research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-amino­pyridinium thio­cyanate–4-amino­pyridine (1/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, St Josephs College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620002, Tamil Nadu, India, and bLaboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem 636 011, Tamil Nadu, India
*Correspondence e-mail: r.brightson2010@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 27 July 2020; accepted 20 August 2020; online 28 August 2020)

In the crystals of the title compound, C5H7N2+·CNS·C5H6N2, the components are linked by three N—H⋯N and two N—H⋯S hydrogen bonds, resulting in two inter­penetrating three-dimensional networks. Hirshfeld surface analysis shows that the most important contributions to the crystal packing are from H⋯H (36.6%), C⋯H/H⋯C (20.4%), S⋯H/H⋯S (19.7%) and N⋯H/H⋯N (13.4%) inter­actions.

1. Chemical context

Processes based on metathesis reactions are a greener alternative for the synthesis of organic materials, avoiding haza­rdous pollution to the environment (Grubbs, 2003[Grubbs, R. H. (2003). Handbook of Metathesis. New York: Wiley VCH.]). A Nobel prize was awarded for the development of metathesis reactions used for the synthesis of organic mol­ecules. Later, new pharmaceuticals and agrochemical materials were developed using this reaction.

[Scheme 1]

In order to access important sulfur-containing compounds, organic thio­cyanates play vital role as synthetic inter­mediates (Castanheiro et al., 2016[Castanheiro, T., Suffert, J., Donnard, M. & Gulea, M. (2016). Chem. Soc. Rev. 45, 495-505.]). The versatile thio­cyanate ion can join to the reaction centre of a suitable cation or neutral mol­ecule through the S or N atom, resulting in the assembly of supra­molecular compounds (Lee et al., 2017[Lee, D. W. & Shin, J. W. (2017). Acta Cryst. E73, 17-19.]). For example, the crystal of 2-amino­cyclo­hexan-1-aminium thio­cyanate involves N—H⋯S and N—H⋯N inter­actions between the thio­cyanate anion and the amine and aminium groups, leading to the formation of a two-dimensional network (Salem et al., 2012[Salem, H. F., Hasbullah, S. A. & Yamin, B. M. (2012). Acta Cryst. E68, o1732.]). 4-Amino­pyridine has many biological applications, especially in treating neurological problems. For example, it acts as a potassium channel blocker (Schwid et al., 1997[Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-820.]). With this background, the present work is carried out and the results are reported here.

2. Structural commentary

The asymmetric unit of the title compound is composed of one 4-amino­pyridine mol­ecule, one 4-amino­pyridinium cation and one thio­cyanate anion as shown in Fig. 1[link]. The cation forms hydrogen bonds with the neutral mol­ecule and with the anion (Table 1[link]). The bond lengths and angles in neutral 4-amino­pyridine are similar to those in a previous report (Anderson et al., 2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]), but the bond angle at the pyridine N3 atom is increased to 119.47 (14)° due to the hydrogen-bonding inter­action. The thio­cyanate anion is linear with an N5—C11—S bond of 177.85 (18)°. All bond lengths and angles in the amino­pyridinium cation are within the normal ranges (Fun et al., 2010[Fun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2010-o2011.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯Si 0.86 2.58 3.4222 (17) 165
N4—H4B⋯N5 0.86 2.10 2.952 (2) 168
N3—H3⋯N2 0.86 1.83 2.688 (2) 172
N1—H1A⋯Sii 0.86 2.62 3.4498 (18) 162
N1—H1B⋯N5iii 0.86 2.23 3.083 (3) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z-1.
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound.

3. Supra­molecular features

In the crystal, the 4-amino­pyridinium cation and 4-amino­pyridine mol­ecule are linked by a strong N—H⋯N hydrogen bond (Table 1[link]). The thio­cyanate ions act as bridges, each of them forming two N⋯H—N and two S⋯H—N hydrogen bonds (Fig. 2[link]). As a result, two inter­penetrating three-dimensional nets of hydrogen bonds are formed, as shown in Fig. 3[link]. The short inter­planar distance of 3.3419 (7) Å between the mean planes of two 4-amino­pyridine mol­ecules related by an inversion center indicates a ππ inter­action [CgCg(1 − x, −y, −z) = 3.7635 (13) Å where Cg is the centroid of the N2/C1–C5 ring.

[Figure 2]
Figure 2
Hydrogen bonds in the crystal of the title compound.
[Figure 3]
Figure 3
Crystal packing diagram of the title compound showing two inter­penetrating 3D nets of hydrogen bonds presented as blue and purple dotted lines.

4. Hirshfeld surface analysis

To qu­antify the inter­molecular contacts in the title structure, the Hirshfeld surface and two-dimensional fingerprint plots were calculated using Crystal Explorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.]). The Hirshfeld surface mapped over dnorm is depicted in Fig. 4[link], where the red regions make apparent hydrogen bonds in this structure. The intensity of the red color is higher for N1—H1A⋯S, indicating the strongest inter­action as compared to other red spots on the Hirshfeld surface. The fingerprint plots show that the largest contributions are from H⋯H (36.6%), C⋯H/H⋯C (20.4%), S⋯H/H⋯S (19.7%) and N⋯H/H⋯N (13.4%) inter­actions. Other inter­actions contributing to the crystal packing are C⋯C (5.8%), N⋯C/C⋯N (2.7%), N⋯N (1.1%), N⋯S/S⋯N (0.2%) and S⋯C/C⋯S (0.2%).

[Figure 4]
Figure 4
Hirshfeld surface plotted over dnorm and two-dimensional fingerprint plots for the title compound.

5. Database survey

A search of the Cambridge Crystallographic Database (CSD, version 5.40, update of September 19; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was undertaken for structures containing 4-amino­pyridine and for thio­cyanate ions in the salts with organic ammonium cations. The room-temperature structure of 4-amino­pyridine was reported by Chao & Schempp (1977[Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557-1564.]). Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]) redetermined the structure at 150 K and reported that pyramidalization occurs at the amino N atom, with the N atom displaced from the plane of the three C/H/H atoms to which it is bonded. An N—H⋯N(pyridine) inter­action links the mol­ecules in a head-to-tail manner, forming zigzag chains along the c-axis direction. This is in contrast to the structure of the title compound, where N—H⋯N(pyridine) inter­actions link the mol­ecules in a tail-to-tail manner. van Rooyan & Boeyens (1975[Rooyen, P. H. van & Boeyens, J. C. A. (1975). Acta Cryst. B31, 2933-2934.]) reported the SCH ions in sodium thio­cyanate to be linear within experimental error. reported that in 2-amino­cyclo­hexan-1-aminium thio­cyanate (Salem et al., 2012[Salem, H. F., Hasbullah, S. A. & Yamin, B. M. (2012). Acta Cryst. E68, o1732.]), the thio­cyanate anion is involved in N—H⋯S and N—H⋯N inter­actions with both the amine and the aminium N atoms. Bagabas et al. (2015[Bagabas, A. A., Alhoshan, S. B., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2015). Acta Cryst. E71, o62-o63.]) reported that cyclo­hexyl ammonium thio­cyanate has slightly a distorted chair conformation and that the mol­ecules are linked by N—H⋯N and N—H⋯S hydrogen-bonding inter­actions. In bis­[(18-crown-6-κ6O)sodium] (18-crown-6-1κ6O)-μ-thio­cyanato-1:2κ2S:N-penta­thio­­cyanato-2κ5N-indate(III)sodium 1,2-di­chloro­ethane ses­qui­solvate (Kong, 2009[Kong, L. (2009). Acta Cryst. E65, m1312.]), the metal atom is in a six-coordinated octa­hedral environment, bounded to the N atoms of six thio­cyanate ions and the crystal packing exhibits no significant short inter­molecular contacts. In the title compound the N—H⋯N and N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric structure and 4-amino­pyridine is connected to the SCN ion by N—H⋯N hydrogen bonds.

6. Synthesis and crystallization

4-Amino­pyridine and sodium thio­cyanate were purchased from Merck. A solution of equimolar amounts of 4-amino­pyridine and sodium thio­cyanate in double-distilled water was stirred intensively for nearly 4 h, filtered with Whatman filter paper and allowed to evaporate at room temperature. Colourless needle-like crystals of the title compound were obtained after a period of seven days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in idealized positions (C—H = 0.93 Å, N—H = 0.86 Å) and treated as riding with Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula C5H7N2+·CNS·C5H6N2
Mr 247.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.9047 (19), 12.138 (2), 13.959 (3)
β (°) 94.670 (8)
V3) 1334.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.70 × 0.44 × 0.34
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. (2014). Acta Cryst. A70, C1437.])
Tmin, Tmax 0.86, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 15272, 3295, 2604
Rint 0.023
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.148, 1.03
No. of reflections 3295
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.27
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

4-Aminopyridinium thiocyanate–4-aminopyridine (1/1) top
Crystal data top
C5H7N2+·CNS·C5H6N2F(000) = 520
Mr = 247.32Dx = 1.231 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.9047 (19) ÅCell parameters from 15272 reflections
b = 12.138 (2) Åθ = 3.0–28.0°
c = 13.959 (3) ŵ = 0.23 mm1
β = 94.670 (8)°T = 293 K
V = 1334.9 (5) Å3Needle, colourless
Z = 40.70 × 0.44 × 0.34 mm
Data collection top
Bruker APEXII CCD
diffractometer
2604 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
φ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 1010
Tmin = 0.86, Tmax = 0.93k = 1614
15272 measured reflectionsl = 1818
3295 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.2492P]
where P = (Fo2 + 2Fc2)/3
3295 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.53196 (8)0.54205 (5)0.81261 (6)0.1064 (3)
N40.60108 (18)0.16957 (12)0.60040 (9)0.0665 (4)
H4A0.6801330.1294750.6283220.080*
H4B0.5480150.2163410.6332390.080*
N30.47226 (19)0.13478 (13)0.31204 (9)0.0692 (4)
H30.4441150.1267540.2516300.083*
N20.4113 (2)0.11863 (13)0.12028 (10)0.0723 (4)
N10.3084 (2)0.15215 (13)0.17439 (10)0.0761 (4)
H1A0.2343780.1103190.2047800.091*
H1B0.3609450.2012120.2050730.091*
C100.56072 (18)0.15921 (12)0.50609 (10)0.0513 (3)
C10.34225 (19)0.14074 (13)0.07807 (10)0.0568 (4)
C70.4312 (2)0.22270 (14)0.45860 (11)0.0620 (4)
H70.3733180.2747500.4923030.074*
C90.6444 (2)0.08397 (13)0.45041 (11)0.0599 (4)
H90.7318300.0406350.4785610.072*
N50.4673 (3)0.34464 (16)0.72012 (13)0.0982 (6)
C80.5971 (2)0.07464 (15)0.35512 (12)0.0649 (4)
H80.6537560.0245920.3187240.078*
C20.2604 (2)0.06267 (13)0.02580 (12)0.0650 (4)
H20.1805040.0157650.0567170.078*
C110.4971 (2)0.42600 (16)0.75820 (12)0.0656 (4)
C40.4626 (2)0.20694 (14)0.02711 (12)0.0638 (4)
H40.5219710.2601520.0586470.077*
C30.2976 (2)0.05505 (15)0.07087 (12)0.0713 (5)
H3A0.2403610.0025030.1044140.086*
C60.3912 (2)0.20756 (16)0.36331 (13)0.0718 (5)
H60.3042430.2493250.3326090.086*
C50.4917 (2)0.19239 (16)0.06949 (13)0.0712 (5)
H50.5730450.2367750.1022810.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0858 (4)0.0832 (4)0.1442 (6)0.0020 (3)0.0260 (4)0.0304 (3)
N40.0740 (9)0.0703 (8)0.0540 (7)0.0003 (7)0.0030 (6)0.0093 (6)
N30.0759 (9)0.0846 (10)0.0466 (7)0.0138 (8)0.0026 (6)0.0061 (6)
N20.0837 (10)0.0825 (10)0.0502 (7)0.0200 (8)0.0031 (7)0.0076 (7)
N10.0919 (10)0.0808 (10)0.0546 (8)0.0061 (8)0.0003 (7)0.0010 (7)
C100.0518 (7)0.0510 (7)0.0513 (7)0.0127 (6)0.0052 (6)0.0041 (6)
C10.0602 (8)0.0580 (8)0.0524 (8)0.0128 (6)0.0052 (6)0.0065 (6)
C70.0575 (8)0.0665 (9)0.0620 (9)0.0026 (7)0.0052 (7)0.0096 (7)
C90.0607 (8)0.0562 (8)0.0629 (9)0.0008 (7)0.0065 (7)0.0045 (7)
N50.1254 (16)0.0796 (12)0.0945 (13)0.0078 (10)0.0381 (11)0.0197 (10)
C80.0708 (10)0.0654 (9)0.0606 (9)0.0094 (8)0.0180 (7)0.0126 (7)
C20.0735 (10)0.0593 (9)0.0618 (9)0.0019 (7)0.0027 (7)0.0071 (7)
C110.0665 (9)0.0691 (10)0.0618 (9)0.0046 (8)0.0096 (7)0.0052 (8)
C40.0604 (9)0.0683 (9)0.0630 (9)0.0036 (7)0.0075 (7)0.0066 (7)
C30.0853 (12)0.0663 (10)0.0635 (10)0.0089 (9)0.0133 (9)0.0021 (8)
C60.0666 (10)0.0843 (12)0.0631 (10)0.0041 (9)0.0034 (7)0.0008 (9)
C50.0679 (10)0.0794 (11)0.0648 (10)0.0082 (9)0.0028 (8)0.0180 (9)
Geometric parameters (Å, º) top
S—C111.613 (2)C1—C41.395 (2)
N4—C101.3351 (19)C7—C61.354 (2)
N4—H4A0.8600C7—H70.9300
N4—H4B0.8600C9—C81.357 (2)
N3—C61.333 (2)C9—H90.9300
N3—C81.331 (2)N5—C111.137 (2)
N3—H30.8600C8—H80.9300
N2—C31.334 (2)C2—C31.361 (2)
N2—C51.335 (2)C2—H20.9300
N1—C11.3565 (19)C4—C51.361 (2)
N1—H1A0.8600C4—H40.9300
N1—H1B0.8600C3—H3A0.9300
C10—C91.400 (2)C6—H60.9300
C10—C71.404 (2)C5—H50.9300
C1—C21.388 (2)
C10—N4—H4A120.0C10—C9—H9120.2
C10—N4—H4B120.0N3—C8—C9122.14 (15)
H4A—N4—H4B120.0N3—C8—H8118.9
C6—N3—C8119.47 (14)C9—C8—H8118.9
C6—N3—H3120.3C3—C2—C1119.71 (16)
C8—N3—H3120.3C3—C2—H2120.1
C3—N2—C5116.33 (15)C1—C2—H2120.1
C1—N1—H1A120.0N5—C11—S177.85 (18)
C1—N1—H1B120.0C5—C4—C1118.94 (17)
H1A—N1—H1B120.0C5—C4—H4120.5
N4—C10—C9121.56 (14)C1—C4—H4120.5
N4—C10—C7121.36 (14)N2—C3—C2123.74 (17)
C9—C10—C7117.08 (13)N2—C3—H3A118.1
N1—C1—C2121.87 (15)C2—C3—H3A118.1
N1—C1—C4121.19 (16)N3—C6—C7122.20 (16)
C2—C1—C4116.93 (14)N3—C6—H6118.9
C6—C7—C10119.49 (15)C7—C6—H6118.9
C6—C7—H7120.3N2—C5—C4124.33 (17)
C10—C7—H7120.3N2—C5—H5117.8
C8—C9—C10119.61 (15)C4—C5—H5117.8
C8—C9—H9120.2
N4—C10—C7—C6178.25 (15)N1—C1—C4—C5179.89 (15)
C9—C10—C7—C61.2 (2)C2—C1—C4—C50.6 (2)
N4—C10—C9—C8178.74 (14)C5—N2—C3—C20.5 (3)
C7—C10—C9—C80.7 (2)C1—C2—C3—N20.5 (3)
C6—N3—C8—C90.6 (3)C8—N3—C6—C70.1 (3)
C10—C9—C8—N30.2 (2)C10—C7—C6—N30.8 (3)
N1—C1—C2—C3179.40 (15)C3—N2—C5—C41.1 (3)
C4—C1—C2—C31.1 (2)C1—C4—C5—N20.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Si0.862.583.4222 (17)165
N4—H4B···N50.862.102.952 (2)168
N3—H3···N20.861.832.688 (2)172
N1—H1A···Sii0.862.623.4498 (18)162
N1—H1B···N5iii0.862.233.083 (3)172
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z1.
 

Acknowledgements

We acknowledge the CIMF (Centre for Instrumentation), Periyar University, Tamilnadu, India, for the single crystal X-ray diffraction data collection.

References

First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBagabas, A. A., Alhoshan, S. B., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2015). Acta Cryst. E71, o62–o63.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastanheiro, T., Suffert, J., Donnard, M. & Gulea, M. (2016). Chem. Soc. Rev. 45, 495–505.  CrossRef Google Scholar
First citationChao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2010–o2011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrubbs, R. H. (2003). Handbook of Metathesis. New York: Wiley VCH.  Google Scholar
First citationKong, L. (2009). Acta Cryst. E65, m1312.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, D. W. & Shin, J. W. (2017). Acta Cryst. E73, 17–19.  CSD CrossRef IUCr Journals Google Scholar
First citationRooyen, P. H. van & Boeyens, J. C. A. (1975). Acta Cryst. B31, 2933–2934.  CrossRef ICSD IUCr Journals Google Scholar
First citationSalem, H. F., Hasbullah, S. A. & Yamin, B. M. (2012). Acta Cryst. E68, o1732.  CSD CrossRef IUCr Journals Google Scholar
First citationSchwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–820.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. (2014). Acta Cryst. A70, C1437.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds