research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of KScP2O7

CROSSMARK_Color_square_no_text.svg

aChemistry and Physics of Materials, University of Salzburg, Jakob-Haringerstr. 2A, 5020 Salzburg, Austria
*Correspondence e-mail: guenther.redhammer@sbg.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 July 2020; accepted 28 July 2020; online 4 August 2020)

Single crystals of KScP2O7, potassium scandium diphosphate, were grown in a borate flux. The title compound crystallizes isotypically with KAlP2O7 in space-group type P21/c, Z = 4. The main building block is an {ScP2O11}9– unit, forming layers parallel to (001). These layers are stacked along [001] via common corners of octa­hedral and tetra­hedral units to span up large hepta­gonal cavities that host the potassium cations with a coordination number of 10. The P—O—P bridging angle increases with increasing size of the octa­hedrally coordinated MIII cation, as do the K—O distances within a series of KMIIIP2O7 compounds (MIII = Al to Y with ionic radii r = 0.538 to 0.90 Å).

1. Chemical context

Metal-phosphates with open framework structures raise large inter­est due to a rich crystal chemistry (Clearfield, 1988[Clearfield, A. (1988). Chem. Rev. 88, 125-148.]) and possible inter­esting applications, e.g. as non-linear optical materials, solid-state electrolytes, ionic conductors, battery materials or sensors (Hagerman & Poeppelmeier, 1995[Hagerman, M. E. & Poeppelmeier, K. R. (1995). Chem. Mater. 7, 602-621.]; Vītiņš et al., 2000[Vītiņš, G., Kaņepe, Z., Vītiņš, A., Ronis, J., Dindūne, A. & Lūsis, A. (2000). J. Solid State Electrochem. 4, 146-152.]). In the context of solid-state electrolytes, we recently investigated the Na-super ionic conducting NaSICON-type compounds Na3Sc2(PO4)3 (NSP) and Ag3Sc2(PO4)3 (ASP) in terms of their structural phase-transition sequences and ionic conductivities (Rettenwander et al., 2018[Rettenwander, D., Redhammer, G. J., Guin, M., Benisek, A., Krüger, H., Guillon, O., Wilkening, M., Tietz, F. & Fleig, J. (2018). Chem. Mater. 30, 1776-1781.]; Ladenstein et al., 2020[Ladenstein, L., Lunghammer, S., Wang, E. Y., Miara, L. J., Wilkening, M. H. R., Redhammer, G. J. & Rettenwander, D. (2020). J. Phys. Energ. 2, 035003.]; Redhammer et al., 2020[Redhammer, G. J., Tippelt, G., Stahl, Q., Benisek, A. & Rettenwander, D. (2020). Acta Cryst. B76, submitted [Co-editor code RM5035].]). To elucidate the role of the alkali metals on symmetry, we intended to synthesize the potassium analogue of NSP with flux-growth techniques. Using a method applied by Sljukic et al. (1967[Sljukic, M., Matkovic, B., Prodic, B. & Scavnicar, S. (1967). Croat. Chem. Acta, 39, 145-.]) for the synthesis of large crystals of NaSICON-type KZr2(PO4)3, however, did not yield the intended compound K3Sc2(PO4)3, but the title diphosphate KScP2O7 instead.

Vītiņš et al. (2000[Vītiņš, G., Kaņepe, Z., Vītiņš, A., Ronis, J., Dindūne, A. & Lūsis, A. (2000). J. Solid State Electrochem. 4, 146-152.]) reviewed that for such AIMIIIP2O7 (A = Li, Na, K, Rb, Cs, Tl; M = Al, Ga, Fe, In, Sc, …) compounds six different structure types can be distinguished. They confirm that structure type I, involving compounds with large A site cations, is the largest group, showing P21/c space-group symmetry. KAlP2O7 (Ng & Calvo, 1973[Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.]) is regarded as the aristo-structure of group I with around 45 different compositions as compiled in the Inorganic Crystal Structure Database (ICSD; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]). For K-containing compounds, further materials are KCrP2O7 (Gentil et al., 1997[Gentil, S., Andreica, D., Lujan, M., Rivera, J. P., Kubel, F. & Schmid, H. (1997). Ferroelectrics, 204, 35-44.]), KGaP2O7 (Genkin & Timofeeva, 1989[Genkin, E. A. & Timofeeva, V. A. (1989). J. Struct. Chem. 30, 149-151.]), KFeP2O7 (Riou et al., 1988[Riou, D., Labbe, P. & Goreaud, M. (1988). Eur. J. Solid State Inorg. Chem. 25, 215-229.]; Genkin & Timofeeva, 1989[Genkin, E. A. & Timofeeva, V. A. (1989). J. Struct. Chem. 30, 149-151.]), KVP2O7 (Benhamada et al., 1991[Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1991). Acta Cryst. C47, 424-425.]), KTiP2O7 (Zatovsky et al., 2000[Zatovsky, I. V., Slobodyanik, N. S., Kowalski, A. & Slyva, T. Yu. (2000). Dopov. Nats. Akad. Nauk Ukr. pp. 151-155.]), KMoP2O7 (Leclaire et al., 1989[Leclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1989). J. Solid State Chem. 78, 220-226.]; Chen et al., 1989[Chen, J. J., Wang, C. C. & Lii, K. H. (1989). Acta Cryst. C45, 673-675.]), KInP2O7 (Zhang et al., 2004[Zhang, Y. C., Cheng, W. D., Wu, D. S., Zhang, H., Chen, D. G., Gong, Y. J. & Kan, Z. G. (2004). Chem. Mater. 16, 4150-4159.]), KLuP2O7 (Yuan et al., 2007[Yuan, J. L., Zhang, H., Chen, H. H., Yang, X. X., Zhao, J. T. & Gu, M. (2007). J. Solid State Chem. 180, 3381-3387.]), KYbP2O7 (Horchani-Naifer & Férid, 2007[Horchani-Naifer, K. & Férid, M. (2007). Acta Cryst. E63, i33-i34.]), KErP2O7 (Chaker et al., 2016[Chaker, M., Horchani-Naifer, K. & Férid, M. (2016). J. Alloys Compd. 688, 104-110.]) and KYP2O7 (Yuan et al., 2007[Yuan, J. L., Zhang, H., Chen, H. H., Yang, X. X., Zhao, J. T. & Gu, M. (2007). J. Solid State Chem. 180, 3381-3387.]). Synthesis and lattice parameters of CeIII-doped polycrystalline KScP2O7 as well as the luminescence properties were reported recently by Zhang et al. (2016[Zhang, X. M., Zhang, H. Z., Chen, C., Kim, S. I. & Seo, H. J. (2016). Mater. Lett. 168, 207-209.]); however, no atomic coordinates were given.

In this contribution, we present the determination of the crystal structure of KScP2O7, not reported so far, and compare it with the series of other K-containing diphosphates.

2. Structural commentary

The title compound crystallizes in space group P21/c and is isostructural with KAlP2O7 (Ng & Calvo, 1973[Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.]). It contains one distinct K and Sc atom site, two distinct P atom and seven different oxygen-atom positions, all of them on general position 4 e. The basic building unit is a pyrophosphate group, which is formed by two distinct PO4 tetra­hedra (Fig. 1[link]). They share the O4 oxygen atom, and the bridging P1—O4 and P2—O4 bond lengths are distinctly longer [1.6128 (6) and 1.6076 (6) Å, respectively] than the three shorter terminal P—O bonds [ranging between 1.4944 (7) and 1.5207 (6) Å]. These latter distances are those to the oxygen atoms which are shared with the ScO6 octa­hedra. The tetra­hedral O—P—O angles involving the bridging oxygen atom O4 are generally smaller, those involving the terminal oxygen atoms distinctly larger than the ideal O—T—O angle of 109.5°. This – together with the difference in bond lengths between bridging and non-bridging T—O bonds – induces polyhedral distortion (especially for the tetra­hedral angle variance, TAV), which is distinctly larger for the P1 tetra­hedron. Likewise, the average bond length is slightly larger for the P1O4 tetra­hedron than for the P2O4 tetra­hedron (Table 1[link]). When comparing average bond lengths and polyhedral distortion parameters of the series of KMIIIP2O7 structures (M = Al to Y), no clear variations with the ionic radius of the M cations can be found from the available data for tetra­hedral structure units and distortion parameters, and they remain almost constant. The parameters for KScP2O7 fit well into the data of the other KMIIIP2O7 structures. The tetra­hedral bridging angle P1—O4—P2 amounts to 125.80 (5)° and is distinctly larger than that of KAlP2O7 [123.2 (11)°]. On the other hand, here a clear trend of increasing bridging angle with increasing size of the M cation is evident, i.e. the pyrophosphate group is stretched to account for the increase in size of the M cations (Table 1[link]).

Table 1
Selected structural and distortional parameters (Å, °) of KMIIIP2O7 compounds

Vol. = polyhedral volume (Å3), DI = distortion index, ECoN = effective coordination number, OQE = octa­hedral quadratic elongation, OAV = octa­hedral angle variance (°2), TQE = tetra­hedral quadratic elongation, TAV = tetra­hedral angle variance (°2). All calculations were performed using VESTA (Momma & Izumi 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]; for the mathematical meaning see the VESTA Handbook); ionic radii were taken from Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

M Al Cr Ga Fea Feb V Ti Mo Sc In Lu Yb Er Y
ionic radius 0.536 0.615 0.62 0.645 0.645 0.64 0.67 0.69 0.745 0.8 0.861 0.868 0.89 0.9
<K—O> 2.949 2.975 2.982 3.017 2.993 2.998 3.029 3.029 3.072 3.056 3.118 3.130 3.119 3.150
Vol. 44.03 45.21 45.23 50.08 45.73 46.03 47.21 47.63 49.40 48.45 52.04 52.11 52.09 53.25
DI 0.0442 0.0519 0.0484 0.0484 0.0535 0.0560 0.0596 0.0636 0.0620 0.0641 0.0695 0.0735 0.0813 0.0774
ECoN 8.84 8.38 8.54 8.58 8.29 8.22 7.89 7.51 7.66 7.29 7.09 6.63 6.80 6.40
                             
<M—O> 1.889 1.973 1.964 2.021 1.991 2.000 2.036 2.091 2.085 2.124 2.199 2.207 2.301 2.266
Vol. 8.95 10.20 10.06 10.97 10.46 10.63 11.19 12.10 12.02 12.68 14.05 14.19 15.86 15.38
DI 0.0102 0.0091 0.0076 0.0313 0.0106 0.0154 0.0220 0.0086 0.0100 0.0073 0.0139 0.0116 0.0266 0.0074
OQE 1.0025 1.0031 1.0033 1.0032 1.0036 1.0036 1.0048 1.0045 1.0040 1.0047 1.0068 1.0070 1.0170 1.0060
OAV 7.97 10.31 11.42 6.47 11.79 10.66 12.98 15.40 13.52 16.38 22.62 23.79 54.07 20.97
ECoN 5.96 5.97 5.98 5.73 5.96 5.92 5.85 5.97 5.96 5.99 5.95 5.95 5.75 5.98
                             
<P1—O> 1.536 1.542 1.540 1.537 1.537 1.540 1.540 1.536 1.537 1.538 1.545 1.531 1.494 1.518
Vol. 1.85 1.87 1.86 1.85 1.85 1.86 1.87 1.85 1.86 1.85 1.87 1.83 1.68 1.78
DI 0.0240 0.0241 0.0240 0.0124 0.0237 0.0245 0.0234 0.0256 0.0245 0.0281 0.0329 0.0264 0.0584 0.0326
TQE 1.0049 1.0053 1.0049 1.0042 1.0048 1.0047 1.0037 1.0052 1.0043 1.0059 1.0080 1.0043 1.0179 1.0074
TAV 19.55 21.29 19.79 17.39 18.95 18.34 14.44 20.41 16.80 22.82 27.35 16.12 37.83 24.70
ECoN 3.89 3.89 3.88 3.97 3.89 3.89 3.90 3.88 3.89 3.85 3.77 3.87 3.14 3.77
                             
<P2—O> 1.531 1.535 1.535 1.530 1.531 1.535 1.536 1.534 1.535 1.530 1.546 1.535 1.509 1.529
Vol. 1.83 1.85 1.85 1.84 1.84 1.85 1.85 1.85 1.85 1.83 1.88 1.85 1.72 1.83
DI 0.0241 0.0242 0.0260 0.0088 0.0241 0.0227 0.0247 0.0231 0.0236 0.0272 0.0470 0.0237 0.0400 0.0351
TQE 1.0034 1.0032 1.0035 1.0011 1.0030 1.0026 1.0027 1.0027 1.0027 1.0034 1.0058 1.0024 1.0206 1.0038
TAV 12.54 11.68 12.48 4.49 10.67 9.18 9.12 9.60 9.48 10.99 9.51 7.94 71.43 4.61
ECoN 3.87 3.87 3.86 3.98 3.88 3.89 3.88 3.88 3.89 3.80 3.61 3.89 3.57 3.71
                             
P1—O4—P2 123.18 (11) 123.68 (10) 123.8 (2) n.d. 124.32 (10) 124.24 125.0 (2) 124.97 (15) 125.80 (5) 125.6 (5) 123.8 (9) 127.5 (3) 123.72 (7) 127.4 (6)
Notes: (a) data from Riou et al. (1988[Riou, D., Labbe, P. & Goreaud, M. (1988). Eur. J. Solid State Inorg. Chem. 25, 215-229.]); (b) data from Genkin & Timofeeva (1989[Genkin, E. A. & Timofeeva, V. A. (1989). J. Struct. Chem. 30, 149-151.]).
[Figure 1]
Figure 1
The principal building unit of KScP2O7 shown with displacement ellipsoids at the 95% probability level. [Symmetry codes: (i) x, [{1\over 2}] − y, [{1\over 2}] + z; (ii) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (iii) x, [{1\over 2}] − y, −[{1\over 2}] + z; (iv) 2 − x, −[{1\over 2}] + y, [{3\over 2}] − z].

The terminal oxygen atoms of the pyrophosphate group share their corners with five neighbouring ScO6 octa­hedra. Following Leclaire et al. (1989[Leclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1989). J. Solid State Chem. 78, 220-226.]), two phosphate tetra­hedra and one octa­hedron form the basic {ScP2O11}9– units (cf. Fig. 1[link]), which are connected with units of the same kind via corner-sharing to make up a sheet parallel to (001), as depicted in Fig. 2[link]. These layers are stacked along [001] in such a way that a ScO6 octa­hedron of one layer shares its O3iii and O6i corners (symmetry codes refer to Fig. 1[link]) with one PO4 tetra­hedron each of the layer below and above.

[Figure 2]
Figure 2
(a) Layer of laterally inter­connected {ScP2O11}9− units, forming a layer parallel to (001), the KI cations are hosted in the channels extending along [001]; (b) the three-dimensional framework structure of KScP2O7, viewed along [010].

Generally, all corners of the octa­hedron are shared with neighbouring PO4 tetra­hedra, whereby all oxygen atoms except O4 directly connect the octa­hedron with a pyrophos­phate P2O7 group, and the O2ii and O5iv oxygen atoms join the octa­hedron with two PO4 tetra­hedra within the above-mentioned layer parallel to (001). Additionally, the O1, O5iv and O7 oxygen atoms (Fig. 1[link]) are also bonded to one KI cation each. The average Sc—O bond length is 2.085 Å while individual bond lengths range between 2.0736 (7) and 2.1122 (6) Å with one shorter bond (Sc—O6i) of 2.0346 (7) Å. A similar behaviour with one significantly shorter M—O bond is also observed in other KMIIIP2O7 compounds and seems to be a more general feature. The Sc—O6i and the Sc—O3iii bonds, which point towards [001] and connect different (001) layers, both are the shortest within the ScO6 octa­hedron. Assuming that these two bonds are those to the axial oxygen atoms of the octa­hedron, the coordination polyhedron appears to be slightly compressed. Also, Ng & Calvo (1973[Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.]) noted for KAlP2O7 that the axial bonds are considerably shorter that the equatorial ones within the (001) layer and – more generally speaking – this is also found in other KMIIIP2O7 compounds. The ScO6 octa­hedron in the title compound is only slightly distorted in terms of bond lengths and bond-angle variance (Table 1[link]). It is worth noting that KAlP2O7 shows the most regular octa­hedral coordination of all KMIIIP2O7 structures compared here, and the distortion increases with increasing size of the octa­hedral cation as depicted in Fig. 3[link]a. The average <M—O> bond lengths also scale well with the ionic radius of the M site cation and are positively correlated (Fig. 3[link]b).

[Figure 3]
Figure 3
Variation of the octa­hedral angle variance (OAV) (a) and the average MIII—O bond lengths (b) as a function of the ionic radius of the M site cation across the series of KMIIIP2O7 compounds (M = Al to Y).

Large hepta­gonal cavities are formed in the skeleton of octa­hedral and tetra­hedral units that are made up from four tetra­hedrally and two octa­hedrally coordinated sites within the (001) layer. The stacking of the layers leads to channels running parallel to [001] where the potassium cations are hosted. They are tenfold coordinated with K—O bond lengths ranging between 2.7837 (7) Å and 3.3265 (9) Å, the average K—O bond length being 3.072 Å. As for <M—O>, the average K—O bond length also increases with increasing size of the M site cation, i.e. the channel size increases also.

Using bond-valence energy landscape map (BVEL) calculations, an estimation of possible diffusion pathways of alkali ions in a compound can be facilitated. Using the program SoftBV (Chen & Adams, 2017[Chen, H. & Adams, S. (2017). IUCrJ, 4, 614-625.]; Chen et al., 2019[Chen, H., Wong, L. L. & Adams, S. (2019). Acta Cryst. B75, 18-33.]) such calculations were performed on KScP2O7 and reveal two energy minima. The lowest lying minimum is indeed occupied by the KI cation, a second one is present at x, y, z = 0.271, 0.317, 0.438 (inter­stitial i1) and is unoccupied. A one-dimensional diffusion pathway is evident (Fig. 4[link]), involving the i1 position, and is oriented parallel to [001]. An estimated activation energy of ∼0.3 eV would be needed to move a potassium ion from the regular K site to the inter­stitial i1 site; to move it from i1 to the next K1 site needs ∼1.3 eV. Inter­estingly, the percolation energy in e.g. FeIII, MoIII and InIII compounds of the KMIIIP2O7 series is distinctly higher with around 1.8 eV as estimated from BVEL maps. Generally, a partial substitution of trivalent cations by divalent ones might be of inter­est to increase the content of alkaline ions (here KI), which most probably could be found on the inter­stitial i1 site.

[Figure 4]
Figure 4
Bond-valence energy landscape map at levels of 1.5 eV above the minimum (yellow) viewed along [100]; the crystal structure of KScP2O7 is overlayed, the K sites lie within channels.

3. Synthesis and crystallization

The title compound was grown during attempts to synthesize NaSICON-type K3Sc2(PO4)3 adopting a flux growth protocol set up by Sljukic et al. (1967[Sljukic, M., Matkovic, B., Prodic, B. & Scavnicar, S. (1967). Croat. Chem. Acta, 39, 145-.]). Sc2O3 and KH2PO4 were mixed in stoichiometric qu­anti­ties (molar ratio 2:3) and B2O3 was added as a flux with a sixfold qu­antity of that of Sc2O3. The complete mixture was transferred to a platinum crucible, covered with a lid, and heated in a chamber furnace to 1473 K, held at this temperature for 24 h and then slowly cooled down to 1073 K at a rate of 3 K h−1. Between 1073 K and room temperature the cooling rate was 50 K h−1. The synthesis batch was immersed in hot water to dissolve the B2O3 and remaining K-phosphates. The residual contained single-phase KScP2O7 as checked by powder X-ray diffraction and showed single crystals of irregular to needle-like form with well-developed faces. The crystals are colorless and highly transparent with sizes up to 140 µm in lengths and ∼80 µm in diameter.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula KScP2O7
Mr 258
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.4634 (1), 10.3902 (1), 8.3747 (1)
β (°) 106.49
V3) 622.72 (1)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.35
Crystal size (mm) 0.16 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.38, 0.52
No. of measured, independent and observed [I > 2σ(I)] reflections 20981, 2985, 2850
Rint 0.021
(sin θ/λ)max−1) 0.837
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.049, 1.05
No. of reflections 2985
No. of parameters 101
Δρmax, Δρmin (e Å−3) 0.79, −0.66
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), ORTEP for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR2014 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006), ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Potassium scandium diphosphate top
Crystal data top
KScP2O7F(000) = 504
Mr = 258Dx = 2.752 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20981 reflections
a = 7.4634 (1) Åθ = 2.9–36.5°
b = 10.3902 (1) ŵ = 2.35 mm1
c = 8.3747 (1) ÅT = 293 K
β = 106.49°Prismatic, colorless
V = 622.72 (1) Å30.16 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
rotation, ω–scans at 4 different φ positionsθmax = 36.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.38, Tmax = 0.52k = 1717
20981 measured reflectionsl = 1313
2985 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.274P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.79 e Å3
2985 reflectionsΔρmin = 0.66 e Å3
101 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0429 (15)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.82123 (3)0.67829 (3)0.94124 (3)0.02342 (6)
Sc10.76534 (2)0.09952 (2)0.74255 (2)0.00607 (4)
P10.55749 (3)0.36164 (2)0.80923 (2)0.00673 (5)
P20.86703 (3)0.40292 (2)0.67637 (3)0.00681 (5)
O10.54575 (9)0.22058 (6)0.76034 (9)0.01132 (11)
O20.36433 (9)0.42041 (6)0.76741 (9)0.01313 (11)
O30.67337 (11)0.38889 (7)0.98492 (9)0.01712 (13)
O40.66159 (9)0.43502 (6)0.69104 (8)0.01167 (11)
O50.99440 (9)0.50481 (6)0.77947 (8)0.01003 (10)
O60.85616 (11)0.40831 (7)0.49554 (8)0.01632 (13)
O70.92157 (9)0.27011 (6)0.75056 (8)0.01088 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.02013 (10)0.02973 (12)0.01843 (10)0.00408 (8)0.00226 (7)0.00089 (8)
Sc10.00647 (6)0.00539 (6)0.00639 (6)0.00013 (4)0.00190 (4)0.00015 (4)
P10.00662 (8)0.00633 (8)0.00731 (8)0.00074 (6)0.00208 (6)0.00046 (6)
P20.00755 (8)0.00703 (8)0.00616 (8)0.00186 (6)0.00246 (6)0.00017 (5)
O10.0091 (2)0.0070 (2)0.0185 (3)0.00026 (18)0.0050 (2)0.00208 (19)
O20.0086 (2)0.0100 (2)0.0214 (3)0.00284 (19)0.0052 (2)0.0002 (2)
O30.0209 (3)0.0207 (3)0.0073 (3)0.0010 (3)0.0001 (2)0.0025 (2)
O40.0086 (2)0.0124 (2)0.0150 (3)0.00151 (19)0.0050 (2)0.0054 (2)
O50.0103 (2)0.0097 (2)0.0107 (2)0.00398 (18)0.00393 (19)0.00307 (18)
O60.0199 (3)0.0229 (3)0.0069 (2)0.0082 (2)0.0049 (2)0.0016 (2)
O70.0098 (2)0.0069 (2)0.0159 (3)0.00059 (18)0.0035 (2)0.00091 (19)
Geometric parameters (Å, º) top
K1—O52.7837 (7)P1—O31.5068 (7)
K1—O7i2.7966 (7)P1—O21.5123 (7)
K1—O1ii2.8141 (7)P1—O11.5176 (6)
K1—O7iii2.9876 (7)P1—O41.6128 (6)
K1—O5i3.0259 (7)P1—K1vii3.5569 (3)
K1—O2ii3.1505 (7)P2—O61.4944 (7)
K1—O33.2592 (8)P2—O51.5178 (6)
K1—O43.2835 (7)P2—O71.5207 (6)
K1—O2iv3.2927 (7)P2—O41.6076 (6)
K1—O6iii3.3265 (9)P2—K1i3.4856 (3)
K1—P2i3.4856 (3)P2—K1viii3.6237 (3)
K1—P1ii3.5570 (3)O1—K1vii2.8141 (7)
Sc1—O6v2.0346 (7)O2—Sc1ii2.0883 (6)
Sc1—O3vi2.0736 (7)O2—K1vii3.1505 (7)
Sc1—O2vii2.0884 (6)O2—K1iv3.2927 (7)
Sc1—O5viii2.0989 (6)O3—Sc1v2.0736 (7)
Sc1—O12.1045 (6)O5—Sc1iii2.0990 (6)
Sc1—O72.1122 (6)O5—K1i3.0259 (7)
Sc1—K1viii3.9059 (3)O6—Sc1vi2.0346 (7)
Sc1—K1vi3.9333 (3)O6—K1viii3.3265 (9)
Sc1—K1i4.1501 (3)O7—K1i2.7966 (7)
Sc1—K1vii4.2870 (3)O7—K1viii2.9875 (7)
O5—K1—O7i106.35 (2)O2vii—Sc1—K1vi56.82 (2)
O5—K1—O1ii108.45 (2)O5viii—Sc1—K1vi49.513 (18)
O7i—K1—O1ii145.07 (2)O1—Sc1—K1vi135.284 (19)
O5—K1—O7iii59.145 (18)O7—Sc1—K1vi118.557 (19)
O7i—K1—O7iii93.300 (18)K1viii—Sc1—K1vi70.210 (7)
O1ii—K1—O7iii106.983 (19)O6v—Sc1—K1i52.43 (2)
O5—K1—O5i78.29 (2)O3vi—Sc1—K1i126.74 (2)
O7i—K1—O5i50.565 (17)O2vii—Sc1—K1i140.66 (2)
O1ii—K1—O5i135.51 (2)O5viii—Sc1—K1i79.508 (19)
O7iii—K1—O5i113.314 (18)O1—Sc1—K1i94.313 (18)
O5—K1—O2ii116.03 (2)O7—Sc1—K1i37.741 (18)
O7i—K1—O2ii115.93 (2)K1viii—Sc1—K1i66.889 (5)
O1ii—K1—O2ii48.919 (17)K1vi—Sc1—K1i128.501 (4)
O7iii—K1—O2ii72.254 (18)O6v—Sc1—K1vii112.70 (2)
O5i—K1—O2ii164.277 (19)O3vi—Sc1—K1vii67.21 (2)
O5—K1—O371.10 (2)O2vii—Sc1—K1vii75.012 (19)
O7i—K1—O3103.820 (19)O5viii—Sc1—K1vii150.317 (19)
O1ii—K1—O384.749 (19)O1—Sc1—K1vii34.402 (18)
O7iii—K1—O3130.140 (19)O7—Sc1—K1vii110.455 (18)
O5i—K1—O355.064 (17)K1viii—Sc1—K1vii131.220 (7)
O2ii—K1—O3133.582 (19)K1vi—Sc1—K1vii101.144 (6)
O5—K1—O447.582 (17)K1i—Sc1—K1vii128.415 (5)
O7i—K1—O4140.014 (19)O3—P1—O2113.29 (4)
O1ii—K1—O467.811 (18)O3—P1—O1114.72 (4)
O7iii—K1—O494.293 (17)O2—P1—O1110.44 (4)
O5i—K1—O490.703 (17)O3—P1—O4105.51 (4)
O2ii—K1—O4103.768 (18)O2—P1—O4105.11 (4)
O3—K1—O444.629 (17)O1—P1—O4106.97 (4)
O5—K1—O2iv120.669 (19)O3—P1—K1vii144.71 (3)
O7i—K1—O2iv72.463 (19)O2—P1—K1vii62.23 (3)
O1ii—K1—O2iv87.172 (19)O1—P1—K1vii49.33 (3)
O7iii—K1—O2iv165.347 (19)O4—P1—K1vii109.38 (3)
O5i—K1—O2iv54.972 (17)O3—P1—K156.74 (3)
O2ii—K1—O2iv116.65 (2)O2—P1—K195.62 (3)
O3—K1—O2iv53.305 (18)O1—P1—K1153.20 (3)
O4—K1—O2iv94.610 (18)O4—P1—K158.24 (3)
O5—K1—O6iii97.331 (19)K1vii—P1—K1152.503 (8)
O7i—K1—O6iii55.891 (18)O6—P2—O5113.29 (4)
O1ii—K1—O6iii121.365 (19)O6—P2—O7112.29 (4)
O7iii—K1—O6iii46.342 (17)O5—P2—O7110.41 (4)
O5i—K1—O6iii100.309 (18)O6—P2—O4106.93 (4)
O2ii—K1—O6iii72.478 (18)O5—P2—O4105.59 (4)
O3—K1—O6iii153.88 (2)O7—P2—O4107.91 (3)
O4—K1—O6iii140.332 (18)O6—P2—K1i140.37 (3)
O2iv—K1—O6iii122.924 (18)O5—P2—K1i59.96 (3)
O5—K1—P2i90.537 (15)O7—P2—K1i51.21 (3)
O7i—K1—P2i25.078 (13)O4—P2—K1i112.48 (3)
O1ii—K1—P2i150.579 (16)O6—P2—K1viii66.61 (3)
O7iii—K1—P2i102.011 (14)O5—P2—K1viii104.90 (3)
O5i—K1—P2i25.736 (12)O7—P2—K1viii53.74 (3)
O2ii—K1—P2i140.943 (16)O4—P2—K1viii148.68 (3)
O3—K1—P2i80.358 (14)K1i—P2—K1viii77.363 (6)
O4—K1—P2i115.250 (14)O6—P2—K1126.27 (3)
O2iv—K1—P2i63.593 (13)O5—P2—K142.96 (2)
O6iii—K1—P2i76.323 (13)O7—P2—K1121.13 (3)
O5—K1—P1ii117.439 (16)O4—P2—K162.66 (3)
O7i—K1—P1ii131.596 (16)K1i—P2—K177.719 (8)
O1ii—K1—P1ii24.144 (13)K1viii—P2—K1146.911 (7)
O7iii—K1—P1ii92.076 (14)P1—O1—Sc1127.58 (4)
O5i—K1—P1ii154.610 (15)P1—O1—K1vii106.53 (3)
O2ii—K1—P1ii25.133 (12)Sc1—O1—K1vii120.60 (3)
O3—K1—P1ii108.821 (15)P1—O2—Sc1ii140.31 (4)
O4—K1—P1ii87.268 (13)P1—O2—K1vii92.64 (3)
O2iv—K1—P1ii99.950 (13)Sc1ii—O2—K1vii124.31 (3)
O6iii—K1—P1ii97.304 (14)P1—O2—K1iv106.05 (3)
P2i—K1—P1ii151.985 (9)Sc1ii—O2—K1iv91.12 (2)
O6v—Sc1—O3vi178.96 (3)K1vii—O2—K1iv87.202 (17)
O6v—Sc1—O2vii91.12 (3)P1—O3—Sc1v162.86 (5)
O3vi—Sc1—O2vii89.85 (3)P1—O3—K1100.52 (4)
O6v—Sc1—O5viii91.86 (3)Sc1v—O3—K192.33 (3)
O3vi—Sc1—O5viii88.54 (3)P2—O4—P1125.80 (4)
O2vii—Sc1—O5viii88.65 (3)P2—O4—K191.56 (3)
O6v—Sc1—O189.20 (3)P1—O4—K197.07 (3)
O3vi—Sc1—O190.26 (3)P2—O5—Sc1iii133.60 (4)
O2vii—Sc1—O1100.03 (3)P2—O5—K1115.23 (3)
O5viii—Sc1—O1171.24 (3)Sc1iii—O5—K1105.40 (2)
O6v—Sc1—O789.01 (3)P2—O5—K1i94.31 (3)
O3vi—Sc1—O790.06 (3)Sc1iii—O5—K1i98.65 (2)
O2vii—Sc1—O7173.98 (3)K1—O5—K1i101.71 (2)
O5viii—Sc1—O785.32 (2)P2—O6—Sc1vi163.73 (5)
O1—Sc1—O786.00 (2)P2—O6—K1viii89.04 (3)
O6v—Sc1—K1viii110.60 (2)Sc1vi—O6—K1viii98.58 (3)
O3vi—Sc1—K1viii69.08 (2)P2—O7—Sc1131.85 (4)
O2vii—Sc1—K1viii125.45 (2)P2—O7—K1i103.71 (3)
O5viii—Sc1—K1viii43.401 (17)Sc1—O7—K1i114.72 (3)
O1—Sc1—K1viii128.378 (19)P2—O7—K1viii102.03 (3)
O7—Sc1—K1viii49.150 (18)Sc1—O7—K1viii98.52 (2)
O6v—Sc1—K1vi125.03 (2)K1i—O7—K1viii100.37 (2)
O3vi—Sc1—K1vi55.89 (2)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x+1, y+1, z+2; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x+1, y1/2, z+3/2; (viii) x+2, y1/2, z+3/2.
Selected structural and distortional parameters of KMIIIP2O7 compounds top
Vol. = polyhedral volume, DI = distortion index, ECoN = effective coordination number, OQE = octahedral quadratic elongation, OAV = octahedral angle variance, TQE = tetrahedral quadratic elongation, TAV = tetrahedral angle variance. All calculations were performed using VESTA (Momma & Izumi 2011; for the mathematical meaning see the VESTA Handbook); ionic radii were taken from Shannon (1976).
MAlCrGaFeaFebVTiMoScInLuYbErY
ionic radius (Å)0.5360.6150.620.6450.6450.640.670.690.7450.80.8610.8680.890.9
<K—O> (Å)2.9492.9752.9823.0172.9932.9983.0293.0293.0723.0563.1183.1303.1193.150
Vol. (Å3)44.0345.2145.2350.0845.7346.0347.2147.6349.4048.4552.0452.1152.0953.25
DI0.04420.05190.04840.04840.05350.05600.05960.06360.06200.06410.06950.07350.08130.0774
ECoN8.848.388.548.588.298.227.897.517.667.297.096.636.806.40
<M—O> (Å)1.8891.9731.9642.0211.9912.0002.0362.0912.0852.1242.1992.2072.3012.266
Vol. (Å3)8.9510.2010.0610.9710.4610.6311.1912.1012.0212.6814.0514.1915.8615.38
DI0.01020.00910.00760.03130.01060.01540.02200.00860.01000.00730.01390.01160.02660.0074
OQE1.00251.00311.00331.00321.00361.00361.00481.00451.00401.00471.00681.00701.01701.0060
OAV (°2)7.9710.3111.426.4711.7910.6612.9815.4013.5216.3822.6223.7954.0720.97
ECoN5.965.975.985.735.965.925.855.975.965.995.955.955.755.98
<P1—O> (Å)1.5361.5421.5401.5371.5371.5401.5401.5361.5371.5381.5451.5311.4941.518
Vol. (Å3)1.851.871.861.851.851.861.871.851.861.851.871.831.681.78
DI0.02400.02410.02400.01240.02370.02450.02340.02560.02450.02810.03290.02640.05840.0326
TQE1.00491.00531.00491.00421.00481.00471.00371.00521.00431.00591.00801.00431.01791.0074
TAV (°2)19.5521.2919.7917.3918.9518.3414.4420.4116.8022.8227.3516.1237.8324.70
ECoN3.893.893.883.973.893.893.903.883.893.853.773.873.143.77
<P2—O> (Å)1.5311.5351.5351.5301.5311.5351.5361.5341.5351.5301.5461.5351.5091.529
Vol. (Å3)1.831.851.851.841.841.851.851.851.851.831.881.851.721.83
DI0.02410.02420.02600.00880.02410.02270.02470.02310.02360.02720.04700.02370.04000.0351
TQE1.00341.00321.00351.00111.00301.00261.00271.00271.00271.00341.00581.00241.02061.0038
TAV (°2)12.5411.6812.484.4910.679.189.129.609.4810.999.517.9471.434.61
ECoN3.873.873.863.983.883.893.883.883.893.803.613.893.573.71
P1—O4—P2 (°)123.18 (11)123.68 (10)123.8 (2)n.d.124.32 (10)124.24125.0 (2)124.97 (15)125.80 (5)125.6 (5)123.8 (9)127.5 (3)123.72 (7)127.4 (6)
Notes: (a )data from Riou et al. (1988); (b) data from Genkin & Timofeeva (1989).
 

References

First citationBenhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1991). Acta Cryst. C47, 424–425.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChaker, M., Horchani-Naifer, K. & Férid, M. (2016). J. Alloys Compd. 688, 104–110.  Web of Science CrossRef ICSD CAS Google Scholar
First citationChen, H. & Adams, S. (2017). IUCrJ, 4, 614–625.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationChen, H., Wong, L. L. & Adams, S. (2019). Acta Cryst. B75, 18–33.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChen, J. J., Wang, C. C. & Lii, K. H. (1989). Acta Cryst. C45, 673–675.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationClearfield, A. (1988). Chem. Rev. 88, 125–148.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGenkin, E. A. & Timofeeva, V. A. (1989). J. Struct. Chem. 30, 149–151.  CrossRef Web of Science Google Scholar
First citationGentil, S., Andreica, D., Lujan, M., Rivera, J. P., Kubel, F. & Schmid, H. (1997). Ferroelectrics, 204, 35–44.  Web of Science CrossRef ICSD CAS Google Scholar
First citationHagerman, M. E. & Poeppelmeier, K. R. (1995). Chem. Mater. 7, 602–621.  CrossRef CAS Web of Science Google Scholar
First citationHorchani-Naifer, K. & Férid, M. (2007). Acta Cryst. E63, i33–i34.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLadenstein, L., Lunghammer, S., Wang, E. Y., Miara, L. J., Wilkening, M. H. R., Redhammer, G. J. & Rettenwander, D. (2020). J. Phys. Energ. 2, 035003.  CrossRef Google Scholar
First citationLeclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1989). J. Solid State Chem. 78, 220–226.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNg, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613–2620.  CrossRef ICSD CAS Web of Science Google Scholar
First citationRedhammer, G. J., Tippelt, G., Stahl, Q., Benisek, A. & Rettenwander, D. (2020). Acta Cryst. B76, submitted [Co-editor code RM5035].  Google Scholar
First citationRettenwander, D., Redhammer, G. J., Guin, M., Benisek, A., Krüger, H., Guillon, O., Wilkening, M., Tietz, F. & Fleig, J. (2018). Chem. Mater. 30, 1776–1781.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRiou, D., Labbe, P. & Goreaud, M. (1988). Eur. J. Solid State Inorg. Chem. 25, 215–229.  CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSljukic, M., Matkovic, B., Prodic, B. & Scavnicar, S. (1967). Croat. Chem. Acta, 39, 145–.  CAS Google Scholar
First citationVītiņš, G., Kaņepe, Z., Vītiņš, A., Ronis, J., Dindūne, A. & Lūsis, A. (2000). J. Solid State Electrochem. 4, 146–152.  Web of Science CrossRef ICSD CAS Google Scholar
First citationYuan, J. L., Zhang, H., Chen, H. H., Yang, X. X., Zhao, J. T. & Gu, M. (2007). J. Solid State Chem. 180, 3381–3387.  Web of Science CrossRef ICSD CAS Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZatovsky, I. V., Slobodyanik, N. S., Kowalski, A. & Slyva, T. Yu. (2000). Dopov. Nats. Akad. Nauk Ukr. pp. 151–155.  Google Scholar
First citationZhang, X. M., Zhang, H. Z., Chen, C., Kim, S. I. & Seo, H. J. (2016). Mater. Lett. 168, 207–209.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Y. C., Cheng, W. D., Wu, D. S., Zhang, H., Chen, D. G., Gong, Y. J. & Kan, Z. G. (2004). Chem. Mater. 16, 4150–4159.  Web of Science CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds