research communications
Synthesis by deamination reaction and Z,19E)-18-oxo-N-(pyridin-2-yl)-6,7,9,10-tetrahydro-18H-dibenzo[h,o][1,4,7]trioxacyclohexadecine-17-carboxamide
at 120 K of (16aCollege of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, bFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam, cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, dN. N. Semenov Federal Research Center, for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation, and eN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
*Correspondence e-mail: tvche@yahoo.com
The title compound, C27H24N2O5, is a product of the deamination reaction from aza-14-crown-4 ether containing the γ-piperidone subunit. The title molecule contains a 16-membered macrocycle with the conformation of the C—O—C—C—O—C—C—O—C polyether chain being t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 31.11 (14)°. The cavity size inside the macrocycle is 4.72 Å. The macrocycle is significantly flattened as a result of the extended Steric repulsion between the pyridylcarboxamide fragment and the benzene ring results in a slight deviation of macrocycle from planarity. The structure also features intramolecular hydrogen bonding, which results in a deviation of the angle between the planes of amide and pyridyl groups from planarity: this angle is 16.32 (18)°. In the crystal, the molecules are linked into infinite zigzag chains via intermolecular C—H⋯π contacts. The chains are bound into layers parallel to (100) by weak intermolecular C—H⋯O hydrogen bonds.
Keywords: deamination reaction; aza-crown ether; dibenzo-16-crown-3; crystal structure; γ-piperidone; hydrogen bonds; C—H⋯π contacts.
CCDC reference: 2022314
1. Chemical context
Nowadays, aza-crown ; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997; Kolyadina et al., 2013; Mazur et al., 2010) and as potential anticancer agents with a high cytotoxicity (Anh et al., 2014; Le et al., 2015, 2018, 2019; Dao et al., 2019). Over the last several years, new aza-crown containing heterocyclic subunits such as piperidine (Levov et al., 2006, 2008a,b; Anh et al., 2008, 2012a,b,c; Hieu et al., 2012a,b, 2013), perhydropyrimidine (Hieu et al., 2011), perhydrotriazine (Khieu et al., 2011), pyridine (Anh et al., 2014; Le et al., 2015) and bispyridine (Komarova et al., 2008; Sokol et al., 2011) have been synthesized.
are designed, synthesized and applied as macrocyclic ligands for coordination chemistry (Hiraoka, 1982In a recent study, we condensed a γ-piperidone-containing aza-crown ether with α-aminopyridine in the aprotic solvent o-xylene, which allows deamination to occur (Volkov et al., 2007). After prolonged heating (5 h), the title compound was obtained in a yield of 40%. The reversible deamination reaction is apparently the result of thermodynamic control.
According to the PASS program (Filimonov et al., 2014), which gives a computer prediction of biological activities, the title compound is expected to exhibit antiallergic (72% probability) and antiasthmatic (67%) properties, as well as to be a membrane permeability inhibitor (65%). In addition, this compound containing crown ether (–O—CH2—CH2—O—CH2—CH2—O–) and dienon fragments [–CH=CH—C(O)—CH=CH–] could act as a good ligand in coordination chemistry.
2. Structural commentary
The title compound, (3), is a product of the deamination reaction starting from aza-14-crown-4 ether containing the γ-piperidone subunit (1). The molecular structure of (3) is presented in Fig. 1. The molecule contains a 16-membered macrocycle with the C7–O8–C9–C10–O11–C12–C13–O14–C15 polyether chain exhibiting a t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°) conformation. The dihedral angle between the mean planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 31.11 (14)°. The cavity size inside the macrocycle, determined as a double-mean distance between the C16, C19, O5, O8 and O11 atoms and the center of this pentagon, is 4.72 Å. The macrocycle is significantly flattened because of the extended The steric repulsion between the 17-pyridylcarboxamide fragment and the aromatic ring (C11A/C12–C15/C15A) results in a slight deviation of the macrocycle from planarity. The molecular structure also features intramolecular hydrogen bonds (Table 1), which result in the deviation of the amide and pyridyl groups from coplanarity, the angle between their main planes being 16.32 (18)°. In addition, the intramolecular N1—H1N⋯O18 hydrogen bond has a significant impact on the structure, preventing the C11A/C12–C15/C15A benzene ring from being conjugated with the C16=C17 double bond.
3. Supramolecular features
In the crystal, molecules of (3) are linked into infinite zigzag chains via intermolecular C26—H⋯π(C22) contacts (Fig. 2). A similar supramolecular motif was previously observed by our group (Tskhovrebov et al., 2019; Repina et al., 2020). The chains are linked into two-tier puckered layers parallel to (100) by weak intermolecular C—H⋯O hydrogen bonds (Table 1, Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) revealed the existence of several structurally similar compounds. Since members of our group reported the synthesis of dibenzopiperazidinoaza-14-crown-4 for the first time (Levov et al., 2006), several relevant macrocyclic have been prepared and structurally characterized (Hieu et al., 2012a, 2016; Polyakova et al., 2016, 2018; Sokol et al., 2014; Nguyen et al., 2017; Anh et al., 2012c and references therein). The aforementioned macrocyclic contain an O3C4 linear chain fragment appended to the two aryl rings. The O atoms in the macrocycles appear to be in an sp3-hybridized state with C—O—C angles close to 120°. Overall, the metrical parameters in this type of macrocyclic ligand are not remarkable.
5. Synthesis and crystallization
Aza-crown ether (1) was synthesized according to the procedure described previously (Levov et al., 2008a), and purified by recrystallization from ethanol. α-Aminopyridine and o-xylene were acquired from Aldrich. All solvents were HPLC grade and used without any further purification.
A solution of 2.0 g (4.7 mmol) aza-crown ether (1) and 0.44 g (4.7 mmol) α-aminopyridine (2) in 10 ml o-xylene was refluxed with stirring for 5 h (monitored by TLC until the disappearance of the starting organic compound spots). The solvent was evaporated under vacuum, then the residue was purified by (ethyl acetate:n-hexane = 5:1) and recrystallized from ethanol to obtain 1.27 g of pure compound (3) as single crystals in 58% yield. Tmlt = 482–484 K. Rf = 0.66 (ethyl acetate, silufol). IR, ν, cm−1: 1687 (C=O), 1638 (HN—C=O), 3317 (NH). 1H NMR (CDCl3, 400 MHz, 300 K): 3.89 (m, 2H, J = 4.3 and 2.0 Hz, CH2OCH2), 4.01 (m, 2H, J = 4.3 and 1.7 Hz, CH2OCH2), 4.33 (m, 4H, Ph–O–CH2), 6.91–7.75 (m, 11H, Haryl, Hpyridine), 7.73 (d, 1H, J = 15.7 Hz, H18), 8.18 (d, 1H, J = 15.7 Hz, H17), 8.32 (d, 1H, J = 5.4 Hz, Hpyridine), 8.36 (s, 1H, H14). m/z (Imax, %): 456 [M]+ (4), 428 (1), 309 (4), 283 (3), 265 (3), 238 (25), 221 (18), 210 (50), 189 (10), 173 (89), 159 (20), 147 (38), 131 (100), 118 (48), 115 (51), 103 (27), 91 (81), 89 (52), 78 (65), 45 (38). Analysis calculated for C27H24N2O5, %: C, 71.04; H, 5.30; N, 6.14. Found: C, 70.82; H, 5.34; N, 6.01.
6. Refinement
Crystal data, data collection and structure . The hydrogen atom of the amino group was localized in a difference-Fourier map and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 2022314
https://doi.org/10.1107/S2056989020010968/yk2136sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020010968/yk2136Isup2.hkl
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2015b); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b).C27H24N2O5 | F(000) = 960 |
Mr = 456.48 | Dx = 1.346 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.021 (6) Å | Cell parameters from 1174 reflections |
b = 16.519 (5) Å | θ = 2.5–23.8° |
c = 8.079 (3) Å | µ = 0.09 mm−1 |
β = 97.552 (8)° | T = 120 K |
V = 2251.9 (13) Å3 | Plate, light-yellow |
Z = 4 | 0.20 × 0.20 × 0.05 mm |
Bruker APEXII CCD diffractometer | 2301 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.100 |
φ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −14→20 |
Tmin = 0.975, Tmax = 0.987 | k = −19→20 |
13715 measured reflections | l = −9→9 |
4398 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: mixed |
wR(F2) = 0.169 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0735P)2] where P = (Fo2 + 2Fc2)/3 |
4398 reflections | (Δ/σ)max < 0.001 |
310 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.81155 (16) | 0.57786 (15) | 0.3654 (4) | 0.0314 (7) | |
H1N | 0.7620 (19) | 0.5900 (19) | 0.327 (4) | 0.038* | |
N2 | 0.84697 (15) | 0.67951 (15) | 0.1997 (4) | 0.0370 (7) | |
C1 | 0.39211 (18) | 0.41274 (18) | 0.1565 (4) | 0.0323 (8) | |
H1 | 0.4052 | 0.4436 | 0.0648 | 0.039* | |
C2 | 0.31862 (19) | 0.37494 (19) | 0.1440 (5) | 0.0354 (8) | |
H2 | 0.2822 | 0.3795 | 0.0447 | 0.043* | |
C3 | 0.29920 (19) | 0.33067 (19) | 0.2777 (5) | 0.0368 (9) | |
H3 | 0.2496 | 0.3037 | 0.2694 | 0.044* | |
C4 | 0.35155 (19) | 0.32526 (18) | 0.4240 (5) | 0.0342 (8) | |
H4 | 0.3369 | 0.2958 | 0.5161 | 0.041* | |
C4A | 0.42529 (18) | 0.36265 (17) | 0.4368 (4) | 0.0290 (8) | |
O5 | 0.47971 (12) | 0.35990 (12) | 0.5778 (3) | 0.0328 (6) | |
C6 | 0.4577 (2) | 0.31983 (18) | 0.7232 (4) | 0.0335 (8) | |
H6A | 0.4500 | 0.2613 | 0.7007 | 0.040* | |
H6B | 0.4073 | 0.3425 | 0.7517 | 0.040* | |
C7 | 0.5223 (2) | 0.3323 (2) | 0.8653 (4) | 0.0400 (9) | |
H7A | 0.5320 | 0.3909 | 0.8830 | 0.048* | |
H7B | 0.5060 | 0.3094 | 0.9688 | 0.048* | |
O8 | 0.59254 (13) | 0.29397 (13) | 0.8301 (3) | 0.0391 (6) | |
C9 | 0.6507 (2) | 0.2893 (2) | 0.9744 (4) | 0.0428 (9) | |
H9A | 0.6300 | 0.2570 | 1.0623 | 0.051* | |
H9B | 0.6632 | 0.3443 | 1.0189 | 0.051* | |
C10 | 0.7239 (2) | 0.2505 (2) | 0.9269 (4) | 0.0411 (9) | |
H10A | 0.7614 | 0.2398 | 1.0290 | 0.049* | |
H10B | 0.7099 | 0.1980 | 0.8719 | 0.049* | |
O11 | 0.76185 (13) | 0.30110 (12) | 0.8158 (3) | 0.0364 (6) | |
C11A | 0.80461 (18) | 0.36681 (18) | 0.8857 (4) | 0.0304 (8) | |
C12 | 0.85596 (19) | 0.3632 (2) | 1.0331 (4) | 0.0386 (9) | |
H12 | 0.8594 | 0.3154 | 1.0991 | 0.046* | |
C13 | 0.9026 (2) | 0.4302 (2) | 1.0842 (5) | 0.0440 (9) | |
H13 | 0.9373 | 0.4287 | 1.1863 | 0.053* | |
C14 | 0.89803 (19) | 0.4990 (2) | 0.9853 (4) | 0.0389 (9) | |
H14 | 0.9307 | 0.5443 | 1.0190 | 0.047* | |
C15 | 0.84686 (18) | 0.5026 (2) | 0.8396 (4) | 0.0358 (8) | |
H15 | 0.8443 | 0.5503 | 0.7735 | 0.043* | |
C15A | 0.79813 (18) | 0.43628 (18) | 0.7869 (4) | 0.0293 (8) | |
C16 | 0.73583 (18) | 0.43972 (17) | 0.6437 (4) | 0.0284 (7) | |
H16 | 0.6877 | 0.4133 | 0.6588 | 0.034* | |
C17 | 0.73683 (18) | 0.47504 (16) | 0.4934 (4) | 0.0260 (7) | |
C18 | 0.66355 (17) | 0.48163 (17) | 0.3709 (4) | 0.0283 (8) | |
O18 | 0.66282 (13) | 0.52429 (13) | 0.2450 (3) | 0.0376 (6) | |
C19 | 0.59118 (18) | 0.43833 (17) | 0.4033 (4) | 0.0289 (8) | |
H19 | 0.5920 | 0.4063 | 0.5011 | 0.035* | |
C20 | 0.52515 (18) | 0.44386 (17) | 0.2969 (4) | 0.0282 (7) | |
H20 | 0.5289 | 0.4775 | 0.2028 | 0.034* | |
C20A | 0.44743 (17) | 0.40665 (17) | 0.3006 (4) | 0.0273 (7) | |
C21 | 0.81515 (18) | 0.50452 (18) | 0.4451 (4) | 0.0288 (8) | |
O21 | 0.87634 (12) | 0.46652 (13) | 0.4817 (3) | 0.0381 (6) | |
C22 | 0.87370 (18) | 0.62108 (17) | 0.3072 (4) | 0.0292 (7) | |
C23 | 0.95325 (18) | 0.60770 (18) | 0.3617 (4) | 0.0301 (8) | |
H23 | 0.9696 | 0.5666 | 0.4410 | 0.036* | |
C24 | 1.00802 (19) | 0.6561 (2) | 0.2971 (4) | 0.0355 (8) | |
H24 | 1.0631 | 0.6481 | 0.3305 | 0.043* | |
C25 | 0.9825 (2) | 0.7161 (2) | 0.1840 (5) | 0.0417 (9) | |
H25 | 1.0192 | 0.7501 | 0.1382 | 0.050* | |
C26 | 0.9017 (2) | 0.7254 (2) | 0.1394 (5) | 0.0438 (10) | |
H26 | 0.8839 | 0.7666 | 0.0615 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0264 (14) | 0.0261 (14) | 0.0424 (18) | 0.0027 (12) | 0.0064 (13) | 0.0087 (13) |
N2 | 0.0330 (15) | 0.0306 (15) | 0.0483 (19) | 0.0036 (13) | 0.0081 (14) | 0.0128 (14) |
C1 | 0.0338 (18) | 0.0260 (17) | 0.037 (2) | 0.0007 (14) | 0.0067 (16) | −0.0016 (15) |
C2 | 0.0296 (18) | 0.0328 (18) | 0.044 (2) | 0.0021 (15) | 0.0055 (16) | −0.0072 (17) |
C3 | 0.0319 (18) | 0.0277 (18) | 0.053 (2) | −0.0039 (15) | 0.0136 (17) | −0.0101 (17) |
C4 | 0.0352 (19) | 0.0222 (16) | 0.048 (2) | −0.0020 (14) | 0.0158 (17) | 0.0009 (16) |
C4A | 0.0315 (17) | 0.0189 (16) | 0.038 (2) | 0.0017 (14) | 0.0080 (15) | 0.0003 (14) |
O5 | 0.0388 (13) | 0.0274 (12) | 0.0334 (14) | −0.0016 (10) | 0.0091 (11) | 0.0052 (10) |
C6 | 0.046 (2) | 0.0230 (16) | 0.035 (2) | 0.0019 (15) | 0.0185 (16) | 0.0036 (15) |
C7 | 0.052 (2) | 0.0347 (19) | 0.036 (2) | 0.0038 (17) | 0.0167 (17) | 0.0016 (16) |
O8 | 0.0459 (14) | 0.0396 (14) | 0.0328 (14) | 0.0032 (11) | 0.0094 (11) | 0.0011 (11) |
C9 | 0.053 (2) | 0.045 (2) | 0.030 (2) | −0.0063 (18) | 0.0018 (18) | 0.0089 (17) |
C10 | 0.052 (2) | 0.036 (2) | 0.033 (2) | −0.0056 (17) | 0.0012 (17) | 0.0130 (16) |
O11 | 0.0494 (14) | 0.0264 (12) | 0.0326 (14) | −0.0041 (10) | 0.0030 (11) | 0.0038 (10) |
C11A | 0.0341 (18) | 0.0297 (17) | 0.0280 (19) | 0.0026 (14) | 0.0058 (15) | −0.0051 (15) |
C12 | 0.0406 (19) | 0.043 (2) | 0.031 (2) | 0.0058 (17) | 0.0032 (16) | 0.0031 (17) |
C13 | 0.036 (2) | 0.060 (2) | 0.035 (2) | 0.0046 (18) | 0.0014 (16) | −0.012 (2) |
C14 | 0.0308 (18) | 0.045 (2) | 0.040 (2) | −0.0020 (16) | 0.0038 (16) | −0.0132 (18) |
C15 | 0.0303 (17) | 0.0365 (19) | 0.041 (2) | 0.0004 (15) | 0.0061 (16) | −0.0066 (16) |
C15A | 0.0293 (17) | 0.0279 (17) | 0.0311 (19) | 0.0032 (14) | 0.0053 (15) | −0.0030 (15) |
C16 | 0.0321 (17) | 0.0189 (15) | 0.034 (2) | −0.0030 (13) | 0.0057 (14) | −0.0030 (14) |
C17 | 0.0336 (18) | 0.0142 (14) | 0.0305 (19) | 0.0014 (13) | 0.0056 (14) | −0.0012 (13) |
C18 | 0.0302 (17) | 0.0185 (15) | 0.036 (2) | 0.0013 (13) | 0.0022 (15) | −0.0011 (15) |
O18 | 0.0383 (13) | 0.0349 (13) | 0.0389 (15) | −0.0051 (11) | 0.0025 (11) | 0.0145 (11) |
C19 | 0.0360 (18) | 0.0209 (16) | 0.0307 (19) | −0.0001 (14) | 0.0071 (15) | 0.0027 (14) |
C20 | 0.0364 (19) | 0.0178 (15) | 0.0311 (19) | −0.0013 (13) | 0.0069 (15) | 0.0017 (13) |
C20A | 0.0265 (16) | 0.0171 (15) | 0.038 (2) | −0.0023 (13) | 0.0057 (15) | −0.0041 (14) |
C21 | 0.0318 (18) | 0.0236 (16) | 0.0310 (19) | 0.0016 (14) | 0.0037 (15) | −0.0004 (14) |
O21 | 0.0321 (13) | 0.0325 (12) | 0.0506 (16) | 0.0076 (11) | 0.0084 (11) | 0.0094 (11) |
C22 | 0.0322 (17) | 0.0194 (15) | 0.037 (2) | −0.0002 (14) | 0.0073 (15) | −0.0020 (14) |
C23 | 0.0319 (18) | 0.0255 (16) | 0.033 (2) | 0.0019 (14) | 0.0065 (15) | −0.0005 (15) |
C24 | 0.0322 (18) | 0.0316 (18) | 0.043 (2) | −0.0005 (15) | 0.0059 (16) | −0.0023 (16) |
C25 | 0.037 (2) | 0.037 (2) | 0.054 (3) | −0.0060 (16) | 0.0131 (17) | 0.0098 (18) |
C26 | 0.042 (2) | 0.035 (2) | 0.055 (3) | 0.0005 (17) | 0.0094 (18) | 0.0177 (18) |
N1—C21 | 1.370 (4) | C11A—C12 | 1.383 (4) |
N1—C22 | 1.407 (4) | C11A—C15A | 1.394 (4) |
N1—H1N | 0.88 (3) | C12—C13 | 1.392 (5) |
N2—C22 | 1.338 (4) | C12—H12 | 0.9500 |
N2—C26 | 1.341 (4) | C13—C14 | 1.386 (5) |
C1—C2 | 1.390 (4) | C13—H13 | 0.9500 |
C1—C20A | 1.401 (4) | C14—C15 | 1.371 (4) |
C1—H1 | 0.9500 | C14—H14 | 0.9500 |
C2—C3 | 1.380 (5) | C15—C15A | 1.405 (4) |
C2—H2 | 0.9500 | C15—H15 | 0.9500 |
C3—C4 | 1.386 (5) | C15A—C16 | 1.464 (4) |
C3—H3 | 0.9500 | C16—C17 | 1.350 (4) |
C4—C4A | 1.390 (4) | C16—H16 | 0.9500 |
C4—H4 | 0.9500 | C17—C18 | 1.491 (4) |
C4A—O5 | 1.371 (4) | C17—C21 | 1.518 (4) |
C4A—C20A | 1.411 (4) | C18—O18 | 1.236 (4) |
O5—C6 | 1.441 (4) | C18—C19 | 1.477 (4) |
C6—C7 | 1.495 (5) | C19—C20 | 1.326 (4) |
C6—H6A | 0.9900 | C19—H19 | 0.9500 |
C6—H6B | 0.9900 | C20—C20A | 1.463 (4) |
C7—O8 | 1.415 (4) | C20—H20 | 0.9500 |
C7—H7A | 0.9900 | C21—O21 | 1.219 (3) |
C7—H7B | 0.9900 | C22—C23 | 1.385 (4) |
O8—C9 | 1.429 (4) | C23—C24 | 1.381 (4) |
C9—C10 | 1.495 (5) | C23—H23 | 0.9500 |
C9—H9A | 0.9900 | C24—C25 | 1.380 (4) |
C9—H9B | 0.9900 | C24—H24 | 0.9500 |
C10—O11 | 1.440 (4) | C25—C26 | 1.383 (5) |
C10—H10A | 0.9900 | C25—H25 | 0.9500 |
C10—H10B | 0.9900 | C26—H26 | 0.9500 |
O11—C11A | 1.385 (4) | ||
C21—N1—C22 | 128.1 (3) | C11A—C12—H12 | 120.3 |
C21—N1—H1N | 110 (2) | C13—C12—H12 | 120.3 |
C22—N1—H1N | 120 (2) | C14—C13—C12 | 119.7 (3) |
C22—N2—C26 | 116.8 (3) | C14—C13—H13 | 120.2 |
C2—C1—C20A | 121.9 (3) | C12—C13—H13 | 120.2 |
C2—C1—H1 | 119.1 | C15—C14—C13 | 120.7 (3) |
C20A—C1—H1 | 119.1 | C15—C14—H14 | 119.6 |
C3—C2—C1 | 119.2 (3) | C13—C14—H14 | 119.6 |
C3—C2—H2 | 120.4 | C14—C15—C15A | 120.7 (3) |
C1—C2—H2 | 120.4 | C14—C15—H15 | 119.7 |
C2—C3—C4 | 120.5 (3) | C15A—C15—H15 | 119.7 |
C2—C3—H3 | 119.7 | C11A—C15A—C15 | 117.9 (3) |
C4—C3—H3 | 119.7 | C11A—C15A—C16 | 118.6 (3) |
C3—C4—C4A | 120.5 (3) | C15—C15A—C16 | 123.1 (3) |
C3—C4—H4 | 119.7 | C17—C16—C15A | 129.4 (3) |
C4A—C4—H4 | 119.7 | C17—C16—H16 | 115.3 |
O5—C4A—C4 | 123.5 (3) | C15A—C16—H16 | 115.3 |
O5—C4A—C20A | 116.4 (3) | C16—C17—C18 | 121.4 (3) |
C4—C4A—C20A | 120.1 (3) | C16—C17—C21 | 119.0 (3) |
C4A—O5—C6 | 118.2 (2) | C18—C17—C21 | 119.5 (3) |
O5—C6—C7 | 108.6 (3) | O18—C18—C19 | 120.2 (3) |
O5—C6—H6A | 110.0 | O18—C18—C17 | 120.3 (3) |
C7—C6—H6A | 110.0 | C19—C18—C17 | 119.4 (3) |
O5—C6—H6B | 110.0 | C20—C19—C18 | 120.5 (3) |
C7—C6—H6B | 110.0 | C20—C19—H19 | 119.8 |
H6A—C6—H6B | 108.3 | C18—C19—H19 | 119.8 |
O8—C7—C6 | 109.9 (3) | C19—C20—C20A | 130.5 (3) |
O8—C7—H7A | 109.7 | C19—C20—H20 | 114.7 |
C6—C7—H7A | 109.7 | C20A—C20—H20 | 114.7 |
O8—C7—H7B | 109.7 | C1—C20A—C4A | 117.8 (3) |
C6—C7—H7B | 109.7 | C1—C20A—C20 | 117.6 (3) |
H7A—C7—H7B | 108.2 | C4A—C20A—C20 | 124.6 (3) |
C7—O8—C9 | 112.0 (3) | O21—C21—N1 | 123.6 (3) |
O8—C9—C10 | 109.0 (3) | O21—C21—C17 | 121.6 (3) |
O8—C9—H9A | 109.9 | N1—C21—C17 | 114.7 (3) |
C10—C9—H9A | 109.9 | N2—C22—C23 | 123.8 (3) |
O8—C9—H9B | 109.9 | N2—C22—N1 | 112.1 (3) |
C10—C9—H9B | 109.9 | C23—C22—N1 | 124.0 (3) |
H9A—C9—H9B | 108.3 | C24—C23—C22 | 117.9 (3) |
O11—C10—C9 | 111.6 (3) | C24—C23—H23 | 121.1 |
O11—C10—H10A | 109.3 | C22—C23—H23 | 121.1 |
C9—C10—H10A | 109.3 | C25—C24—C23 | 119.8 (3) |
O11—C10—H10B | 109.3 | C25—C24—H24 | 120.1 |
C9—C10—H10B | 109.3 | C23—C24—H24 | 120.1 |
H10A—C10—H10B | 108.0 | C24—C25—C26 | 117.9 (3) |
C11A—O11—C10 | 117.1 (3) | C24—C25—H25 | 121.1 |
C12—C11A—O11 | 123.8 (3) | C26—C25—H25 | 121.1 |
C12—C11A—C15A | 121.5 (3) | N2—C26—C25 | 123.9 (3) |
O11—C11A—C15A | 114.4 (3) | N2—C26—H26 | 118.1 |
C11A—C12—C13 | 119.5 (3) | C25—C26—H26 | 118.1 |
C20A—C1—C2—C3 | 0.5 (5) | C21—C17—C18—O18 | −14.0 (4) |
C1—C2—C3—C4 | 1.3 (5) | C16—C17—C18—C19 | −9.2 (4) |
C2—C3—C4—C4A | −1.7 (5) | C21—C17—C18—C19 | 167.5 (3) |
C3—C4—C4A—O5 | 179.8 (3) | O18—C18—C19—C20 | 0.9 (5) |
C3—C4—C4A—C20A | 0.1 (5) | C17—C18—C19—C20 | 179.4 (3) |
C4—C4A—O5—C6 | −3.5 (4) | C18—C19—C20—C20A | 179.3 (3) |
C20A—C4A—O5—C6 | 176.3 (2) | C2—C1—C20A—C4A | −2.0 (5) |
C4A—O5—C6—C7 | −173.9 (3) | C2—C1—C20A—C20 | 175.8 (3) |
O5—C6—C7—O8 | −64.4 (3) | O5—C4A—C20A—C1 | −178.0 (3) |
C6—C7—O8—C9 | −167.7 (3) | C4—C4A—C20A—C1 | 1.7 (4) |
C7—O8—C9—C10 | −178.4 (3) | O5—C4A—C20A—C20 | 4.3 (4) |
O8—C9—C10—O11 | 67.3 (3) | C4—C4A—C20A—C20 | −175.9 (3) |
C9—C10—O11—C11A | 76.2 (3) | C19—C20—C20A—C1 | −169.6 (3) |
C10—O11—C11A—C12 | 44.2 (4) | C19—C20—C20A—C4A | 8.0 (5) |
C10—O11—C11A—C15A | −142.0 (3) | C22—N1—C21—O21 | 2.3 (5) |
O11—C11A—C12—C13 | 173.2 (3) | C22—N1—C21—C17 | 179.3 (3) |
C15A—C11A—C12—C13 | −0.2 (5) | C16—C17—C21—O21 | 38.3 (4) |
C11A—C12—C13—C14 | −1.2 (5) | C18—C17—C21—O21 | −138.4 (3) |
C12—C13—C14—C15 | 1.5 (5) | C16—C17—C21—N1 | −138.8 (3) |
C13—C14—C15—C15A | −0.3 (5) | C18—C17—C21—N1 | 44.4 (4) |
C12—C11A—C15A—C15 | 1.4 (5) | C26—N2—C22—C23 | 2.0 (5) |
O11—C11A—C15A—C15 | −172.7 (3) | C26—N2—C22—N1 | 178.7 (3) |
C12—C11A—C15A—C16 | −172.5 (3) | C21—N1—C22—N2 | 164.2 (3) |
O11—C11A—C15A—C16 | 13.5 (4) | C21—N1—C22—C23 | −19.1 (5) |
C14—C15—C15A—C11A | −1.1 (5) | N2—C22—C23—C24 | −2.0 (5) |
C14—C15—C15A—C16 | 172.4 (3) | N1—C22—C23—C24 | −178.3 (3) |
C11A—C15A—C16—C17 | −145.3 (3) | C22—C23—C24—C25 | 0.9 (5) |
C15—C15A—C16—C17 | 41.2 (5) | C23—C24—C25—C26 | 0.0 (5) |
C15A—C16—C17—C18 | −171.7 (3) | C22—N2—C26—C25 | −1.0 (5) |
C15A—C16—C17—C21 | 11.6 (5) | C24—C25—C26—N2 | 0.1 (6) |
C16—C17—C18—O18 | 169.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O18 | 0.88 (3) | 2.04 (3) | 2.737 (3) | 135 (3) |
C19—H19···O5 | 0.95 | 2.22 | 2.823 (4) | 120 |
C23—H23···O21 | 0.95 | 2.34 | 2.903 (4) | 117 |
C6—H6B···O18i | 0.99 | 2.50 | 3.323 (4) | 140 |
C9—H9A···O8ii | 0.99 | 2.48 | 3.447 (4) | 165 |
C10—H10A···O11ii | 0.99 | 2.41 | 3.238 (4) | 140 |
C26—H26···C22iii | 0.95 | 2.76 | 3.678 (4) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z−1/2. |
Funding information
This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2017.312 and by the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].
References
Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589. CSD CrossRef IUCr Journals Google Scholar
Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166. CSD CrossRef IUCr Journals Google Scholar
Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387. CSD CrossRef IUCr Journals Google Scholar
Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465. Google Scholar
Anh, T. L., Hieu, H. T., Phuong, T. T. N., Ha, T. P., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajoe, A. T. (2014). Macroheterocycles 7, 386–390. Google Scholar
Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). Chem. Heterocycl. Compd, 55, 654–659. Web of Science CSD CrossRef CAS Google Scholar
Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. C. 50, 444–457. Web of Science CrossRef CAS Google Scholar
Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307–1308. Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432. CSD CrossRef IUCr Journals Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849. CSD CrossRef IUCr Journals Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Tuyen, N. V. & Khrustalev, V. N. (2016). Acta Cryst. E72, 829–832. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565–o566. CSD CrossRef IUCr Journals Google Scholar
Hiraoka, M. (1982). Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha. Google Scholar
Khieu, T. H., Soldatenkov, A. T., Le Tuan, A., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770. Web of Science CrossRef CAS Google Scholar
Kolyadina, N. M., Sokol, V. I., Kvartalov, V. B., Davydov, V. V., Fomicheva, E. A., Soldatenkov, A. T. & Sergienko, V. S. (2013). Russ. J. Inorg. Chem. 58, 671–677. Web of Science CrossRef CAS Google Scholar
Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625. Web of Science CrossRef CAS Google Scholar
Le, T. A., Nguyen, T. T. P., Truong, H. H., Soldatenkov, A. T., Bui, T. V., Tran, T. T. V., Dao, T. N., Voskressensky, L. G., To, H. T. & Khrustalev, V. N. (2018). Macroheterocycles 11, 197–202. Google Scholar
Le, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224–225. Web of Science CrossRef CAS Google Scholar
Le, A. T., Tran, V. T. T., Truong, H. H., Nguyen, L. M., Luong, D. M., Do, T. T., Nguyen, D. T., Dao, N. T., Le, D. T., Soldatenkov, A. T. & Khrustalev, V. N. (2019). Mendeleev Commun. 29, 375–377. Web of Science CSD CrossRef CAS Google Scholar
Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457–462. Google Scholar
Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008b). Russ. J. Org. Chem. 44, 1665–1670. Web of Science CrossRef CAS Google Scholar
Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–36. Web of Science CSD CrossRef Google Scholar
Mazur, V. M., Kolyadina, N. M., Sokol, V. I., Soro, S., Sergienko, V. S. & Davydov, V. V. (2010). Russ. J. Coord. Chem. 36, 838–843. Web of Science CrossRef CAS Google Scholar
Nguyen, V. T., Truong, H. H., Le, T. A., Soldatenkov, A. T., Thi, T. A. D., Tran, T. T. V., Esina, N. Y. & Khrustalev, V. N. (2017). Acta Cryst. E73, 118–121. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pedersen, C. J. (1988). Angew. Chem. 100, 1053–1059. CrossRef CAS Google Scholar
Polyakova, I. N., Sergienko, V. S., Kvartalov, V. B., Kolyadina, N. M. & Sokol, V. I. (2016). Russ. J. Inorg. Chem. 61, 168–173. Web of Science CSD CrossRef CAS Google Scholar
Polyakova, I. N., Sokol, V. I., Sergienko, V. S., Kolyadina, N. M., Kvartalov, V. B. & Polyanskaya, N. A. (2018). Crystallogr. Rep. 63, 358–363. Web of Science CSD CrossRef CAS Google Scholar
Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 Article 119378. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086–2088. Web of Science CrossRef Google Scholar
Sokol, V. I., Kvartalov, V. B., Kolyadina, N. M., Sergienko, V. S., Soldatenkov, A. T., Davydov, V. V. & Drogova, G. M. (2014). Russ. J. Inorg. Chem. 59, 1094–1100. Web of Science CSD CrossRef CAS Google Scholar
Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. J. (2019). J. Organomet. Chem. 886, 71–75. Web of Science CSD CrossRef CAS Google Scholar
Volkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). Chem. Heterocycl. Compd. 43, 445–453. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.