research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 1,7-di­methyl-5a,6,11a,12-tetra­hydro­benzo[b]benzo[5,6][1,4]oxazino[2,3-e][1,4]oxazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs, University, Samsun, 55200, Turkey, and cDepartment of Computer and Electronic Engineering Technology, Sana'a Community, College, Sana'a, Yemen
*Correspondence e-mail: 'necmisamsun@gmail.com', eiad.saif@scc.edu.ye

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 1 July 2020; accepted 2 August 2020; online 18 August 2020)

Mol­ecules of the title compound, C16H16N2O2, occupy special positions on the twofold rotation axes. The heterocyclic ring adopts a slightly twisted envelope conformation with one of the two junction carbon atoms as the flap. The mean planes through the two halves of the mol­ecule form a dihedral angle of 72.01 (2)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O and N—H⋯C contacts into layers parallel to (100). H⋯H contacts make the largest contribution to the Hirshfeld surface (58.9%).

1. Chemical context

The title oxazine derivative contains two six-membered heterocyclic rings located between two benzene rings. Oxazine-derived compounds are used in the synthesis of detergents, corrosion inhibitors and industrial dyes (Adib et al., 2006[Adib, M., Sheibani, E., Mostofi, M., Ghanbary, K. & Bijanzadeh, H. R. (2006). Tetrahedron, 62, 3435-3438.]). This class of mol­ecules has been studied extensively as they exhibit anti­tumor (Sriharsha et al., 2006[Sriharsha, S. & Shashikanth, S. (2006). Heterocycl. Commun. 12, 213-218.]), anti­bacterial and anti­fungal (Belz et al., 2013[Belz, T., Ihmaid, S., Al-Rawi, J. & Petrovski, S. (2013). Int. J. Med. Chem. Article ID 436397.]) activity. Oxazinooxazines are important heterocyclic precursors in the construction of heteropropellanes with applications in material sciences and medicinal chemistry (Dilmaç et al., 2017[Dilmaç, M., Spuling, E., de Meijere, A. & Bräse, S. (2017). Angew. Chem. Int. Ed. 56, 5684-5718.]). Such heterocycles can be synthesized by several methods (Konstanti­nova et al., 2020[Konstantinova, L. S., Tolmachev, M. A., Popov, V. V. & Rakitin, O. A. (2020). Molbank, Article M1149.]), with the most direct route being the condensation of amino alcohols with either aldehydes or ketones (Hajji et al., 2003[Hajji, C., Zaballos-García, E. & Sepúlveda-Arques, J. (2003). Synth. Commun. 33, 4347-4354.]). As the amino and hy­droxy groups are adjacent, 2-amino­phenol readily forms heterocycles. An inter­esting feature of the reaction is the stereo-selective transformation of glyoxal. We report herein the crystal structure and Hirshfeld surface analysis for a new oxazine derivative, 1,7-dimethyl-5a,6,11a,12-tetra­hydro­benzo[b]benzo[5,6][1,4]oxazino[2,3-e][1,4]oxazine.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (I)[link] is shown in Fig. 1[link]. The mol­ecules occupy special positions on the twofold rotation axes. The heterocyclic ring adopts a slightly twisted envelope conformation with the C8* [symmetry code: (*) −x − 1, y, −z − [{1\over 2}]] atom as the flap. Except for this atom, the symmetry-independent part of the mol­ecule (C2–C8/O1/N1) is nearly planar, the largest separation from the mean plane being 0.1267 (10) Å for O1. The mean planes of the two halves of the mol­ecule form a dihedral angle of 72.01 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. Starred atoms are generated by the symmetry operation −x − 1, y, −z − [{1\over 2}].

3. Supra­molecular features

Surprisingly, no inter­molecular N—H⋯O contacts are observed in the title structure. Instead, C—H⋯O and N—H⋯C contacts are formed, the latter really being of the N—H⋯π type. Pairs of C—H⋯O contacts link the mol­ecules into zigzag chains along [001] (Table 1[link], Fig. 2[link]). Pairs of N—H⋯O contacts also form zigzag chains of mol­ecules along [001] (Table 1[link], Fig. 3[link]). As a result, layers parallel to (100) are formed (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.59 3.513 (2) 172
N1—H1⋯C5ii 0.86 2.64 3.375 (2) 144
Symmetry codes: (i) -x-1, -y+2, -z; (ii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Chains of the title mol­ecules linked by pairs of C—H⋯O inter­actions.
[Figure 3]
Figure 3
Chains of mol­ecules linked by pairs of N—H⋯C inter­actions.
[Figure 4]
Figure 4
Layer of the title mol­ecules linked by C—H⋯O (red) and N—H⋯C (blue) inter­actions.

4. Hirshfeld surface

The Hirshfeld surfaces were generated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.]). The dnorm mapping was performed in the range of −0.186 to 1.019 arbitrary units. Red spots on the dnorm surface (Fig. 5[link]) indicate regions of C—H⋯O inter­actions. However, the N—H⋯C contacts do not cause red spots on the Hirshfeld surface. Other red spots are due to the H⋯H inter­actions, as can be understood from the fingerprint plot. The characteristic flat surface patches caused by planar stacking are shown in Fig. 6[link]a. The shape-index map (Fig. 6[link]b) does not contain red and blue triangles related to ππ inter­actions. Fig. 6[link]c,d show the di and de surfaces, respectively. Fig. 7[link] presents the two-dimensional fingerprint plot for the title mol­ecule and those delineated into the specific types of inter­actions. The H⋯H contacts make the largest contribution to the Hirshfeld surface (58.9%). The H⋯C/C⋯H inter­actions are seen at the edges of two-dimensional fingerprint drawings, with a general contribution of 24.6%.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface for the title mol­ecule plotted over dnorm.
[Figure 6]
Figure 6
The Hirshfeld surfaces of the title mol­ecule mapped over (a) curvedness, (b) shape-index, (c) di and (d) de.
[Figure 7]
Figure 7
Two-dimensional fingerprint plot for the title mol­ecule (a) and those delineated into the specific types of inter­actions (b–f).

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 1-benzyl-3,4-di­hydro­quinoxalin-2(1H)-one as the main skeleton revealed the presence of four structures similar to the title compound. These are 2,8-di-t-butyl-5a,6,11a,12-tetra­hydro­[1,4]benzoxazino[3,672-b][1,4]benzoxazine (MOYJOC; Niklas et al., 2019[Niklas, J. E., Hunter, H. M. & Gorden, A. E. V. (2019). Inorg. Chem. 58, 15088-15100.]), 5a,6,11a,12-tetra­hydro­[1,4]benz­oxa­zino[3,2-b][1,4]benzoxazine (FIGVOG; Tauer et al., 1986[Tauer, E., Grellmann, K. H., Kaufmann, E. & Noltemeyer, M. (1986). Chem. Ber. 119, 3316-3325.]), 5a,6,11a,12-tetra­hydro-5a,11a-dimethyl-1,4-benzoxazino[3,2-b][1,4]benzoxazine (ABEQAA; Hai-Yan et al., 2004[Hai-Yan, Z., Xiao-Hang, Q. & Pan-Wen, S. (2004). Acta Cryst. E60, o1619-o1621.]) and N,N′-di-5a,6,11a,12-tetra­hydro­[1,4]benzoxazino[3,2]benzoxazine (BAJNIJ; Farfán et al., 1992[Farfán, N., Santillan, R. L., Castillo, D., Cruz, R., Joseph-Nathan, P. & Daran, J. (1992). Can. J. Chem. 70, 2764-2770.]). In the structures MOYJOC and FIGVOG, the dihedral angles between the two approximately planar halves of the mol­ecule [67.11 (3) and 64.28 (2)°, respectively] are smaller than in (I)[link]. In MOYJOC, both NH groups are involved in hydrogen bonds with the heterocyclic oxygen atoms. In FIGVOG, only one NH group takes part in such hydrogen bonding, while the other makes an N—H⋯C contact similar to that observed in (I)[link]. In ABEQAA, the hydrogen atoms at the bridge C atoms (C8 and C8* in the title mol­ecule) are replaced by methyl groups. As a result, the dihedral angle increases to 81.70 (2)°. In this structure, both NH groups form weak inter­molecular N—H⋯O hydrogen bonds.

6. Synthesis and crystallization

To a solution of 2-amino-3-methyl­phenol (21.8 mg, 0.177 mmol) in ethanol (20 ml), was added glyoxal (40 wt % solution in H2O) (12.8 mg, 0.089 mmol) dissolved in ethanol (20 ml) and the mixture was refluxed for 12 h. The orange product obtained was washed with ether and recrystallized from ethanol at room temperature (m.p. 472-475 K, yield 67%).

[Scheme 2]

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were constrained to ride on their parent atoms with C—H = 0.93, 0.96 and 0.98 Å for aromatic, methyl and methine H atoms, respectively, and with N—H = 0.86 Å. Isotropic displacement parameters of these atoms were constrained to 1.5Ueq(C) for the methyl group and to 1.2Ueq(C,N) for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C16H16N2O2
Mr 268.31
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 24.798 (3), 4.7133 (4), 11.5330 (14)
β (°) 106.751 (9)
V3) 1290.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.78 × 0.42 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.941, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 5580, 2194, 1024
Rint 0.059
(sin θ/λ)max−1) 0.745
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 0.88
No. of reflections 2194
No. of parameters 92
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

1,7-Dimethyl-5a,6,11a,12-tetrahydrobenzo[b]benzo[5,6][1,4]oxazino[2,3-e][1,4]oxazine top
Crystal data top
C16H16N2O2Dx = 1.381 Mg m3
Mr = 268.31Melting point = 472–475 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.798 (3) ÅCell parameters from 3858 reflections
b = 4.7133 (4) Åθ = 1.8–32.0°
c = 11.5330 (14) ŵ = 0.09 mm1
β = 106.751 (9)°T = 296 K
V = 1290.8 (3) Å3Plate, orange
Z = 40.78 × 0.42 × 0.13 mm
F(000) = 568
Data collection top
Stoe IPDS 2
diffractometer
2194 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus'1024 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.059
Detector resolution: 6.67 pixels mm-1θmax = 32.0°, θmin = 3.4°
rotation method scansh = 3536
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 76
Tmin = 0.941, Tmax = 0.989l = 1616
5580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50672 (4)0.7122 (2)0.13429 (9)0.0582 (3)
N10.57174 (5)0.4629 (3)0.34733 (13)0.0622 (4)
H10.5916480.3698760.4090120.075*
C70.59760 (6)0.6173 (3)0.27650 (13)0.0484 (3)
C20.65643 (6)0.6435 (3)0.30692 (14)0.0531 (4)
C60.56462 (6)0.7472 (3)0.17100 (13)0.0497 (3)
C80.51247 (6)0.4590 (3)0.31772 (14)0.0545 (4)
H80.5000900.2896960.3522750.065*
C30.67936 (7)0.8104 (4)0.23575 (17)0.0657 (5)
H30.7182960.8280250.2551260.079*
C50.58834 (7)0.9190 (3)0.10285 (15)0.0599 (4)
H50.5657541.0117060.0349700.072*
C10.69244 (7)0.4830 (4)0.41332 (17)0.0675 (5)
H1A0.6827040.5368530.4850130.101*
H1B0.7313570.5261070.4233920.101*
H1C0.6863340.2830700.3997200.101*
C40.64605 (8)0.9525 (4)0.13620 (18)0.0709 (5)
H40.6625011.0709050.0915130.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0456 (6)0.0679 (7)0.0562 (6)0.0052 (4)0.0068 (5)0.0074 (5)
N10.0411 (7)0.0735 (8)0.0664 (8)0.0036 (6)0.0067 (6)0.0223 (7)
C70.0436 (7)0.0457 (7)0.0545 (8)0.0027 (6)0.0122 (6)0.0014 (6)
C20.0435 (7)0.0526 (8)0.0612 (9)0.0031 (6)0.0120 (7)0.0087 (7)
C60.0449 (7)0.0509 (7)0.0534 (8)0.0046 (6)0.0146 (6)0.0049 (7)
C80.0429 (7)0.0554 (8)0.0621 (9)0.0023 (6)0.0101 (7)0.0047 (7)
C30.0487 (9)0.0707 (10)0.0806 (12)0.0037 (8)0.0234 (9)0.0044 (9)
C50.0648 (10)0.0610 (9)0.0565 (9)0.0076 (7)0.0214 (7)0.0040 (7)
C10.0450 (8)0.0771 (10)0.0726 (11)0.0070 (7)0.0044 (7)0.0036 (9)
C40.0669 (11)0.0733 (11)0.0811 (12)0.0031 (8)0.0349 (10)0.0104 (10)
Geometric parameters (Å, º) top
O1—C61.3846 (17)C8—C8i1.505 (3)
O1—C8i1.4521 (18)C8—H80.9800
N1—C71.3822 (19)C3—C41.379 (3)
N1—C81.4099 (19)C3—H30.9300
N1—H10.8600C5—C41.380 (2)
C7—C61.397 (2)C5—H50.9300
C7—C21.4041 (19)C1—H1A0.9600
C2—C31.373 (2)C1—H1B0.9600
C2—C11.498 (2)C1—H1C0.9600
C6—C51.373 (2)C4—H40.9300
C6—O1—C8i113.95 (11)O1i—C8—H8109.8
C7—N1—C8119.51 (12)C8i—C8—H8109.8
C7—N1—H1120.2C2—C3—C4121.60 (15)
C8—N1—H1120.2C2—C3—H3119.2
N1—C7—C6119.38 (12)C4—C3—H3119.2
N1—C7—C2121.63 (14)C6—C5—C4119.27 (16)
C6—C7—C2118.98 (14)C6—C5—H5120.4
C3—C2—C7118.72 (15)C4—C5—H5120.4
C3—C2—C1121.82 (14)C2—C1—H1A109.5
C7—C2—C1119.43 (15)C2—C1—H1B109.5
C5—C6—O1118.20 (13)H1A—C1—H1B109.5
C5—C6—C7121.14 (13)C2—C1—H1C109.5
O1—C6—C7120.64 (12)H1A—C1—H1C109.5
N1—C8—O1i109.28 (12)H1B—C1—H1C109.5
N1—C8—C8i109.82 (15)C3—C4—C5120.05 (16)
O1i—C8—C8i108.29 (9)C3—C4—H4120.0
N1—C8—H8109.8C5—C4—H4120.0
C8—N1—C7—C65.4 (2)N1—C7—C6—O12.8 (2)
C8—N1—C7—C2175.60 (14)C2—C7—C6—O1176.19 (13)
N1—C7—C2—C3177.10 (14)C7—N1—C8—O1i82.21 (17)
C6—C7—C2—C33.9 (2)C7—N1—C8—C8i36.44 (15)
N1—C7—C2—C14.7 (2)C7—C2—C3—C40.3 (2)
C6—C7—C2—C1174.29 (14)C1—C2—C3—C4178.44 (16)
C8i—O1—C6—C5159.07 (13)O1—C6—C5—C4178.67 (14)
C8i—O1—C6—C722.75 (17)C7—C6—C5—C43.2 (2)
N1—C7—C6—C5175.29 (14)C2—C3—C4—C52.9 (3)
C2—C7—C6—C55.7 (2)C6—C5—C4—C31.1 (2)
Symmetry code: (i) x1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.932.593.513 (2)172
N1—H1···C5iii0.862.643.375 (2)144
Symmetry codes: (ii) x1, y+2, z; (iii) x, y+1, z1/2.
Selected bond lengths, bond and dihedral angles (° A, °) in the title structure top
ParametersÅ, °
O1—C61.3846 (17)
O1—C8*1.4521 (18)
N1—C81.4099 (19)
N1—C71.3822 (19)
C8—C8*1.505 (3)
C6—C71.397 (2)
O1*—C8—C8*108.29 (9)
N1—C8—C8*109.82 (15)
N1—C8—O1*109.28 (12)
C6—O1—C8*113.95 (11)
C7—N1—C8—C8*36.44 (15)
C8*—O1—C6—C7-22.75 (17)
C2—C7—C6—C5-5.7 (2)
N1—C7—C6—O1-2.8 (2)

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAdib, M., Sheibani, E., Mostofi, M., Ghanbary, K. & Bijanzadeh, H. R. (2006). Tetrahedron, 62, 3435–3438.  CrossRef CAS Google Scholar
First citationBelz, T., Ihmaid, S., Al-Rawi, J. & Petrovski, S. (2013). Int. J. Med. Chem. Article ID 436397.  Google Scholar
First citationDilmaç, M., Spuling, E., de Meijere, A. & Bräse, S. (2017). Angew. Chem. Int. Ed. 56, 5684–5718.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarfán, N., Santillan, R. L., Castillo, D., Cruz, R., Joseph-Nathan, P. & Daran, J. (1992). Can. J. Chem. 70, 2764–2770.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHai-Yan, Z., Xiao-Hang, Q. & Pan-Wen, S. (2004). Acta Cryst. E60, o1619–o1621.  CSD CrossRef IUCr Journals Google Scholar
First citationHajji, C., Zaballos-García, E. & Sepúlveda-Arques, J. (2003). Synth. Commun. 33, 4347–4354.  CrossRef CAS Google Scholar
First citationKonstantinova, L. S., Tolmachev, M. A., Popov, V. V. & Rakitin, O. A. (2020). Molbank, Article M1149.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiklas, J. E., Hunter, H. M. & Gorden, A. E. V. (2019). Inorg. Chem. 58, 15088–15100.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSriharsha, S. & Shashikanth, S. (2006). Heterocycl. Commun. 12, 213–218.  CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTauer, E., Grellmann, K. H., Kaufmann, E. & Noltemeyer, M. (1986). Chem. Ber. 119, 3316–3325.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds