research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis by deamination reaction and crystal structure at 120 K of (16Z,19E)-18-oxo-N-(pyridin-2-yl)-6,7,9,10-tetra­hydro-18H-dibenzo[h,o][1,4,7]trioxa­cyclo­hexa­decine-17-carboxamide

CROSSMARK_Color_square_no_text.svg

aCollege of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, bFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam, cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, dN. N. Semenov Federal Research Center, for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation, and eN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
*Correspondence e-mail: tvche@yahoo.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 16 July 2020; accepted 9 August 2020; online 14 August 2020)

The title compound, C27H24N2O5, is a product of the deamination reaction from aza-14-crown-4 ether containing the γ-piperidone subunit. The title mol­ecule contains a 16-membered macrocycle with the conformation of the C—O—C—C—O—C—C—O—C polyether chain being tg(-)ttg(+)t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 31.11 (14)°. The cavity size inside the macrocycle is 4.72 Å. The macrocycle is significantly flattened as a result of the extended conjugated system. Steric repulsion between the pyridyl­carboxamide fragment and the benzene ring results in a slight deviation of macrocycle from planarity. The structure also features intra­molecular hydrogen bonding, which results in a deviation of the angle between the planes of amide and pyridyl groups from planarity: this angle is 16.32 (18)°. In the crystal, the mol­ecules are linked into infinite zigzag chains via inter­molecular C—H⋯π contacts. The chains are bound into layers parallel to (100) by weak inter­molecular C—H⋯O hydrogen bonds.

1. Chemical context

Nowadays, aza-crown ethers are designed, synthesized and applied as macrocyclic ligands for coordination chemistry (Hiraoka, 1982[Hiraoka, M. (1982). Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.]; Pedersen, 1988[Pedersen, C. J. (1988). Angew. Chem. 100, 1053-1059.]; Gokel & Murillo, 1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]; Bradshaw & Izatt, 1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]; Kolyadina et al., 2013[Kolyadina, N. M., Sokol, V. I., Kvartalov, V. B., Davydov, V. V., Fomicheva, E. A., Soldatenkov, A. T. & Sergienko, V. S. (2013). Russ. J. Inorg. Chem. 58, 671-677.]; Mazur et al., 2010[Mazur, V. M., Kolyadina, N. M., Sokol, V. I., Soro, S., Sergienko, V. S. & Davydov, V. V. (2010). Russ. J. Coord. Chem. 36, 838-843.]) and as potential anti­cancer agents with a high cytotoxicity (Anh et al., 2014[Anh, T. L., Hieu, H. T., Phuong, T. T. N., Ha, T. P., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajoe, A. T. (2014). Macroheterocycles 7, 386-390.]; Le et al., 2015[Le, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224-225.], 2018[Le, T. A., Nguyen, T. T. P., Truong, H. H., Soldatenkov, A. T., Bui, T. V., Tran, T. T. V., Dao, T. N., Voskressensky, L. G., To, H. T. & Khrustalev, V. N. (2018). Macroheterocycles 11, 197-202.], 2019[Le, A. T., Tran, V. T. T., Truong, H. H., Nguyen, L. M., Luong, D. M., Do, T. T., Nguyen, D. T., Dao, N. T., Le, D. T., Soldatenkov, A. T. & Khrustalev, V. N. (2019). Mendeleev Commun. 29, 375-377.]; Dao et al., 2019[Dao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). Chem. Heterocycl. Compd, 55, 654-659.]). Over the last several years, new aza-crown ethers containing heterocyclic subunits such as piperidine (Levov et al., 2006[Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-36.], 2008a[Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457-462.],b[Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008b). Russ. J. Org. Chem. 44, 1665-1670.]; Anh et al., 2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.], 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.],c[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165-o2166.]; Hieu et al., 2012a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431-o2432.],b[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848-o2849.], 2013[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565-o566.]), perhydro­pyrimidine (Hieu et al., 2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307-1308.]), perhydro­triazine (Khieu et al., 2011[Khieu, T. H., Soldatenkov, A. T., Le Tuan, A., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]), pyridine (Anh et al., 2014[Anh, T. L., Hieu, H. T., Phuong, T. T. N., Ha, T. P., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajoe, A. T. (2014). Macroheterocycles 7, 386-390.]; Le et al., 2015[Le, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224-225.]) and bis­pyridine (Komarova et al., 2008[Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624-625.]; Sokol et al., 2011[Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086-2088.]) have been synthesized.

In a recent study, we condensed a γ-piperidone-containing aza-crown ether with α-amino­pyridine in the aprotic solvent o-xylene, which allows deamination to occur (Volkov et al., 2007[Volkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). Chem. Heterocycl. Compd. 43, 445-453.]). After prolonged heating (5 h), the title compound was obtained in a yield of 40%. The reversible deamination reaction is apparently the result of thermodynamic control.

[Scheme 1]

According to the PASS program (Filimonov et al., 2014[Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. C. 50, 444-457.]), which gives a computer prediction of biological activities, the title compound is expected to exhibit anti­allergic (72% probability) and anti­asthmatic (67%) properties, as well as to be a membrane permeability inhibitor (65%). In addition, this compound containing crown ether (–O—CH2—CH2—O—CH2—CH2—O–) and dienon fragments [–CH=CH—C(O)—CH=CH–] could act as a good ligand in coordination chemistry.

2. Structural commentary

The title compound, (3), is a product of the deamination reaction starting from aza-14-crown-4 ether containing the γ-piperidone subunit (1). The mol­ecular structure of (3) is presented in Fig. 1[link]. The mol­ecule contains a 16-membered macrocycle with the C7–O8–C9–C10–O11–C12–C13–O14–C15 polyether chain exhibiting a tg(-)ttg(+)t (t = trans, 180°; g = gauche, ±60°) conformation. The dihedral angle between the mean planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 31.11 (14)°. The cavity size inside the macrocycle, determined as a double-mean distance between the C16, C19, O5, O8 and O11 atoms and the center of this penta­gon, is 4.72 Å. The macrocycle is significantly flattened because of the extended conjugated system. The steric repulsion between the 17-pyridyl­carboxamide fragment and the aromatic ring (C11A/C12–C15/C15A) results in a slight deviation of the macrocycle from planarity. The mol­ecular structure also features intra­molecular hydrogen bonds (Table 1[link]), which result in the deviation of the amide and pyridyl groups from coplanarity, the angle between their main planes being 16.32 (18)°. In addition, the intra­molecular N1—H1N⋯O18 hydrogen bond has a significant impact on the structure, preventing the C11A/C12–C15/C15A benzene ring from being conjugated with the C16=C17 double bond.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O18 0.88 (3) 2.04 (3) 2.737 (3) 135 (3)
C19—H19⋯O5 0.95 2.22 2.823 (4) 120
C23—H23⋯O21 0.95 2.34 2.903 (4) 117
C6—H6B⋯O18i 0.99 2.50 3.323 (4) 140
C9—H9A⋯O8ii 0.99 2.48 3.447 (4) 165
C10—H10A⋯O11ii 0.99 2.41 3.238 (4) 140
C26—H26⋯C22iii 0.95 2.76 3.678 (4) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of (3) with displacement ellipsoids shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed line indicates the intra­molecular N—H⋯O hydrogen bond.

3. Supra­molecular features

In the crystal, mol­ecules of (3) are linked into infinite zigzag chains via inter­molecular C26—H⋯π(C22) contacts (Fig. 2[link]). A similar supra­molecular motif was previously observed by our group (Tskhovrebov et al., 2019[Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. J. (2019). J. Organomet. Chem. 886, 71-75.]; Repina et al., 2020[Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 Article 119378.]). The chains are linked into two-tier puckered layers parallel to (100) by weak inter­molecular C—H⋯O hydrogen bonds (Table 1[link], Fig. 3[link]).

[Figure 2]
Figure 2
The chain of mol­ecules of (3) along the c axis. Dashed lines indicate the intra­molecular N—H⋯O hydrogen bonds and the inter­molecular C—H⋯π contacts.
[Figure 3]
Figure 3
Crystal packing of (3) illustrating the two-tier puckered layer parallel to (100). Dashed lines indicate the intra­molecular N—H⋯O and the inter­molecular C—H⋯π and C—H⋯O hydrogen bonds.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the existence of several structurally similar compounds. Since members of our group reported the synthesis of dibenzopiperazidino­aza-14-crown-4 for the first time (Levov et al., 2006[Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-36.]), several relevant macrocyclic crown ethers have been prepared and structurally characterized (Hieu et al., 2012a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431-o2432.], 2016[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Tuyen, N. V. & Khrustalev, V. N. (2016). Acta Cryst. E72, 829-832.]; Polyakova et al., 2016[Polyakova, I. N., Sergienko, V. S., Kvartalov, V. B., Kolyadina, N. M. & Sokol, V. I. (2016). Russ. J. Inorg. Chem. 61, 168-173.], 2018[Polyakova, I. N., Sokol, V. I., Sergienko, V. S., Kolyadina, N. M., Kvartalov, V. B. & Polyanskaya, N. A. (2018). Crystallogr. Rep. 63, 358-363.]; Sokol et al., 2014[Sokol, V. I., Kvartalov, V. B., Kolyadina, N. M., Sergienko, V. S., Soldatenkov, A. T., Davydov, V. V. & Drogova, G. M. (2014). Russ. J. Inorg. Chem. 59, 1094-1100.]; Nguyen et al., 2017[Nguyen, V. T., Truong, H. H., Le, T. A., Soldatenkov, A. T., Thi, T. A. D., Tran, T. T. V., Esina, N. Y. & Khrustalev, V. N. (2017). Acta Cryst. E73, 118-121.]; Anh et al., 2012c[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165-o2166.] and references therein). The aforementioned macrocyclic crown ethers contain an O3C4 linear chain fragment appended to the two aryl rings. The O atoms in the macrocycles appear to be in an sp3-hybridized state with C—O—C angles close to 120°. Overall, the metrical parameters in this type of macrocyclic ligand are not remarkable.

5. Synthesis and crystallization

Aza-crown ether (1) was synthesized according to the procedure described previously (Levov et al., 2008a[Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457-462.]), and purified by recrystallization from ethanol. α-Amino­pyridine and o-xylene were acquired from Aldrich. All solvents were HPLC grade and used without any further purification.

A solution of 2.0 g (4.7 mmol) aza-crown ether (1) and 0.44 g (4.7 mmol) α-amino­pyridine (2) in 10 ml o-xylene was refluxed with stirring for 5 h (monitored by TLC until the disappearance of the starting organic compound spots). The solvent was evaporated under vacuum, then the residue was purified by column chromatography (ethyl acetate:n-hexane = 5:1) and recrystallized from ethanol to obtain 1.27 g of pure compound (3) as single crystals in 58% yield. Tmlt = 482–484 K. Rf = 0.66 (ethyl acetate, silufol). IR, ν, cm−1: 1687 (C=O), 1638 (HN—C=O), 3317 (NH). 1H NMR (CDCl3, 400 MHz, 300 K): 3.89 (m, 2H, J = 4.3 and 2.0 Hz, CH2OCH2), 4.01 (m, 2H, J = 4.3 and 1.7 Hz, CH2OCH2), 4.33 (m, 4H, Ph–O–CH2), 6.91–7.75 (m, 11H, Har­yl, Hpyridine), 7.73 (d, 1H, J = 15.7 Hz, H18), 8.18 (d, 1H, J = 15.7 Hz, H17), 8.32 (d, 1H, J = 5.4 Hz, Hpyridine), 8.36 (s, 1H, H14). Mass spectrum, m/z (Imax, %): 456 [M]+ (4), 428 (1), 309 (4), 283 (3), 265 (3), 238 (25), 221 (18), 210 (50), 189 (10), 173 (89), 159 (20), 147 (38), 131 (100), 118 (48), 115 (51), 103 (27), 91 (81), 89 (52), 78 (65), 45 (38). Analysis calculated for C27H24N2O5, %: C, 71.04; H, 5.30; N, 6.14. Found: C, 70.82; H, 5.34; N, 6.01.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atom of the amino group was localized in a difference-Fourier map and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula C27H24N2O5
Mr 456.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 17.021 (6), 16.519 (5), 8.079 (3)
β (°) 97.552 (8)
V3) 2251.9 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.20 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.975, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 13715, 4398, 2301
Rint 0.100
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.169, 0.97
No. of reflections 4398
No. of parameters 310
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.27
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2015b); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b).

(16Z,19E)-18-Oxo-N-(pyridin-2-yl)-6,7,9,10-tetrahydro-18H-dibenzo[h,o][1,4,7]trioxacyclohexadecine-17-carboxamide top
Crystal data top
C27H24N2O5F(000) = 960
Mr = 456.48Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.021 (6) ÅCell parameters from 1174 reflections
b = 16.519 (5) Åθ = 2.5–23.8°
c = 8.079 (3) ŵ = 0.09 mm1
β = 97.552 (8)°T = 120 K
V = 2251.9 (13) Å3Plate, light-yellow
Z = 40.20 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2301 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1420
Tmin = 0.975, Tmax = 0.987k = 1920
13715 measured reflectionsl = 99
4398 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0735P)2]
where P = (Fo2 + 2Fc2)/3
4398 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.81155 (16)0.57786 (15)0.3654 (4)0.0314 (7)
H1N0.7620 (19)0.5900 (19)0.327 (4)0.038*
N20.84697 (15)0.67951 (15)0.1997 (4)0.0370 (7)
C10.39211 (18)0.41274 (18)0.1565 (4)0.0323 (8)
H10.40520.44360.06480.039*
C20.31862 (19)0.37494 (19)0.1440 (5)0.0354 (8)
H20.28220.37950.04470.043*
C30.29920 (19)0.33067 (19)0.2777 (5)0.0368 (9)
H30.24960.30370.26940.044*
C40.35155 (19)0.32526 (18)0.4240 (5)0.0342 (8)
H40.33690.29580.51610.041*
C4A0.42529 (18)0.36265 (17)0.4368 (4)0.0290 (8)
O50.47971 (12)0.35990 (12)0.5778 (3)0.0328 (6)
C60.4577 (2)0.31983 (18)0.7232 (4)0.0335 (8)
H6A0.45000.26130.70070.040*
H6B0.40730.34250.75170.040*
C70.5223 (2)0.3323 (2)0.8653 (4)0.0400 (9)
H7A0.53200.39090.88300.048*
H7B0.50600.30940.96880.048*
O80.59254 (13)0.29397 (13)0.8301 (3)0.0391 (6)
C90.6507 (2)0.2893 (2)0.9744 (4)0.0428 (9)
H9A0.63000.25701.06230.051*
H9B0.66320.34431.01890.051*
C100.7239 (2)0.2505 (2)0.9269 (4)0.0411 (9)
H10A0.76140.23981.02900.049*
H10B0.70990.19800.87190.049*
O110.76185 (13)0.30110 (12)0.8158 (3)0.0364 (6)
C11A0.80461 (18)0.36681 (18)0.8857 (4)0.0304 (8)
C120.85596 (19)0.3632 (2)1.0331 (4)0.0386 (9)
H120.85940.31541.09910.046*
C130.9026 (2)0.4302 (2)1.0842 (5)0.0440 (9)
H130.93730.42871.18630.053*
C140.89803 (19)0.4990 (2)0.9853 (4)0.0389 (9)
H140.93070.54431.01900.047*
C150.84686 (18)0.5026 (2)0.8396 (4)0.0358 (8)
H150.84430.55030.77350.043*
C15A0.79813 (18)0.43628 (18)0.7869 (4)0.0293 (8)
C160.73583 (18)0.43972 (17)0.6437 (4)0.0284 (7)
H160.68770.41330.65880.034*
C170.73683 (18)0.47504 (16)0.4934 (4)0.0260 (7)
C180.66355 (17)0.48163 (17)0.3709 (4)0.0283 (8)
O180.66282 (13)0.52429 (13)0.2450 (3)0.0376 (6)
C190.59118 (18)0.43833 (17)0.4033 (4)0.0289 (8)
H190.59200.40630.50110.035*
C200.52515 (18)0.44386 (17)0.2969 (4)0.0282 (7)
H200.52890.47750.20280.034*
C20A0.44743 (17)0.40665 (17)0.3006 (4)0.0273 (7)
C210.81515 (18)0.50452 (18)0.4451 (4)0.0288 (8)
O210.87634 (12)0.46652 (13)0.4817 (3)0.0381 (6)
C220.87370 (18)0.62108 (17)0.3072 (4)0.0292 (7)
C230.95325 (18)0.60770 (18)0.3617 (4)0.0301 (8)
H230.96960.56660.44100.036*
C241.00802 (19)0.6561 (2)0.2971 (4)0.0355 (8)
H241.06310.64810.33050.043*
C250.9825 (2)0.7161 (2)0.1840 (5)0.0417 (9)
H251.01920.75010.13820.050*
C260.9017 (2)0.7254 (2)0.1394 (5)0.0438 (10)
H260.88390.76660.06150.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0264 (14)0.0261 (14)0.0424 (18)0.0027 (12)0.0064 (13)0.0087 (13)
N20.0330 (15)0.0306 (15)0.0483 (19)0.0036 (13)0.0081 (14)0.0128 (14)
C10.0338 (18)0.0260 (17)0.037 (2)0.0007 (14)0.0067 (16)0.0016 (15)
C20.0296 (18)0.0328 (18)0.044 (2)0.0021 (15)0.0055 (16)0.0072 (17)
C30.0319 (18)0.0277 (18)0.053 (2)0.0039 (15)0.0136 (17)0.0101 (17)
C40.0352 (19)0.0222 (16)0.048 (2)0.0020 (14)0.0158 (17)0.0009 (16)
C4A0.0315 (17)0.0189 (16)0.038 (2)0.0017 (14)0.0080 (15)0.0003 (14)
O50.0388 (13)0.0274 (12)0.0334 (14)0.0016 (10)0.0091 (11)0.0052 (10)
C60.046 (2)0.0230 (16)0.035 (2)0.0019 (15)0.0185 (16)0.0036 (15)
C70.052 (2)0.0347 (19)0.036 (2)0.0038 (17)0.0167 (17)0.0016 (16)
O80.0459 (14)0.0396 (14)0.0328 (14)0.0032 (11)0.0094 (11)0.0011 (11)
C90.053 (2)0.045 (2)0.030 (2)0.0063 (18)0.0018 (18)0.0089 (17)
C100.052 (2)0.036 (2)0.033 (2)0.0056 (17)0.0012 (17)0.0130 (16)
O110.0494 (14)0.0264 (12)0.0326 (14)0.0041 (10)0.0030 (11)0.0038 (10)
C11A0.0341 (18)0.0297 (17)0.0280 (19)0.0026 (14)0.0058 (15)0.0051 (15)
C120.0406 (19)0.043 (2)0.031 (2)0.0058 (17)0.0032 (16)0.0031 (17)
C130.036 (2)0.060 (2)0.035 (2)0.0046 (18)0.0014 (16)0.012 (2)
C140.0308 (18)0.045 (2)0.040 (2)0.0020 (16)0.0038 (16)0.0132 (18)
C150.0303 (17)0.0365 (19)0.041 (2)0.0004 (15)0.0061 (16)0.0066 (16)
C15A0.0293 (17)0.0279 (17)0.0311 (19)0.0032 (14)0.0053 (15)0.0030 (15)
C160.0321 (17)0.0189 (15)0.034 (2)0.0030 (13)0.0057 (14)0.0030 (14)
C170.0336 (18)0.0142 (14)0.0305 (19)0.0014 (13)0.0056 (14)0.0012 (13)
C180.0302 (17)0.0185 (15)0.036 (2)0.0013 (13)0.0022 (15)0.0011 (15)
O180.0383 (13)0.0349 (13)0.0389 (15)0.0051 (11)0.0025 (11)0.0145 (11)
C190.0360 (18)0.0209 (16)0.0307 (19)0.0001 (14)0.0071 (15)0.0027 (14)
C200.0364 (19)0.0178 (15)0.0311 (19)0.0013 (13)0.0069 (15)0.0017 (13)
C20A0.0265 (16)0.0171 (15)0.038 (2)0.0023 (13)0.0057 (15)0.0041 (14)
C210.0318 (18)0.0236 (16)0.0310 (19)0.0016 (14)0.0037 (15)0.0004 (14)
O210.0321 (13)0.0325 (12)0.0506 (16)0.0076 (11)0.0084 (11)0.0094 (11)
C220.0322 (17)0.0194 (15)0.037 (2)0.0002 (14)0.0073 (15)0.0020 (14)
C230.0319 (18)0.0255 (16)0.033 (2)0.0019 (14)0.0065 (15)0.0005 (15)
C240.0322 (18)0.0316 (18)0.043 (2)0.0005 (15)0.0059 (16)0.0023 (16)
C250.037 (2)0.037 (2)0.054 (3)0.0060 (16)0.0131 (17)0.0098 (18)
C260.042 (2)0.035 (2)0.055 (3)0.0005 (17)0.0094 (18)0.0177 (18)
Geometric parameters (Å, º) top
N1—C211.370 (4)C11A—C121.383 (4)
N1—C221.407 (4)C11A—C15A1.394 (4)
N1—H1N0.88 (3)C12—C131.392 (5)
N2—C221.338 (4)C12—H120.9500
N2—C261.341 (4)C13—C141.386 (5)
C1—C21.390 (4)C13—H130.9500
C1—C20A1.401 (4)C14—C151.371 (4)
C1—H10.9500C14—H140.9500
C2—C31.380 (5)C15—C15A1.405 (4)
C2—H20.9500C15—H150.9500
C3—C41.386 (5)C15A—C161.464 (4)
C3—H30.9500C16—C171.350 (4)
C4—C4A1.390 (4)C16—H160.9500
C4—H40.9500C17—C181.491 (4)
C4A—O51.371 (4)C17—C211.518 (4)
C4A—C20A1.411 (4)C18—O181.236 (4)
O5—C61.441 (4)C18—C191.477 (4)
C6—C71.495 (5)C19—C201.326 (4)
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—C20A1.463 (4)
C7—O81.415 (4)C20—H200.9500
C7—H7A0.9900C21—O211.219 (3)
C7—H7B0.9900C22—C231.385 (4)
O8—C91.429 (4)C23—C241.381 (4)
C9—C101.495 (5)C23—H230.9500
C9—H9A0.9900C24—C251.380 (4)
C9—H9B0.9900C24—H240.9500
C10—O111.440 (4)C25—C261.383 (5)
C10—H10A0.9900C25—H250.9500
C10—H10B0.9900C26—H260.9500
O11—C11A1.385 (4)
C21—N1—C22128.1 (3)C11A—C12—H12120.3
C21—N1—H1N110 (2)C13—C12—H12120.3
C22—N1—H1N120 (2)C14—C13—C12119.7 (3)
C22—N2—C26116.8 (3)C14—C13—H13120.2
C2—C1—C20A121.9 (3)C12—C13—H13120.2
C2—C1—H1119.1C15—C14—C13120.7 (3)
C20A—C1—H1119.1C15—C14—H14119.6
C3—C2—C1119.2 (3)C13—C14—H14119.6
C3—C2—H2120.4C14—C15—C15A120.7 (3)
C1—C2—H2120.4C14—C15—H15119.7
C2—C3—C4120.5 (3)C15A—C15—H15119.7
C2—C3—H3119.7C11A—C15A—C15117.9 (3)
C4—C3—H3119.7C11A—C15A—C16118.6 (3)
C3—C4—C4A120.5 (3)C15—C15A—C16123.1 (3)
C3—C4—H4119.7C17—C16—C15A129.4 (3)
C4A—C4—H4119.7C17—C16—H16115.3
O5—C4A—C4123.5 (3)C15A—C16—H16115.3
O5—C4A—C20A116.4 (3)C16—C17—C18121.4 (3)
C4—C4A—C20A120.1 (3)C16—C17—C21119.0 (3)
C4A—O5—C6118.2 (2)C18—C17—C21119.5 (3)
O5—C6—C7108.6 (3)O18—C18—C19120.2 (3)
O5—C6—H6A110.0O18—C18—C17120.3 (3)
C7—C6—H6A110.0C19—C18—C17119.4 (3)
O5—C6—H6B110.0C20—C19—C18120.5 (3)
C7—C6—H6B110.0C20—C19—H19119.8
H6A—C6—H6B108.3C18—C19—H19119.8
O8—C7—C6109.9 (3)C19—C20—C20A130.5 (3)
O8—C7—H7A109.7C19—C20—H20114.7
C6—C7—H7A109.7C20A—C20—H20114.7
O8—C7—H7B109.7C1—C20A—C4A117.8 (3)
C6—C7—H7B109.7C1—C20A—C20117.6 (3)
H7A—C7—H7B108.2C4A—C20A—C20124.6 (3)
C7—O8—C9112.0 (3)O21—C21—N1123.6 (3)
O8—C9—C10109.0 (3)O21—C21—C17121.6 (3)
O8—C9—H9A109.9N1—C21—C17114.7 (3)
C10—C9—H9A109.9N2—C22—C23123.8 (3)
O8—C9—H9B109.9N2—C22—N1112.1 (3)
C10—C9—H9B109.9C23—C22—N1124.0 (3)
H9A—C9—H9B108.3C24—C23—C22117.9 (3)
O11—C10—C9111.6 (3)C24—C23—H23121.1
O11—C10—H10A109.3C22—C23—H23121.1
C9—C10—H10A109.3C25—C24—C23119.8 (3)
O11—C10—H10B109.3C25—C24—H24120.1
C9—C10—H10B109.3C23—C24—H24120.1
H10A—C10—H10B108.0C24—C25—C26117.9 (3)
C11A—O11—C10117.1 (3)C24—C25—H25121.1
C12—C11A—O11123.8 (3)C26—C25—H25121.1
C12—C11A—C15A121.5 (3)N2—C26—C25123.9 (3)
O11—C11A—C15A114.4 (3)N2—C26—H26118.1
C11A—C12—C13119.5 (3)C25—C26—H26118.1
C20A—C1—C2—C30.5 (5)C21—C17—C18—O1814.0 (4)
C1—C2—C3—C41.3 (5)C16—C17—C18—C199.2 (4)
C2—C3—C4—C4A1.7 (5)C21—C17—C18—C19167.5 (3)
C3—C4—C4A—O5179.8 (3)O18—C18—C19—C200.9 (5)
C3—C4—C4A—C20A0.1 (5)C17—C18—C19—C20179.4 (3)
C4—C4A—O5—C63.5 (4)C18—C19—C20—C20A179.3 (3)
C20A—C4A—O5—C6176.3 (2)C2—C1—C20A—C4A2.0 (5)
C4A—O5—C6—C7173.9 (3)C2—C1—C20A—C20175.8 (3)
O5—C6—C7—O864.4 (3)O5—C4A—C20A—C1178.0 (3)
C6—C7—O8—C9167.7 (3)C4—C4A—C20A—C11.7 (4)
C7—O8—C9—C10178.4 (3)O5—C4A—C20A—C204.3 (4)
O8—C9—C10—O1167.3 (3)C4—C4A—C20A—C20175.9 (3)
C9—C10—O11—C11A76.2 (3)C19—C20—C20A—C1169.6 (3)
C10—O11—C11A—C1244.2 (4)C19—C20—C20A—C4A8.0 (5)
C10—O11—C11A—C15A142.0 (3)C22—N1—C21—O212.3 (5)
O11—C11A—C12—C13173.2 (3)C22—N1—C21—C17179.3 (3)
C15A—C11A—C12—C130.2 (5)C16—C17—C21—O2138.3 (4)
C11A—C12—C13—C141.2 (5)C18—C17—C21—O21138.4 (3)
C12—C13—C14—C151.5 (5)C16—C17—C21—N1138.8 (3)
C13—C14—C15—C15A0.3 (5)C18—C17—C21—N144.4 (4)
C12—C11A—C15A—C151.4 (5)C26—N2—C22—C232.0 (5)
O11—C11A—C15A—C15172.7 (3)C26—N2—C22—N1178.7 (3)
C12—C11A—C15A—C16172.5 (3)C21—N1—C22—N2164.2 (3)
O11—C11A—C15A—C1613.5 (4)C21—N1—C22—C2319.1 (5)
C14—C15—C15A—C11A1.1 (5)N2—C22—C23—C242.0 (5)
C14—C15—C15A—C16172.4 (3)N1—C22—C23—C24178.3 (3)
C11A—C15A—C16—C17145.3 (3)C22—C23—C24—C250.9 (5)
C15—C15A—C16—C1741.2 (5)C23—C24—C25—C260.0 (5)
C15A—C16—C17—C18171.7 (3)C22—N2—C26—C251.0 (5)
C15A—C16—C17—C2111.6 (5)C24—C25—C26—N20.1 (6)
C16—C17—C18—O18169.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O180.88 (3)2.04 (3)2.737 (3)135 (3)
C19—H19···O50.952.222.823 (4)120
C23—H23···O210.952.342.903 (4)117
C6—H6B···O18i0.992.503.323 (4)140
C9—H9A···O8ii0.992.483.447 (4)165
C10—H10A···O11ii0.992.413.238 (4)140
C26—H26···C22iii0.952.763.678 (4)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Funding information

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2017.312 and by the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationAnh, T. L., Hieu, H. T., Phuong, T. T. N., Ha, T. P., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajoe, A. T. (2014). Macroheterocycles 7, 386–390.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). Chem. Heterocycl. Compd, 55, 654–659.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. C. 50, 444–457.  Web of Science CrossRef CAS Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307–1308.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Tuyen, N. V. & Khrustalev, V. N. (2016). Acta Cryst. E72, 829–832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565–o566.  CSD CrossRef IUCr Journals Google Scholar
First citationHiraoka, M. (1982). Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, T. H., Soldatenkov, A. T., Le Tuan, A., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationKolyadina, N. M., Sokol, V. I., Kvartalov, V. B., Davydov, V. V., Fomicheva, E. A., Soldatenkov, A. T. & Sergienko, V. S. (2013). Russ. J. Inorg. Chem. 58, 671–677.  Web of Science CrossRef CAS Google Scholar
First citationKomarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625.  Web of Science CrossRef CAS Google Scholar
First citationLe, T. A., Nguyen, T. T. P., Truong, H. H., Soldatenkov, A. T., Bui, T. V., Tran, T. T. V., Dao, T. N., Voskressensky, L. G., To, H. T. & Khrustalev, V. N. (2018). Macroheterocycles 11, 197–202.  Google Scholar
First citationLe, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224–225.  Web of Science CrossRef CAS Google Scholar
First citationLe, A. T., Tran, V. T. T., Truong, H. H., Nguyen, L. M., Luong, D. M., Do, T. T., Nguyen, D. T., Dao, N. T., Le, D. T., Soldatenkov, A. T. & Khrustalev, V. N. (2019). Mendeleev Commun. 29, 375–377.  Web of Science CSD CrossRef CAS Google Scholar
First citationLevov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457–462.  Google Scholar
First citationLevov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008b). Russ. J. Org. Chem. 44, 1665–1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–36.  Web of Science CSD CrossRef Google Scholar
First citationMazur, V. M., Kolyadina, N. M., Sokol, V. I., Soro, S., Sergienko, V. S. & Davydov, V. V. (2010). Russ. J. Coord. Chem. 36, 838–843.  Web of Science CrossRef CAS Google Scholar
First citationNguyen, V. T., Truong, H. H., Le, T. A., Soldatenkov, A. T., Thi, T. A. D., Tran, T. T. V., Esina, N. Y. & Khrustalev, V. N. (2017). Acta Cryst. E73, 118–121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. 100, 1053–1059.  CrossRef CAS Google Scholar
First citationPolyakova, I. N., Sergienko, V. S., Kvartalov, V. B., Kolyadina, N. M. & Sokol, V. I. (2016). Russ. J. Inorg. Chem. 61, 168–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationPolyakova, I. N., Sokol, V. I., Sergienko, V. S., Kolyadina, N. M., Kvartalov, V. B. & Polyanskaya, N. A. (2018). Crystallogr. Rep. 63, 358–363.  Web of Science CSD CrossRef CAS Google Scholar
First citationRepina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 Article 119378.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086–2088.  Web of Science CrossRef Google Scholar
First citationSokol, V. I., Kvartalov, V. B., Kolyadina, N. M., Sergienko, V. S., Soldatenkov, A. T., Davydov, V. V. & Drogova, G. M. (2014). Russ. J. Inorg. Chem. 59, 1094–1100.  Web of Science CSD CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. J. (2019). J. Organomet. Chem. 886, 71–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationVolkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). Chem. Heterocycl. Compd. 43, 445–453.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds