O1—C1—C2—C30.50 (12)C1—O1—C4—C312.68 (11)
O1—C4—C3—C212.29 (11)C1—C2—C3—C48.04 (12)
O2—C5—C6—C70.69 (11)C6—C7—C8—O29.06 (11)
O3—C9—C10—C110.88 (12)C4—O1—C1—Si1172.41 (6)
C5—Si1—C9—O364.58 (7)C4—O1—C1—C27.89 (11)
C5—Si1—C9—C10116.51 (9)C13—Si1—C5—O242.17 (7)
C5—Si1—C1—O1169.89 (6)C13—Si1—C5—C6134.42 (8)
C5—Si1—C1—C29.73 (11)C13—Si1—C9—O357.01 (7)
C5—O2—C8—C79.17 (11)C13—Si1—C9—C10121.90 (9)
C5—C6—C7—C86.12 (11)C13—Si1—C1—O147.00 (7)
C9—Si1—C5—O2164.18 (6)C13—Si1—C1—C2132.62 (10)
C9—Si1—C5—C612.41 (9)C10—C11—C12—O310.49 (12)
C9—Si1—C1—O173.74 (7)C8—O2—C5—Si1171.65 (7)
C9—Si1—C1—C2106.64 (10)C8—O2—C5—C65.47 (11)
C9—O3—C12—C1110.57 (11)C12—O3—C9—Si1174.71 (7)
C9—C10—C11—C127.14 (12)C12—O3—C9—C106.21 (11)
C1—Si1—C5—O279.83 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.912 (15)2.658 (15)3.4264 (12)142.5 (12)
C8—H8A···O3ii1.005 (16)2.587 (15)3.3291 (13)130.5 (11)
C11—H11A···O2i0.944 (19)2.538 (19)3.4369 (14)159.2 (15)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1.
(1HAR) top
Crystal data top
C13H18O3SiF(000) = 536
Mr = 250.37Dx = 1.273 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.710730 Å
Hall symbol: -P 2ynCell parameters from 9906 reflections
a = 7.9801 (4) Åθ = 2.3–36.3°
b = 12.2381 (5) ŵ = 0.17 mm1
c = 13.3712 (7) ÅT = 100 K
β = 90.134 (2)°Block, colourless
V = 1305.84 (11) Å30.39 × 0.14 × 0.07 mm
Z = 4
Data collection top
Bruker D8 Venture
diffractometer
4984 reflections with F > 0 & F/σ(F) > 3.0 & |F_calc| > 103
Radiation source: microfocus sealed X-ray tube, Incoatec IµsRint = 0.034
ω and φ scansθmax = 35.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.536, Tmax = 0.567k = 1919
51391 measured reflectionsl = 2121
4984 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.017Weighting scheme based on measured s.u.'s w = 1/σ(F)
S = 1.94(Δ/σ)max = 0.003
5737 reflectionsΔρmax = 0.21 e Å3
316 parametersΔρmin = 0.21 e Å3
Special details top

Refinement. HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors.

The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either SCF or DFT - for a fragment of the crystal embedded in an electrostatic crystal field.

If constraints were applied they are defined by zero eigenvalues of the least-squares hessian, see the value of _refine_ls_SVD_threshold.

Specify symmetry and Friedel pair averaging.

Only reflections which satisfy the threshold expression are listed below, and only they are considered observed, thus the *_gt, *_all and *_total data are always the same.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.183455 (16)0.594139 (9)0.256364 (10)0.01424 (6)
O10.35916 (4)0.66896 (3)0.09282 (3)0.02767 (19)
O20.27908 (5)0.62086 (3)0.45636 (3)0.02813 (19)
O30.09045 (4)0.45535 (3)0.22732 (3)0.0301 (2)
C50.23019 (6)0.54500 (3)0.38543 (3)0.0170 (2)
C90.06532 (6)0.48336 (3)0.19172 (3)0.0170 (2)
C10.37970 (6)0.61577 (3)0.18334 (3)0.0173 (2)
C60.21614 (7)0.44418 (4)0.42274 (4)0.0235 (3)
C20.53945 (6)0.58979 (4)0.20154 (4)0.0259 (3)
H20.5844 (8)0.5495 (6)0.2686 (5)0.061 (5)
C40.51774 (7)0.66579 (5)0.04077 (4)0.0268 (3)
H4a0.5037 (9)0.6060 (6)0.0230 (5)0.068 (6)
H4b0.5396 (8)0.7450 (5)0.0115 (6)0.059 (5)
C130.06171 (7)0.72340 (4)0.25969 (5)0.0237 (3)
H13a0.0569 (9)0.7113 (6)0.2949 (6)0.059 (5)
H13b0.1302 (9)0.7857 (5)0.2996 (6)0.057 (5)
H13c0.0403 (9)0.7530 (5)0.1851 (5)0.053 (5)
C100.11010 (7)0.42565 (4)0.11191 (4)0.0284 (3)
H100.2281 (9)0.4377 (6)0.0729 (6)0.061 (5)
C70.26051 (8)0.44426 (5)0.53234 (4)0.0287 (3)
H7a0.1622 (10)0.4119 (5)0.5786 (6)0.062 (6)
H7b0.3746 (10)0.3987 (6)0.5462 (6)0.069 (6)
C110.02599 (8)0.34719 (5)0.08313 (5)0.0365 (3)
H11a0.0846 (11)0.3677 (6)0.0135 (6)0.076 (6)
C30.64824 (7)0.62856 (6)0.11700 (5)0.0316 (3)
H3a0.7276 (10)0.6974 (7)0.1396 (6)0.070 (6)
H3b0.7330 (9)0.5667 (7)0.0885 (6)0.077 (6)
C80.28357 (9)0.56612 (5)0.55253 (4)0.0303 (3)
H8a0.4015 (11)0.5861 (6)0.5874 (6)0.071 (6)
C120.14713 (9)0.36145 (5)0.17009 (6)0.0397 (4)
H12a0.1438 (12)0.2899 (6)0.2200 (7)0.104 (8)
H12b0.2711 (10)0.3785 (6)0.1467 (7)0.077 (6)
H60.1795 (9)0.3737 (5)0.3807 (5)0.053 (5)
H8b0.1825 (11)0.5983 (5)0.5968 (5)0.069 (6)
H11b0.0170 (10)0.2642 (6)0.0788 (7)0.086 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01329 (6)0.01572 (6)0.01373 (6)0.00096 (4)0.00107 (4)0.00037 (5)
O10.02067 (18)0.03649 (19)0.0259 (2)0.00403 (15)0.00302 (15)0.01491 (15)
O20.0418 (2)0.02546 (17)0.01715 (18)0.00624 (15)0.00304 (16)0.00187 (14)
O30.02182 (19)0.0400 (2)0.0283 (2)0.01124 (15)0.00259 (16)0.00231 (16)
C50.0172 (2)0.0196 (2)0.0144 (2)0.00110 (16)0.00094 (17)0.00006 (17)
C90.0174 (2)0.0178 (2)0.0158 (2)0.00049 (16)0.00031 (17)0.00022 (16)
C10.0144 (2)0.0215 (2)0.0159 (2)0.00071 (16)0.00120 (17)0.00195 (16)
C60.0310 (3)0.0206 (2)0.0190 (3)0.0011 (2)0.0000 (2)0.00156 (19)
C20.0153 (2)0.0457 (3)0.0166 (2)0.0016 (2)0.00047 (19)0.0074 (2)
H20.028 (4)0.121 (6)0.032 (5)0.013 (4)0.003 (4)0.033 (5)
C40.0214 (3)0.0372 (3)0.0218 (3)0.0036 (2)0.0024 (2)0.0093 (2)
H4a0.058 (5)0.119 (7)0.026 (5)0.001 (5)0.007 (4)0.039 (5)
H4b0.051 (5)0.049 (4)0.077 (6)0.015 (4)0.010 (4)0.019 (4)
C130.0232 (3)0.0205 (2)0.0275 (3)0.0061 (2)0.0015 (2)0.0010 (2)
H13a0.040 (5)0.065 (5)0.073 (7)0.010 (4)0.024 (4)0.006 (4)
H13b0.064 (5)0.033 (4)0.074 (6)0.006 (4)0.019 (5)0.026 (4)
H13c0.069 (6)0.044 (4)0.045 (5)0.017 (4)0.006 (4)0.020 (4)
C100.0281 (3)0.0307 (3)0.0266 (3)0.0009 (2)0.0001 (2)0.0123 (2)
H100.046 (5)0.079 (5)0.058 (6)0.017 (4)0.027 (4)0.036 (4)
C70.0354 (3)0.0320 (3)0.0188 (3)0.0064 (2)0.0007 (2)0.0065 (2)
H7a0.084 (6)0.056 (5)0.046 (6)0.018 (4)0.015 (5)0.013 (4)
H7b0.067 (6)0.077 (6)0.062 (6)0.035 (5)0.014 (5)0.017 (4)
C110.0432 (4)0.0245 (3)0.0418 (4)0.0001 (2)0.0167 (3)0.0106 (3)
H11a0.086 (6)0.101 (6)0.041 (6)0.017 (5)0.026 (5)0.005 (5)
C30.0155 (3)0.0572 (4)0.0220 (3)0.0028 (3)0.0020 (2)0.0090 (3)
H3a0.069 (6)0.099 (6)0.042 (5)0.037 (5)0.006 (4)0.005 (5)
H3b0.034 (5)0.123 (7)0.073 (7)0.042 (5)0.021 (4)0.044 (5)
C80.0374 (3)0.0381 (3)0.0153 (3)0.0043 (3)0.0021 (2)0.0008 (2)
H8a0.081 (6)0.087 (6)0.047 (6)0.041 (5)0.031 (5)0.003 (4)
C120.0379 (4)0.0320 (3)0.0492 (4)0.0167 (3)0.0099 (3)0.0057 (3)
H12a0.149 (9)0.035 (5)0.128 (9)0.037 (5)0.009 (7)0.040 (5)
H12b0.053 (6)0.083 (6)0.096 (8)0.002 (5)0.027 (5)0.032 (5)
H60.091 (6)0.034 (4)0.033 (5)0.010 (4)0.010 (4)0.004 (3)
H8b0.110 (7)0.063 (5)0.033 (5)0.011 (5)0.039 (5)0.005 (4)
H11b0.088 (7)0.047 (5)0.124 (9)0.001 (5)0.023 (6)0.037 (5)
Geometric parameters (Å, º) top
Si1—C51.8643 (5)C6—H61.070 (6)
Si1—C91.8628 (5)C2—H21.084 (6)
Si1—C11.8663 (5)C4—H4a1.129 (6)
Si1—C131.8570 (5)C4—H4b1.060 (6)
O1—C11.3837 (6)C13—H13a1.068 (7)
O1—C41.4461 (6)C13—H13b1.078 (6)
O2—C51.3827 (5)C13—H13c1.074 (7)
O2—C81.4502 (7)C10—H101.088 (7)
O3—C91.3756 (6)C7—H7a1.075 (7)
O3—C121.4522 (7)C7—H7b1.083 (7)
C5—C61.3357 (6)C11—H11a1.071 (8)
C9—C101.3294 (7)C11—H11b1.073 (7)
C1—C21.3356 (6)C3—H3a1.096 (7)
C6—C71.5069 (7)C3—H3b1.085 (8)
C2—C31.5038 (8)C8—H8a1.078 (7)
C4—C31.5251 (8)C8—H8b1.077 (7)
C10—C111.4991 (8)C12—H12a1.101 (7)
C7—C81.5266 (8)C12—H12b1.058 (8)
C11—C121.5239 (10)
Si1—C5—O2118.29 (3)C10—C11—C12101.03 (5)
Si1—C9—O3118.53 (3)C5—C6—H6124.9 (4)
Si1—C1—O1115.25 (3)C9—C10—H10123.2 (3)
Si1—C5—C6128.82 (4)C1—C2—H2125.0 (4)
Si1—C9—C10128.50 (4)C6—C7—H7a112.9 (4)
Si1—C1—C2132.27 (4)C6—C7—H7b111.2 (4)
Si1—C13—H13a110.9 (4)C2—C3—H3a111.7 (4)
Si1—C13—H13b110.4 (4)C2—C3—H3b113.9 (4)
Si1—C13—H13c110.3 (4)C4—C3—H3a110.3 (4)
O1—C1—C2112.48 (4)C4—C3—H3b113.5 (4)
O1—C4—C3106.46 (4)C10—C11—H11a112.8 (4)
O2—C5—C6112.81 (4)C10—C11—H11b112.8 (4)
O2—C8—C7106.96 (4)C7—C6—H6125.1 (4)
O3—C9—C10112.97 (4)C7—C8—H8a113.8 (4)
O3—C12—C11107.18 (5)C7—C8—H8b111.4 (4)
O1—C4—H4a107.2 (4)C11—C10—H10126.2 (4)
O1—C4—H4b107.3 (4)C11—C12—H12a110.9 (5)
O2—C8—H8a107.4 (4)C11—C12—H12b113.0 (5)
O2—C8—H8b107.5 (4)C3—C2—H2125.1 (4)
O3—C12—H12a107.6 (5)C3—C4—H4a112.1 (4)
O3—C12—H12b106.9 (4)C3—C4—H4b114.1 (4)
C5—Si1—C9107.14 (2)C8—C7—H7a110.2 (4)
C5—Si1—C1111.33 (2)C8—C7—H7b111.8 (4)
C5—Si1—C13110.86 (2)C12—C11—H11a111.1 (5)
C9—Si1—C1106.55 (2)C12—C11—H11b110.7 (5)
C9—Si1—C13111.52 (2)H4a—C4—H4b109.3 (6)
C1—Si1—C13109.36 (2)H13a—C13—H13b109.2 (5)
C5—O2—C8107.72 (4)H13a—C13—H13c108.4 (5)
C9—O3—C12107.19 (4)H13b—C13—H13c107.5 (5)
C1—O1—C4107.84 (4)H7a—C7—H7b109.0 (6)
C5—C6—C7110.06 (5)H11a—C11—H11b108.3 (6)
C9—C10—C11110.51 (5)H3a—C3—H3b105.9 (6)
C1—C2—C3109.90 (5)H8a—C8—H8b109.5 (6)
C6—C7—C8101.57 (4)H12a—C12—H12b110.9 (7)
C2—C3—C4101.66 (4)
Tris(4,5-dihydrofuran-2-yl)phenylsilane (2) top
Crystal data top
C18H20O3SiF(000) = 664
Mr = 312.43Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4936 (6) ÅCell parameters from 9914 reflections
b = 8.6802 (7) Åθ = 2.6–30.5°
c = 19.747 (2) ŵ = 0.16 mm1
β = 99.743 (4)°T = 100 K
V = 1603.8 (2) Å3Block, colourless
Z = 41 × 0.58 × 0.36 mm
Data collection top
Bruker D8 Venture
diffractometer
5830 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs5318 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 32.6°, θmin = 2.2°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1310
Tmin = 0.484, Tmax = 0.566l = 2929
25027 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.053P)2 + 0.5057P]
where P = (Fo2 + 2Fc2)/3
5830 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.74752 (2)0.58226 (3)0.61267 (2)0.01607 (7)
O10.84911 (9)0.80595 (8)0.53080 (4)0.02920 (16)
O20.88956 (8)0.53532 (11)0.74733 (4)0.03192 (18)
H160.2962 (19)0.928 (2)0.6921 (9)0.047 (5)*
O30.76383 (8)0.26869 (8)0.57693 (4)0.02727 (15)
C10.80711 (9)0.65298 (10)0.53302 (4)0.01795 (15)
C20.81525 (11)0.57638 (11)0.47539 (5)0.02286 (17)
C30.86553 (11)0.68235 (12)0.42379 (5)0.02608 (18)
H3A0.7890370.7017320.3839930.031*
H3B0.9505650.6403140.4072900.031*
C40.90202 (13)0.82803 (12)0.46668 (6)0.0301 (2)
H4A1.0066960.8446350.4757270.036*
H4B0.8560620.9189950.4419560.036*
C50.90600 (9)0.58711 (10)0.68271 (4)0.01867 (15)
C61.03720 (10)0.63899 (12)0.68063 (5)0.02363 (17)
H61.0681290.6791220.6408510.028*
C71.12966 (10)0.62499 (14)0.75036 (5)0.02814 (19)
H7A1.1653490.7267970.7682550.034*
H7B1.2117920.5554090.7490840.034*
C81.02544 (11)0.55684 (15)0.79288 (5)0.0315 (2)
H8A1.0616780.4568990.8128210.038*
H8B1.0135880.6274410.8308840.038*
C90.67580 (9)0.38311 (10)0.59588 (4)0.01827 (15)
C100.54408 (10)0.33313 (11)0.59899 (5)0.02234 (16)
H100.4696160.3950210.6110870.027*
C110.53018 (12)0.16494 (12)0.58064 (6)0.0311 (2)
H11A0.4619070.1484880.5374730.037*
H11B0.4994040.1038900.6178960.037*
C120.68264 (12)0.12463 (11)0.57197 (6)0.0299 (2)
H12A0.7256570.0521350.6083680.036*
H12B0.6828580.0755470.5267320.036*
C130.60089 (9)0.70098 (10)0.63790 (4)0.01831 (15)
C140.46938 (10)0.71555 (11)0.59371 (5)0.02264 (16)
H140.4573100.6696090.5494360.027*
C150.35611 (11)0.79615 (12)0.61354 (6)0.0288 (2)
H150.2672290.8028310.5832370.035*
C160.37284 (12)0.86642 (13)0.67724 (7)0.0321 (2)
C170.50218 (14)0.85581 (14)0.72086 (6)0.0345 (2)
H170.5142130.9055000.7643220.041*
C180.61587 (12)0.77307 (12)0.70212 (5)0.02617 (18)
H180.7037830.7657210.7331220.031*
H20.7893 (18)0.466 (2)0.4669 (8)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01588 (11)0.01536 (11)0.01726 (11)0.00151 (7)0.00365 (8)0.00197 (7)
O10.0477 (4)0.0159 (3)0.0283 (3)0.0049 (3)0.0187 (3)0.0032 (2)
O20.0213 (3)0.0488 (5)0.0239 (3)0.0110 (3)0.0011 (2)0.0123 (3)
O30.0240 (3)0.0166 (3)0.0415 (4)0.0008 (2)0.0065 (3)0.0049 (3)
C10.0172 (3)0.0165 (3)0.0208 (3)0.0008 (3)0.0051 (3)0.0013 (3)
C20.0258 (4)0.0220 (4)0.0221 (4)0.0058 (3)0.0079 (3)0.0042 (3)
C30.0281 (4)0.0297 (5)0.0223 (4)0.0047 (4)0.0097 (3)0.0026 (3)
C40.0422 (6)0.0218 (4)0.0309 (5)0.0046 (4)0.0196 (4)0.0009 (4)
C50.0185 (3)0.0178 (3)0.0195 (3)0.0018 (3)0.0026 (3)0.0009 (3)
C60.0194 (4)0.0282 (4)0.0232 (4)0.0045 (3)0.0035 (3)0.0000 (3)
C70.0194 (4)0.0338 (5)0.0294 (4)0.0052 (4)0.0012 (3)0.0032 (4)
C80.0250 (4)0.0425 (6)0.0247 (4)0.0097 (4)0.0024 (3)0.0045 (4)
C90.0196 (3)0.0161 (3)0.0187 (3)0.0009 (3)0.0021 (3)0.0013 (3)
C100.0212 (4)0.0219 (4)0.0239 (4)0.0048 (3)0.0035 (3)0.0002 (3)
C110.0311 (5)0.0215 (4)0.0392 (5)0.0094 (4)0.0014 (4)0.0020 (4)
C120.0324 (5)0.0154 (4)0.0377 (5)0.0002 (3)0.0060 (4)0.0030 (4)
C130.0200 (3)0.0166 (3)0.0197 (3)0.0012 (3)0.0072 (3)0.0011 (3)
C140.0208 (4)0.0206 (4)0.0269 (4)0.0013 (3)0.0052 (3)0.0026 (3)
C150.0210 (4)0.0213 (4)0.0458 (6)0.0003 (3)0.0109 (4)0.0002 (4)
C160.0344 (5)0.0243 (4)0.0439 (6)0.0036 (4)0.0247 (5)0.0019 (4)
C170.0489 (6)0.0325 (5)0.0265 (5)0.0084 (5)0.0188 (4)0.0030 (4)
C180.0323 (5)0.0264 (4)0.0204 (4)0.0032 (4)0.0061 (3)0.0042 (3)
Geometric parameters (Å, º) top
Si1—C11.8633 (9)C7—C81.5215 (15)
Si1—C51.8638 (9)C8—H8A0.9900
Si1—C91.8670 (9)C8—H8B0.9900
Si1—C131.8662 (9)C9—C101.3348 (12)
O1—C11.3892 (11)C10—H100.9500
O1—C41.4518 (12)C10—C111.5046 (14)
O2—C51.3865 (11)C11—H11A0.9900
O2—C81.4544 (12)C11—H11B0.9900
O3—C91.3894 (11)C11—C121.5267 (17)
O3—C121.4635 (12)C12—H12A0.9900
C1—C21.3314 (12)C12—H12B0.9900
C2—C31.5090 (13)C13—C141.4027 (13)
C2—H20.995 (17)C13—C181.3995 (12)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C14—C151.3934 (13)
C3—C41.5288 (15)C15—H150.9500
C4—H4A0.9900C15—C161.3827 (17)
C4—H4B0.9900C16—H160.987 (18)
C5—C61.3317 (12)C16—C171.3785 (19)
C6—H60.9500C17—H170.9500
C6—C71.5074 (14)C17—C181.3975 (15)
C7—H7A0.9900C18—H180.9500
C7—H7B0.9900
C1—Si1—C5107.26 (4)O2—C8—H8B110.2
C1—Si1—C9107.99 (4)C7—C8—H8A110.2
C1—Si1—C13112.97 (4)C7—C8—H8B110.2
C5—Si1—C9112.15 (4)H8A—C8—H8B108.5
C5—Si1—C13109.53 (4)O3—C9—Si1119.46 (6)
C13—Si1—C9107.01 (4)C10—C9—Si1127.52 (7)
C1—O1—C4107.29 (7)C10—C9—O3113.01 (8)
C5—O2—C8107.54 (7)C9—C10—H10124.8
C9—O3—C12107.15 (8)C9—C10—C11110.42 (9)
O1—C1—Si1118.11 (6)C11—C10—H10124.8
C2—C1—Si1128.81 (7)C10—C11—H11A111.4
C2—C1—O1113.08 (8)C10—C11—H11B111.4
C1—C2—C3110.09 (8)C10—C11—C12101.72 (8)
C1—C2—H2125.1 (10)H11A—C11—H11B109.3
C3—C2—H2124.8 (9)C12—C11—H11A111.4
C2—C3—H3A111.5C12—C11—H11B111.4
C2—C3—H3B111.5O3—C12—C11107.17 (8)
C2—C3—C4101.42 (8)O3—C12—H12A110.3
H3A—C3—H3B109.3O3—C12—H12B110.3
C4—C3—H3A111.5C11—C12—H12A110.3
C4—C3—H3B111.5C11—C12—H12B110.3
O1—C4—C3107.13 (8)H12A—C12—H12B108.5
O1—C4—H4A110.3C14—C13—Si1120.61 (7)
O1—C4—H4B110.3C18—C13—Si1121.52 (7)
C3—C4—H4A110.3C18—C13—C14117.82 (8)
C3—C4—H4B110.3C13—C14—H14119.4
H4A—C4—H4B108.5C15—C14—C13121.22 (9)
O2—C5—Si1118.24 (6)C15—C14—H14119.4
C6—C5—Si1128.79 (7)C14—C15—H15119.9
C6—C5—O2112.93 (8)C16—C15—C14120.12 (10)
C5—C6—H6124.8C16—C15—H15119.9
C5—C6—C7110.34 (8)C15—C16—H16122.2 (11)
C7—C6—H6124.8C17—C16—H16118.3 (10)
C6—C7—H7A111.4C17—C16—C15119.48 (9)
C6—C7—H7B111.4C16—C17—H17119.5
C6—C7—C8101.71 (8)C16—C17—C18121.00 (10)
H7A—C7—H7B109.3C18—C17—H17119.5
C8—C7—H7A111.4C13—C18—H18119.8
C8—C7—H7B111.4C17—C18—C13120.34 (10)
O2—C8—C7107.47 (8)C17—C18—H18119.8
O2—C8—H8A110.2
Si1—C1—C2—C3178.37 (7)C6—C7—C8—O20.87 (12)
Si1—C5—C6—C7178.02 (7)C8—O2—C5—Si1177.67 (7)
Si1—C9—C10—C11179.13 (7)C8—O2—C5—C60.44 (12)
Si1—C13—C14—C15176.12 (8)C9—Si1—C1—O1172.60 (7)
Si1—C13—C18—C17177.23 (8)C9—Si1—C1—C27.02 (10)
O1—C1—C2—C31.27 (12)C9—Si1—C5—O259.87 (8)
O2—C5—C6—C70.15 (12)C9—Si1—C5—C6122.36 (9)
O3—C9—C10—C110.06 (11)C9—Si1—C13—C1458.05 (8)
C1—Si1—C5—O2178.26 (7)C9—Si1—C13—C18119.39 (8)
C1—Si1—C5—C63.96 (10)C9—O3—C12—C117.11 (11)
C1—Si1—C9—O359.03 (8)C9—C10—C11—C124.34 (11)
C1—Si1—C9—C10120.11 (9)C10—C11—C12—O36.80 (11)
C1—Si1—C13—C1460.67 (8)C12—O3—C9—Si1176.20 (6)
C1—Si1—C13—C18121.89 (8)C12—O3—C9—C104.54 (11)
C1—O1—C4—C39.46 (12)C13—Si1—C1—O154.45 (8)
C1—C2—C3—C46.79 (11)C13—Si1—C1—C2125.17 (9)
C2—C3—C4—O19.64 (11)C13—Si1—C5—O258.79 (8)
C4—O1—C1—Si1175.01 (7)C13—Si1—C5—C6118.98 (9)
C4—O1—C1—C25.31 (12)C13—Si1—C9—O3179.07 (7)
C5—Si1—C1—O166.35 (8)C13—Si1—C9—C101.79 (10)
C5—Si1—C1—C2114.04 (9)C13—C14—C15—C161.35 (15)
C5—Si1—C9—O358.93 (8)C14—C13—C18—C170.28 (15)
C5—Si1—C9—C10121.92 (9)C14—C15—C16—C170.10 (16)
C5—Si1—C13—C14179.84 (7)C15—C16—C17—C181.03 (17)
C5—Si1—C13—C182.40 (9)C16—C17—C18—C130.94 (17)
C5—O2—C8—C70.84 (13)C18—C13—C14—C151.42 (14)
C5—C6—C7—C80.64 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.987 (18)2.474 (18)3.4394 (13)165.9 (15)
C2—H2···O30.995 (17)2.809 (17)3.4238 (13)120.6 (12)
Symmetry code: (i) x+1, y+1/2, z+3/2.
(2HAR) top
Crystal data top
C18H20O3SiF(000) = 664
Mr = 312.44Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.710730 Å
Hall symbol: -P 2ybcCell parameters from 9914 reflections
a = 9.4936 (6) Åθ = 2.6–30.5°
b = 8.6802 (7) ŵ = 0.16 mm1
c = 19.747 (2) ÅT = 100 K
β = 99.743 (4)°Block, colourless
V = 1603.8 (2) Å31 × 0.58 × 0.36 mm
Z = 4
Data collection top
Bruker D8 Venture
diffractometer
5359 reflections with F > 0 & F/σ(F) > 3.0 & |F_calc| > 103
Radiation source: microfocus sealed X-ray tube, Incoatec IµsRint = 0.030
φ and ω scansθmax = 32.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1414
Tmin = 0.484, Tmax = 0.566k = 1310
25027 measured reflectionsl = 2929
5359 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.024All H-atom parameters refined
wR(F2) = 0.021Weighting scheme based on measured s.u.'s w = 1/σ(F)
S = 2.07(Δ/σ)max = 0.002
5830 reflectionsΔρmax = 0.26 e Å3
379 parametersΔρmin = 0.17 e Å3
Special details top

Refinement. HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors.

The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either SCF or DFT - for a fragment of the crystal embedded in an electrostatic crystal field.

If constraints were applied they are defined by zero eigenvalues of the least-squares hessian, see the value of _refine_ls_SVD_threshold.

Specify symmetry and Friedel pair averaging.

Only reflections which satisfy the threshold expression are listed below, and only they are considered observed, thus the *_gt, *_all and *_total data are always the same.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.747546 (14)0.582292 (15)0.612664 (7)0.01528 (6)
O10.84901 (5)0.80558 (4)0.53062 (2)0.0292 (2)
O20.89013 (4)0.53540 (5)0.74723 (2)0.0314 (2)
H160.2846 (9)0.9319 (11)0.6920 (5)0.074 (7)
O30.76344 (4)0.26862 (4)0.57700 (2)0.0272 (2)
C10.80726 (5)0.65332 (6)0.53303 (2)0.0174 (2)
C20.81512 (6)0.57618 (7)0.47531 (3)0.0227 (2)
C30.86534 (7)0.68228 (7)0.42380 (3)0.0264 (3)
H3a0.9585 (9)0.6409 (10)0.4044 (5)0.063 (6)
H3b0.7823 (9)0.7044 (12)0.3813 (4)0.066 (6)
C40.90164 (8)0.82785 (7)0.46665 (3)0.0301 (3)
H4a0.8576 (12)0.9288 (11)0.4439 (5)0.086 (8)
H4b1.0174 (10)0.8428 (12)0.4793 (5)0.078 (7)
C50.90593 (5)0.58701 (6)0.68281 (2)0.0183 (2)
C61.03741 (6)0.63895 (7)0.68061 (3)0.0233 (2)
H61.0707 (8)0.6836 (11)0.6349 (4)0.054 (6)
C71.12977 (6)0.62511 (8)0.75034 (3)0.0281 (3)
H7a1.2215 (9)0.5525 (13)0.7488 (5)0.076 (7)
H7b1.1704 (10)0.7364 (10)0.7693 (5)0.071 (7)
C81.02519 (7)0.55702 (9)0.79273 (3)0.0318 (3)
H8a1.0062 (10)0.6346 (16)0.8331 (6)0.101 (9)
H8b1.0587 (10)0.4467 (14)0.8157 (7)0.101 (9)
C90.67596 (5)0.38297 (6)0.59582 (2)0.0176 (2)
C100.54408 (6)0.33323 (6)0.59894 (3)0.0221 (2)
H100.4616 (8)0.4016 (9)0.6120 (5)0.051 (6)
C110.53018 (7)0.16494 (7)0.58067 (4)0.0312 (3)
H11a0.4968 (10)0.1008 (11)0.6216 (5)0.069 (7)
H11b0.4532 (8)0.1460 (10)0.5330 (5)0.058 (6)
C120.68277 (7)0.12475 (7)0.57208 (3)0.0298 (3)
H12a0.6906 (10)0.0754 (10)0.5224 (5)0.064 (6)
H12b0.7323 (10)0.0499 (10)0.6124 (5)0.076 (7)
C130.60087 (5)0.70104 (6)0.63796 (2)0.0178 (2)
C140.46947 (6)0.71578 (6)0.59372 (3)0.0222 (2)
H140.4539 (8)0.6612 (10)0.5433 (4)0.050 (5)
C150.35609 (6)0.79613 (7)0.61351 (3)0.0287 (3)
H150.2540 (8)0.8044 (11)0.5787 (5)0.062 (6)
C160.37264 (7)0.86670 (7)0.67727 (3)0.0322 (3)
C170.50259 (7)0.85587 (7)0.72103 (3)0.0340 (3)
H170.5195 (10)0.9123 (11)0.7706 (5)0.072 (7)
C180.61593 (7)0.77294 (7)0.70210 (3)0.0260 (3)
H20.7895 (10)0.4556 (9)0.4679 (4)0.056 (6)
H180.7151 (9)0.7604 (10)0.7373 (4)0.055 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01511 (6)0.01445 (6)0.01659 (6)0.00151 (5)0.00356 (5)0.00195 (5)
O10.0473 (2)0.01601 (18)0.0284 (2)0.00392 (16)0.01778 (19)0.00359 (16)
O20.02147 (18)0.0467 (3)0.02463 (18)0.01067 (18)0.00006 (15)0.01162 (18)
H160.062 (5)0.073 (7)0.103 (9)0.024 (5)0.060 (6)0.008 (6)
O30.02383 (18)0.01780 (18)0.0400 (2)0.00088 (14)0.00591 (17)0.00434 (16)
C10.0182 (2)0.0164 (2)0.0186 (2)0.00123 (17)0.00588 (18)0.00205 (18)
C20.0270 (2)0.0215 (3)0.0212 (2)0.0059 (2)0.0085 (2)0.0053 (2)
C30.0286 (3)0.0308 (3)0.0217 (3)0.0047 (2)0.0098 (2)0.0025 (2)
H3a0.078 (6)0.053 (6)0.073 (8)0.009 (5)0.058 (6)0.016 (5)
H3b0.053 (5)0.113 (9)0.030 (5)0.002 (5)0.002 (5)0.014 (5)
C40.0428 (3)0.0204 (3)0.0317 (3)0.0047 (2)0.0195 (3)0.0010 (2)
H4a0.156 (10)0.044 (6)0.070 (8)0.036 (6)0.054 (8)0.024 (6)
H4b0.061 (6)0.102 (9)0.082 (9)0.049 (6)0.048 (6)0.050 (7)
C50.0165 (2)0.0183 (2)0.0196 (2)0.00281 (18)0.00220 (18)0.00111 (18)
C60.0181 (2)0.0284 (3)0.0235 (2)0.0054 (2)0.0035 (2)0.0002 (2)
H60.050 (5)0.084 (7)0.035 (5)0.011 (5)0.024 (4)0.011 (5)
C70.0190 (3)0.0341 (3)0.0293 (3)0.0051 (2)0.0015 (2)0.0035 (2)
H7a0.020 (4)0.133 (10)0.075 (7)0.018 (5)0.006 (5)0.033 (7)
H7b0.101 (8)0.041 (6)0.058 (6)0.050 (6)0.022 (6)0.004 (5)
C80.0260 (3)0.0430 (4)0.0244 (3)0.0099 (3)0.0016 (2)0.0054 (3)
H8a0.052 (6)0.175 (13)0.079 (8)0.028 (7)0.022 (6)0.088 (9)
H8b0.055 (7)0.102 (9)0.130 (10)0.021 (6)0.031 (7)0.076 (8)
C90.0179 (2)0.0152 (2)0.0194 (2)0.00212 (18)0.00223 (18)0.00130 (17)
C100.0198 (2)0.0212 (3)0.0255 (2)0.0049 (2)0.0040 (2)0.0005 (2)
H100.037 (5)0.040 (5)0.079 (7)0.005 (4)0.021 (5)0.008 (5)
C110.0314 (3)0.0213 (3)0.0393 (3)0.0103 (2)0.0014 (3)0.0026 (2)
H11a0.074 (6)0.056 (6)0.083 (8)0.008 (5)0.036 (6)0.005 (6)
H11b0.043 (5)0.045 (6)0.075 (7)0.008 (4)0.020 (5)0.019 (5)
C120.0326 (3)0.0156 (2)0.0369 (3)0.0006 (2)0.0068 (3)0.0028 (2)
H12a0.084 (7)0.052 (6)0.054 (6)0.001 (5)0.010 (6)0.026 (5)
H12b0.076 (7)0.036 (6)0.095 (7)0.002 (5)0.044 (6)0.014 (5)
C130.0190 (2)0.0170 (2)0.0186 (2)0.00053 (17)0.00679 (18)0.00205 (18)
C140.0191 (2)0.0211 (2)0.0266 (3)0.00204 (19)0.0048 (2)0.0030 (2)
H140.042 (5)0.069 (6)0.037 (5)0.016 (4)0.004 (4)0.012 (4)
C150.0206 (2)0.0217 (3)0.0461 (4)0.0013 (2)0.0121 (2)0.0016 (2)
H150.013 (4)0.073 (7)0.094 (8)0.006 (4)0.004 (5)0.009 (6)
C160.0336 (3)0.0255 (3)0.0433 (4)0.0037 (2)0.0236 (3)0.0013 (3)
C170.0467 (3)0.0336 (3)0.0258 (3)0.0093 (3)0.0181 (3)0.0035 (3)
H170.107 (8)0.073 (7)0.042 (6)0.033 (6)0.027 (6)0.017 (5)
C180.0320 (3)0.0272 (3)0.0194 (2)0.0045 (2)0.0062 (2)0.0053 (2)
H20.092 (7)0.036 (5)0.045 (6)0.037 (5)0.027 (5)0.019 (4)
H180.061 (6)0.057 (6)0.038 (5)0.018 (5)0.013 (5)0.020 (4)
Geometric parameters (Å, º) top
Si1—C11.8643 (5)C16—C171.3844 (10)
Si1—C51.8646 (5)C17—C181.3971 (8)
Si1—C91.8680 (5)C2—H21.079 (7)
Si1—C131.8672 (5)C3—H3a1.082 (8)
O1—C11.3830 (6)C3—H3b1.067 (9)
O1—C41.4479 (6)C4—H4a1.039 (9)
O2—C51.3804 (6)C4—H4b1.093 (9)
O2—C81.4481 (7)C6—H61.077 (7)
O3—C91.3847 (6)C7—H7a1.080 (9)
O3—C121.4596 (7)C7—H7b1.083 (8)
C1—C21.3350 (7)C8—H8a1.081 (9)
C2—C31.5081 (7)C8—H8b1.085 (10)
C3—C41.5272 (8)C10—H101.049 (8)
C5—C61.3348 (7)C11—H11a1.072 (9)
C6—C71.5069 (8)C11—H11b1.102 (8)
C7—C81.5222 (8)C12—H12a1.085 (8)
C9—C101.3356 (7)C12—H12b1.072 (9)
C10—C111.5052 (8)C14—H141.089 (8)
C11—C121.5271 (9)C15—H151.092 (8)
C13—C141.4025 (7)C16—H161.089 (7)
C13—C181.3975 (7)C17—H171.083 (9)
C14—C151.3929 (7)C18—H181.076 (8)
C15—C161.3851 (9)
Si1—C1—O1118.36 (3)C1—C2—H2124.0 (4)
Si1—C5—O2118.53 (3)C2—C3—H3a114.0 (5)
Si1—C9—O3119.68 (3)C2—C3—H3b111.4 (5)
Si1—C1—C2128.55 (4)C3—C2—H2126.2 (4)
Si1—C5—C6128.62 (4)C3—C4—H4a114.9 (6)
Si1—C9—C10127.36 (4)C3—C4—H4b110.4 (5)
Si1—C13—C14120.58 (4)C4—C3—H3a110.4 (5)
Si1—C13—C18121.50 (4)C4—C3—H3b110.8 (6)
O1—C1—C2113.09 (4)C5—C6—H6123.9 (4)
O1—C4—C3107.11 (4)C6—C7—H7a111.6 (6)
O2—C5—C6112.81 (5)C6—C7—H7b111.3 (5)
O2—C8—C7107.48 (5)C7—C6—H6125.9 (4)
O3—C9—C10112.96 (5)C7—C8—H8a111.7 (6)
O3—C12—C11107.10 (5)C7—C8—H8b113.6 (6)
O1—C4—H4a108.4 (5)C8—C7—H7a113.1 (5)
O1—C4—H4b107.4 (5)C8—C7—H7b112.6 (5)
O2—C8—H8a107.3 (5)C9—C10—H10125.0 (4)
O2—C8—H8b108.1 (6)C10—C11—H11a110.4 (5)
O3—C12—H12a106.4 (5)C10—C11—H11b111.6 (5)
O3—C12—H12b108.1 (5)C11—C10—H10124.7 (4)
C1—Si1—C5107.29 (2)C11—C12—H12a113.7 (5)
C1—Si1—C9108.03 (2)C11—C12—H12b111.2 (6)
C1—Si1—C13112.96 (2)C12—C11—H11a111.9 (5)
C5—Si1—C9112.08 (2)C12—C11—H11b112.0 (5)
C5—Si1—C13109.47 (2)C13—C14—H14119.9 (4)
C9—Si1—C13107.08 (2)C13—C18—H18118.9 (4)
C1—O1—C4107.51 (4)C14—C15—H15120.1 (5)
C5—O2—C8107.87 (4)C15—C14—H14118.8 (4)
C9—O3—C12107.43 (4)C15—C16—H16119.9 (6)
C1—C2—C3109.84 (5)C16—C15—H15119.7 (5)
C2—C3—C4101.48 (4)C16—C17—H17120.9 (5)
C5—C6—C7110.24 (5)C17—C16—H16120.8 (6)
C6—C7—C8101.58 (5)C17—C18—H18120.6 (4)
C9—C10—C11110.34 (5)C18—C17—H17118.2 (5)
C10—C11—C12101.65 (5)H3a—C3—H3b108.7 (7)
C13—C14—C15121.27 (5)H4a—C4—H4b108.3 (8)
C13—C18—C17120.48 (6)H7a—C7—H7b106.8 (7)
C14—C13—C18117.88 (5)H8a—C8—H8b108.4 (10)
C14—C15—C16120.16 (6)H11a—C11—H11b109.2 (7)
C15—C16—C17119.30 (5)H12a—C12—H12b110.1 (7)
C16—C17—C18120.89 (5)
Selected geometric parameters of compound 1 (Å, °) top
IAMHARIAMHAR
Si1—C11.8664 (8)1.8663 (5)C1—Si1—C5111.25 (4)111.33 (2)
Si1—C51.8640 (8)1.8643 (5)C1—Si1—C9106.48 (4)106.55 (2)
Si1—C91.8610 (8)1.8628 (5)C1—Si1—C13109.38 (4)109.36 (2)
Si1—C131.8559 (9)1.8570 (5)C5—Si1—C9107.10 (4)107.14 (2)
C5—Si1—C13110.92 (4)110.86 (2)
C1—C21.3312 (11)1.3356 (6)C9—Si1—C13111.61 (4)111.52 (2)
C5—C61.3315 (12)1.3357 (6)
C9—C101.3273 (12)1.3294 (7)
Selected geometric parameters of compound 2 (Å, °). top
IAMHARIAMHAR
Si1—C11.8633 (9)1.8643 (5)C1—Si1—C5107.26 (4)107.29 (2)
Si1—C51.8638 (9)1.8646 (5)C1—Si1—C9107.99 (4)108.03 (2)
Si1—C91.8670 (9)1.8680 (5)C1—Si1—C13112.97 (4)112.96 (2)
Si1—C131.8662 (9)1.8672 (5)C5—Si1—C9112.15 (4)112.08 (2)
C5—Si1—C13109.53 (4)109.47 (2)
C1—C21.3314 (12)1.3350 (7)C9—Si1—C13107.01 (4)107.08 (2)
C5—C61.3317 (12)1.3348 (7)
C9—C101.3348 (12)1.3356 (7)
C—H bond length (Å) of the methine groups for IAM and HAR for compounds 1 and 2 top
12
C2—H2C6—H6C10—H10C2—H2C6—H6C10—H10
IAM0.95000.912 (15)a0.95000.995 (17)a0.95000.9500
HAR1.084 (6)1.070 (6)1.088 (7)1.079 (7)1.077 (7)1.049 (8)
Note: (a) Hydrogen atoms were refined independently.
Å top

Funding information

ERB would like to thank the `Fonds der Chemischen Industrie' for a doctoral fellowship. RS would like to thank the `Studienstiftung des Deutschen Volkes' for a doctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBarth, E. R., Krupp, A., Langenohl, F., Brieger, L. & Strohmann, C. (2019). Chem. Commun. 48, 11285–11291.  Google Scholar
First citationBruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErchak, N. P., Popelis, Y. Y., Pichler, I. & Lukevics, E. (1981). Zh. Obschch. Khim. 52, 1181–1187.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). IUCrJ, 5, 32–44.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19–21.  CrossRef CAS Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57–67.  CrossRef CAS Google Scholar
First citationGevorgyan, V., Borisova, L., Vyater, A., Ryabova, V. & Lukevics, E. (1997). J. Organomet. Chem. 548, 149–155.  CrossRef CAS Google Scholar
First citationGlidewell, C. & Sheldrick, G. M. (1971). J. Chem. Soc. A, pp. 3127–3129.  CSD CrossRef Web of Science Google Scholar
First citationJayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayatilaka, D. & Grimwood, D. J. (2003). Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography. In: Computational ScienceICCS 2003, Vol. 2660. Berlin, Heidelberg: Springer.  Google Scholar
First citationKoller, S. G., Bauer, J. O. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 7991–7994.  CSD CrossRef CAS Google Scholar
First citationKückmann, T., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, o3030–o3031.  CSD CrossRef IUCr Journals Google Scholar
First citationLukevits, E., Borisova, L. & Gevorgyan, V. (1993). Chem. Heterocycl. Compd. 29, 735–743.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOtte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, 1–8.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds