research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural (at 100 K) and DFT studies of 2′-nitro­flavone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, and bSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
*Correspondence e-mail: zhekic@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 3 August 2020; accepted 3 August 2020; online 7 August 2020)

The geometry of the title mol­ecule [systematic name: 2-(2-nitro­phen­yl)-4H-chromen-4-one], C15H9NO4, is determined by two dihedral angles formed by the mean plane of phenyl ring with the mean planes of chromone moiety and nitro group, being 50.73 (5) and 30.89 (7)°, respectively. The crystal packing is determined by ππ inter­actions and C—H⋯O contacts. The results of DFT calculations at the B3LYP/6–31G* level of theory provided an explanation of the unusually large dihedral angle between the chromone moiety and the phenyl group. The electrostatic potential map on the mol­ecular surface was calculated in order to determine the potential binding sites to receptors.

1. Chemical context

The naturally occurring group of heterocyclic compounds known as flavonoids has received considerable attention over the past 15 years. The synthesis and applications of flavones and their derivatives have been studied extensively because of their diverse pharmaceutical properties. Besides their physiological role in plants (Agati et al., 2012[Agati, G., Azzarello, E., Pollastri, S. & Tattini, M. (2012). Plant Sci. 196, 67-76.]), this class of compounds has demonstrated anti­allergic, anti­viral, anxiolytic and anti-inflammatory activities (Manthey et al., 2001[Manthey, J., Grohmann, K. & Guthrie, N. (2001). Curr. Med. Chem. 8, 135-153.]). Several synthetic flavonoids and their nitro derivatives, including a few halogen-substituted compounds, have been found to act as highly competitive ligands for benzodiazepine receptors, suggesting a possible use as anxiolytic drugs (Marder et al., 1995[Marder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P. G., Medina, J. H. & Paladini, A. C. (1995). Bioorg. Med. Chem. Lett. 5, 2717-2720.]). Most importantly, several nitro derivatives of flavones have been reported to possess anti­proliferative properties against human and murine cancerous cells, by the mechanism of induced apoptosis (Blank et al., 2004[Blank, V. C., Poli, C., Marder, M. & Roguin, L. P. (2004). Bioorg. Med. Chem. Lett. 14, 133-136.]). Moreover, some flavonoids have been found to be capable of restoring the viability of human vascular endothelial cells, thus providing both cytoprotective and cytotoxic effects on normal and cancerous cells, respectively (Ramos, 2008[Ramos, S. (2008). Mol. Nutr. Food Res. 52, 507-526.]). The title compound, 2′-nitro­flavone, has previously been shown to effectively inhibit human and murine tumor cell activity without affecting the non-tumor cells. Induced apoptosis mol­ecular mechanisms have been studied in vitro for HeLa human cervix carcinoma (Cárdenas et al., 2008[Cárdenas, M. G., Blank, V. C., Marder, M. & Roguin, L. P. (2008). Cancer Lett. 268, 146-157.]) and in vivo in murine adenocarcinoma cells (Cárdenas et al., 2009[Cárdenas, M. G., Zotta, E., Marder, M. & Roguin, L. P. (2009). Int. J. Cancer, 125, 222-228.]). Several haematological cancer cell lines were used in the cytotoxicity evaluation of the title compound, along with a culture of healthy peripheral blood mononuclear cells (PBMCs); the IC50 values (drug concentrations needed to induce a 50% inhibition of cell growth) after 2′-nitro­flavone treatment ranged from 1±0.5 µmol L−1 to 9±1.4 µmol/L for various neoplastic cells, while the healthy cells IC50 was found to be over 80 µmol L−1, effectively leaving the cells intact under the concentrations sufficient for cancerous cells (Cárdenas et al., 2012[Cárdenas, M. G., Blank, V. C., Marder, M. N. & Roguin, L. P. (2012). Anticancer Drugs, 23, 815-826.]). Despite the evident importance of nitro­flavone derivatives, structural studies until now have been limited to only one reported nitro­flavone-based compound (Kendi et al., 1996[Kendi, E., Özbey, S., Tunçbilek, M. & Ertan, R. (1996). Cryst. Res. Technol. 31, 611-615.]). In this work, a combined study consisting of X-ray diffraction (XRD) structural analysis and quantum-chemical DFT calculations was carried out in order to obtain insight into the structure–property relationship, and more specifically the effect of the nitro substituent in the ortho-position of the phenyl moiety of a flavone.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 2′-nitro­flavone is presented in Fig. 1[link]. The mean plane of the benzene ring makes dihedral angles of 50.73 (5) and 30.89 (7)° with the mean planes of the chromone moiety and the nitro group, respectively. The dihedral angle between mean planes of the chromone and benzene groups is unusually large when compared to other ortho-substituted flavone derivatives. For instance, the mol­ecule of 2′-meth­oxy­flavone was reported to be almost planar, with a dihedral angle of 2.9° (Wallet et al., 1990[Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990). Acta Cryst. C46, 1536-1540.]). Even in the flavonoid with a bulky carbazole substituent in the same position, this dihedral angle is only 29.2° (Zheng, 2018[Zheng, Z. K. (2018). CSD Communication (refcode XIJVAQ). CCDC, Cambridge, England.]). The length of the single bond between the chromone and benzene moieties is 1.469 (2) Å, indicating some ππ conjugation. The unusually large dihedral angle in the title mol­ecule can be attributed to the steric tension between the nitro group and the chromone oxygen atom, whereas in the carbazole derivative this substituent is twisted far enough from the plane of the benzene ring to avoid it coming into close proximity with the flavone core.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the title mol­ecules form a parquet-like structure, with alternating layers of coplanar chromone backbones (Fig. 2[link]). The presence of ππ inter­actions in the crystal packing can be suggested from the short inter­molecular distance of 3.299 (4) Å between the overlapping C9 atoms from opposing mol­ecules. Moreover, a short contact of 3.286 (3) Å between the carbonyl oxygen atom and the centroid of the opposing heterocyclic ring is found, which suggests an inter­action of the oxygen atom with the π-system (Fig. 3[link]). Such an inter­molecular inter­action was found in the crystal structure of chiral amino alcohol with a penta­fluoro­phenyl group (Korenaga et al., 2003[Korenaga, T., Tanaka, H., Ema, T. & Sakai, T. (2003). J. Fluor. Chem. 122, 201-205.]). Two short C—H⋯O contacts also occur, indicating at additional structural stability (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.933 (17) 2.675 (16) 3.198 (3) 116.1 (12)
C4—H4⋯O4i 0.971 (16) 2.446 (16) 3.109 (3) 125.3 (12)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].
[Figure 2]
Figure 2
Parquet-like mol­ecular packing in the title structure.
[Figure 3]
Figure 3
Short inter­molecular C⋯C and C—O⋯π contacts in the crystal of the title compound.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 19; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title mol­ecule yielded no entries. A single nitro­flavone entry, for 2′-methyl-3′-nitro­flavone, was found (REZROD; Kendi et al., 1996[Kendi, E., Özbey, S., Tunçbilek, M. & Ertan, R. (1996). Cryst. Res. Technol. 31, 611-615.]). A search for flavone-core mol­ecules with only an ortho-substituted phenyl ring returned a total of six entries, three of which correspond to the compound with a meth­oxy group in the 2′-position [KEPLAS (Wallet et al., 1990[Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990). Acta Cryst. C46, 1536-1540.]), KEPLAS01 (McKendall et al., 2008[McKendall, M., Smith, T., Anh, K., Ellis, J., McGee, T., Foroozesh, M., Zhu, N. & Stevens, C. L. K. (2008). J. Chem. Crystallogr. 38, 231-237.]), KEPLAS02 (Zia et al.., 2020[Zia, M., Khalid, M., Hameed, S., Irran, E. & Naseer, M. M. (2020). J. Mol. Struct. 1207 Article 127811.])]; more specifically, one of the entries represents a structure of a possible polymorph, while the other two correspond to the same form. The other three correspond to carbazole (XIJVAQ; Zheng, 2018[Zheng, Z. K. (2018). CSD Communication (refcode XIJVAQ). CCDC, Cambridge, England.]), hy­droxy (YUDWEZ; Seetharaman & Rajan, 1995[Seetharaman, J. & Rajan, S. S. (1995). Z. Kristallogr. 210, 104-106.]) and ethyl glycolate (PIGXUB; Goyal et al., 2018[Goyal, N., Do, C., Donahue, J. P., Mague, J. T. & Foroozesh, M. (2018). IUCrData, 3, x180993.]) substituents. Most of these mol­ecules exhibit only slight deviations from planarity, with the exception of carbazole-substituted mol­ecule.

5. DFT calculations

In an attempt to get further insight into structure and properties of the title mol­ecule (I)[link], a DFT study was carried out at the B3LYP/6-31G* level of theory with GAUSSIAN 16 (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2016). GAUSSIAN016. Rev. C.01. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com.]) software. The geometry of the ground state was optimized, using the XRD data as a starting point. The optimized geometry was confirmed to be the minimum by vibrational frequency analysis. Two previously described flavonoids, with meth­oxy (II) and carbazole (III) substituents in the 2′-position, were also optimized and compared with the XRD data. Selected geometrical parameters are presented in Tables 2[link]–4[link][link].

Table 2
Experimental (XRD) and calculated (DFT) dihedral angles (°) between the phenyl and chromone moieties in the title mol­ecule (I)[link], the 2′-meth­oxy derivative (II) and the 2′-carbazole derivative (III)

  XRD DFT
(I) 50.73 (5) 47.56
(II) 2.89 (7) 22.16
(III) 29.21 (6) 40.13

Table 3
Experimental (XRD) and calculated (DFT) lengths of single bonds (Å) between the phenyl and chromone moieties in the title mol­ecule (I)[link], the 2′-meth­oxy derivative (II) and the 2′-carbazole derivative (III)

  XRD DFT
(I) 1.469 (2) 1.482
(II) 1.475 (4) 1.477
(III) 1.478 (2) 1.481

Table 4
Experimental (XRD) and calculated (DFT) dihedral/torsion angles (°) between the phenyl group and the substituent in the 2′-position in the title mol­ecule (I)[link], the meth­oxy derivative (II) and the carbazole derivative (III)

  XRD DFT
(I) 30.89 (7) 31.83
(II) 174.3 (2) 176.78
(III) 69.95 (9) 66.40

The calculated parameters are in satisfactory agreement with those obtained experimentally. The range of calculated dihedral angles between the moieties comprising the flavone core is narrower than that observed in the crystal structures, but still demonstrates the same trend with the title compound having the largest angle.

Considering the importance of the biological functions of the title compound, including its ability to competitively bind to benzodiazepine receptors, the electrostatic potential on the van der Waals surface was calculated (Fig. 4[link]). While initially we had expected the nitro group to be the negative charge concentration site, it turned out to be the oxygen of the chromone moiety. We speculate that it could be the binding part in this mol­ecule's inter­action with benzodiazepine receptors.

[Figure 4]
Figure 4
Electrostatic potential on the van der Waals surface of the title compound.

6. Synthesis and crystallization

The synthesis of the title compound was performed as described in the literature (Barros & Silva, 2006[Barros, A. I. R. N. A. & Silva, A. M. S. (2006). Monatsh. Chem. 137, 1505-1528.]). The obtained product was recrystallized by slow evaporation from ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Data collection was performed at 100 K. All hydrogen atoms were located from the difference-Fourier map and freely refined.

Table 5
Experimental details

Crystal data
Chemical formula C15H9NO4
Mr 267.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.079 (7), 20.134 (17), 7.915 (7)
β (°) 116.647 (18)
V3) 1150.6 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.35 × 0.28 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 9944, 2491, 2248
Rint 0.034
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.05
No. of reflections 2491
No. of parameters 217
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Mercury (Macrae et al., 2020).

2-(2-Nitrophenyl)-4H-chromen-4-one top
Crystal data top
C15H9NO4F(000) = 552
Mr = 267.23Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.079 (7) ÅCell parameters from 1326 reflections
b = 20.134 (17) Åθ = 3.1–32.1°
c = 7.915 (7) ŵ = 0.11 mm1
β = 116.647 (18)°T = 100 K
V = 1150.6 (16) Å3Block-shaped, white
Z = 40.35 × 0.28 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.034
φ and ω scansθmax = 27.5°, θmin = 2.0°
9944 measured reflectionsh = 106
2491 independent reflectionsk = 1626
2248 reflections with I > 2σ(I)l = 108
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.551P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2491 reflectionsΔρmax = 0.30 e Å3
217 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.22049 (12)0.13047 (4)0.89731 (12)0.0160 (2)
O40.48862 (13)0.02543 (4)1.23925 (13)0.0229 (2)
O10.04077 (13)0.29953 (4)0.98796 (14)0.0230 (2)
O20.11312 (14)0.20433 (4)1.12606 (14)0.0243 (2)
C70.37958 (17)0.13828 (6)1.06058 (17)0.0154 (2)
C100.22802 (17)0.01385 (6)0.96633 (16)0.0146 (2)
C90.40481 (17)0.02123 (6)1.13800 (17)0.0160 (2)
C150.14347 (17)0.06830 (5)0.85277 (17)0.0144 (2)
C140.02257 (17)0.06319 (6)0.68804 (17)0.0163 (2)
C20.33977 (17)0.26206 (6)1.08494 (16)0.0148 (2)
C130.10846 (18)0.00246 (6)0.63791 (17)0.0182 (3)
C10.44677 (17)0.20715 (6)1.09092 (16)0.0154 (2)
N10.15066 (15)0.25441 (5)1.06335 (14)0.0164 (2)
C80.47167 (18)0.08861 (6)1.17707 (17)0.0175 (3)
C110.13820 (18)0.04727 (6)0.91170 (17)0.0168 (3)
C60.62821 (18)0.21870 (6)1.12309 (18)0.0194 (3)
C30.40847 (18)0.32564 (6)1.10911 (17)0.0165 (3)
C50.69942 (19)0.28224 (6)1.14845 (19)0.0204 (3)
C40.58971 (18)0.33551 (6)1.14135 (17)0.0185 (3)
C120.02751 (18)0.05292 (6)0.75091 (18)0.0186 (3)
H130.221 (2)0.0009 (7)0.527 (2)0.019 (4)*
H110.196 (2)0.0854 (7)0.994 (2)0.020 (4)*
H80.585 (2)0.0986 (8)1.292 (2)0.024 (4)*
H140.071 (2)0.1017 (8)0.610 (2)0.020 (4)*
H30.334 (2)0.3611 (8)1.110 (2)0.025 (4)*
H40.638 (2)0.3804 (8)1.162 (2)0.025 (4)*
H50.825 (2)0.2894 (7)1.172 (2)0.022 (4)*
H120.090 (2)0.0948 (8)0.716 (2)0.024 (4)*
H60.706 (2)0.1816 (8)1.128 (2)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0160 (5)0.0119 (4)0.0168 (4)0.0011 (3)0.0043 (4)0.0001 (3)
O40.0205 (5)0.0164 (4)0.0244 (5)0.0012 (3)0.0034 (4)0.0050 (3)
O10.0174 (5)0.0199 (4)0.0291 (5)0.0041 (3)0.0083 (4)0.0014 (4)
O20.0265 (5)0.0205 (4)0.0309 (5)0.0026 (4)0.0175 (5)0.0039 (4)
C70.0149 (6)0.0148 (5)0.0168 (5)0.0012 (4)0.0073 (5)0.0026 (4)
C100.0151 (6)0.0138 (5)0.0166 (5)0.0006 (4)0.0086 (5)0.0012 (4)
C90.0158 (6)0.0151 (5)0.0173 (5)0.0008 (4)0.0077 (5)0.0007 (4)
C150.0161 (6)0.0125 (5)0.0169 (5)0.0010 (4)0.0094 (5)0.0021 (4)
C140.0164 (6)0.0163 (5)0.0164 (5)0.0021 (4)0.0076 (5)0.0005 (4)
C20.0150 (6)0.0162 (5)0.0132 (5)0.0006 (4)0.0062 (5)0.0005 (4)
C130.0158 (6)0.0215 (6)0.0159 (5)0.0023 (5)0.0059 (5)0.0034 (4)
C10.0173 (6)0.0129 (5)0.0146 (5)0.0005 (4)0.0059 (5)0.0006 (4)
N10.0174 (5)0.0156 (5)0.0162 (5)0.0000 (4)0.0076 (4)0.0020 (4)
C80.0165 (6)0.0160 (6)0.0169 (5)0.0005 (4)0.0046 (5)0.0014 (4)
C110.0191 (6)0.0139 (5)0.0195 (6)0.0006 (4)0.0106 (5)0.0009 (4)
C60.0182 (7)0.0156 (6)0.0236 (6)0.0009 (5)0.0087 (5)0.0017 (5)
C30.0201 (6)0.0130 (5)0.0161 (5)0.0010 (4)0.0078 (5)0.0000 (4)
C50.0163 (7)0.0195 (6)0.0252 (6)0.0023 (5)0.0092 (5)0.0012 (5)
C40.0211 (7)0.0142 (5)0.0201 (6)0.0032 (5)0.0091 (5)0.0012 (4)
C120.0215 (7)0.0157 (5)0.0209 (6)0.0037 (5)0.0115 (5)0.0043 (4)
Geometric parameters (Å, º) top
O3—C71.3626 (17)C2—C31.3741 (19)
O3—C151.3717 (16)C13—C121.3950 (19)
O4—C91.2233 (16)C1—C61.390 (2)
O1—N11.2224 (15)C11—C121.377 (2)
O2—N11.2208 (15)C6—C51.380 (2)
C7—C11.4690 (19)C3—C41.383 (2)
C7—C81.3373 (18)C5—C41.3765 (19)
C10—C91.4722 (19)C14—H140.958 (15)
C10—C151.3877 (18)C13—H130.944 (16)
C10—C111.3950 (19)C11—H110.979 (15)
C9—C81.4415 (19)C6—H60.964 (17)
C15—C141.3932 (19)C3—H30.933 (17)
C14—C131.3736 (19)C5—H50.953 (17)
C2—C11.3911 (18)C4—H40.971 (16)
C2—N11.467 (2)C12—H120.957 (16)
C7—O3—C15118.38 (9)C12—C11—C10120.95 (12)
O3—C7—C1112.72 (10)C5—C6—C1121.21 (12)
C8—C7—O3124.33 (11)C2—C3—C4119.18 (11)
C8—C7—C1122.86 (12)C4—C5—C6119.85 (14)
C15—C10—C9120.66 (11)C5—C4—C3120.30 (12)
C15—C10—C11117.36 (12)C11—C12—C13120.55 (12)
C11—C10—C9121.98 (11)C13—C14—H14121.7 (9)
O4—C9—C10123.36 (12)C15—C14—H14119.2 (9)
O4—C9—C8122.56 (13)C14—C13—H13119.0 (9)
C8—C9—C10114.08 (10)C12—C13—H13121.3 (9)
O3—C15—C10121.31 (12)C7—C8—H8119.2 (9)
O3—C15—C14116.32 (10)C9—C8—H8119.7 (9)
C10—C15—C14122.37 (11)C12—C11—H11121.7 (9)
C13—C14—C15119.06 (11)C10—C11—H11117.3 (9)
C1—C2—N1121.28 (11)C5—C6—H6119.4 (10)
C3—C2—C1121.98 (13)C1—C6—H6119.4 (10)
C3—C2—N1116.64 (11)C2—C3—H3119.6 (10)
C14—C13—C12119.70 (13)C4—C3—H3121.1 (10)
C2—C1—C7124.49 (12)C4—C5—H5119.8 (9)
C6—C1—C7118.02 (11)C6—C5—H5120.4 (9)
C6—C1—C2117.47 (11)C5—C4—H4120.9 (10)
O1—N1—C2117.98 (11)C3—C4—H4118.8 (10)
O2—N1—O1123.63 (12)C11—C12—H12120.5 (9)
O2—N1—C2118.35 (10)C13—C12—H12118.9 (9)
C7—C8—C9121.12 (12)
O3—C7—C1—C252.15 (16)C2—C1—C6—C50.11 (19)
O3—C7—C1—C6126.13 (13)C2—C3—C4—C50.21 (18)
O3—C7—C8—C91.1 (2)C1—C7—C8—C9177.40 (11)
O3—C15—C14—C13178.69 (11)C1—C2—N1—O1152.23 (12)
O4—C9—C8—C7178.00 (12)C1—C2—N1—O229.74 (16)
C7—O3—C15—C102.47 (17)C1—C2—C3—C40.34 (18)
C7—O3—C15—C14177.77 (10)C1—C6—C5—C40.2 (2)
C7—C1—C6—C5178.51 (12)N1—C2—C1—C75.50 (17)
C10—C9—C8—C71.92 (18)N1—C2—C1—C6176.22 (10)
C10—C15—C14—C131.55 (19)N1—C2—C3—C4176.21 (10)
C10—C11—C12—C130.61 (19)C8—C7—C1—C2131.15 (14)
C9—C10—C15—O30.57 (18)C8—C7—C1—C650.57 (18)
C9—C10—C15—C14179.18 (11)C11—C10—C9—O43.2 (2)
C9—C10—C11—C12179.73 (11)C11—C10—C9—C8176.84 (11)
C15—O3—C7—C1179.96 (10)C11—C10—C15—O3178.98 (11)
C15—O3—C7—C83.39 (18)C11—C10—C15—C141.27 (18)
C15—C10—C9—O4177.23 (12)C6—C5—C4—C30.07 (19)
C15—C10—C9—C82.69 (17)C3—C2—C1—C7178.11 (11)
C15—C10—C11—C120.18 (18)C3—C2—C1—C60.18 (18)
C15—C14—C13—C120.71 (19)C3—C2—N1—O131.19 (15)
C14—C13—C12—C110.33 (19)C3—C2—N1—O2146.84 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.933 (17)2.675 (16)3.198 (3)116.1 (12)
C4—H4···O4i0.971 (16)2.446 (16)3.109 (3)125.3 (12)
Symmetry code: (i) x+1, y+1/2, z+5/2.
Experimental (XRD) and calculated (DFT) dihedral angles (°) between the phenyl and chromone moieties in the title molecule (I), the 2'-methoxy derivative (II) and the 2'-carbazole derivative (III) top
XRDDFT
(I)50.73 (5)47.56
(II)2.89 (7)22.16
(III)29.21 (6)40.13
Experimental (XRD) and calculated (DFT) lengths of single bonds (Å) between the phenyl and chromone moieties in the title molecule (I), the 2'-methoxy derivative (II) and the 2'-carbazole derivative (III) top
XRDDFT
(I)1.469 (2)1.482
(II)1.475 (4)1.477
(III)1.478 (2)1.481
Experimental (XRD) and calculated (DFT) dihedral/torsion angles (°) between the phenyl group and the substituent in the 2'-position in the title molecule (I), the methoxy derivative (II) and the carbazole derivative (III) top
XRDDFT
(I)30.89 (7)31.83
(II)174.3 (2)176.78
(III)69.95 (9)66.40
 

Funding information

Funding for this research was provided by: National Science Foundation (award No. DMR-0934212; award No. DMR-1523611, PREM); National Institutes of Health (award No. 1R21NS084353-01).

References

First citationAgati, G., Azzarello, E., Pollastri, S. & Tattini, M. (2012). Plant Sci. 196, 67–76.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBarros, A. I. R. N. A. & Silva, A. M. S. (2006). Monatsh. Chem. 137, 1505–1528.  Web of Science CrossRef CAS Google Scholar
First citationBlank, V. C., Poli, C., Marder, M. & Roguin, L. P. (2004). Bioorg. Med. Chem. Lett. 14, 133–136.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCárdenas, M. G., Blank, V. C., Marder, M. & Roguin, L. P. (2008). Cancer Lett. 268, 146–157.  Web of Science PubMed Google Scholar
First citationCárdenas, M. G., Blank, V. C., Marder, M. N. & Roguin, L. P. (2012). Anticancer Drugs, 23, 815–826.  Web of Science PubMed Google Scholar
First citationCárdenas, M. G., Zotta, E., Marder, M. & Roguin, L. P. (2009). Int. J. Cancer, 125, 222–228.  Web of Science PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2016). GAUSSIAN016. Rev. C.01. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com.  Google Scholar
First citationGoyal, N., Do, C., Donahue, J. P., Mague, J. T. & Foroozesh, M. (2018). IUCrData, 3, x180993.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKendi, E., Özbey, S., Tunçbilek, M. & Ertan, R. (1996). Cryst. Res. Technol. 31, 611–615.  CSD CrossRef CAS Web of Science Google Scholar
First citationKorenaga, T., Tanaka, H., Ema, T. & Sakai, T. (2003). J. Fluor. Chem. 122, 201–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManthey, J., Grohmann, K. & Guthrie, N. (2001). Curr. Med. Chem. 8, 135–153.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P. G., Medina, J. H. & Paladini, A. C. (1995). Bioorg. Med. Chem. Lett. 5, 2717–2720.  CrossRef CAS Web of Science Google Scholar
First citationMcKendall, M., Smith, T., Anh, K., Ellis, J., McGee, T., Foroozesh, M., Zhu, N. & Stevens, C. L. K. (2008). J. Chem. Crystallogr. 38, 231–237.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamos, S. (2008). Mol. Nutr. Food Res. 52, 507–526.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeetharaman, J. & Rajan, S. S. (1995). Z. Kristallogr. 210, 104–106.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990). Acta Cryst. C46, 1536–1540.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZheng, Z. K. (2018). CSD Communication (refcode XIJVAQ). CCDC, Cambridge, England.  Google Scholar
First citationZia, M., Khalid, M., Hameed, S., Irran, E. & Naseer, M. M. (2020). J. Mol. Struct. 1207 Article 127811.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds