research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystallographic characterization of di­phenyl­amide rare-earth metal complexes Ln(NPh2)3(THF)2 and [(Ph2N)2Ln(μ-NPh2)]2

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of California, Irvine, CA 92697-2025, USA
*Correspondence e-mail: wevans@uci.edu

Edited by M. Zeller, Purdue University, USA (Received 21 May 2020; accepted 20 July 2020; online 14 August 2020)

Studies of the coordination chemistry between the di­phenyl­amide ligand, NPh2, and the smaller rare-earth LnIII ions, Ln = Y, Dy, and Er, led to the structural characterization by single-crystal X-ray diffraction crystallography of both solvated and unsolvated complexes, namely, tris­(di­phenyl­amido-κN)bis­(tetrahydro­furan-κO)yttrium(III), Y(NPh2)3(THF)2 or [Y(C12H10N)3(C4H8O)2], 1-Y, and the erbium(III) (Er), 1-Er, analogue, and bis­[μ-1κN:2(η6)-di­phenyl­amido]­bis­[bis­(di­phenyl­amido-κN)yttrium(III)], [(Ph2N)2Y(μ-NPh2)]2 or [Y2(C12H10N)6], 2-Y, and the dysprosium(III) (Dy), 2-Dy, analogue. The THF ligands of 1-Er are modeled with disorder across two positions with occupancies of 0.627 (12):0.323 (12) and 0.633 (7):0.367 (7). Also structurally characterized was the tetra­metallic ErIII bridging oxide hydrolysis product, bis­(μ-di­phenyl­amido-κ2N:N)bis­[μ-1κN:2(η6)-di­phenyl­amido]­tetra­kis­(di­phenyl­amido-κN)di-μ3-oxido-tetra­erbium(III) benzene disolvate, {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2 or [Er4(C12H10N)8O2]·2C6H6, 3-Er. The 3-Er structure was refined as a three-component twin with occupancies 0.7375:0.2010:0.0615.

1. Chemical context

Although the amide ligand, NR2, is widely used in rare-earth metal chemistry, most studies involve the bis­(tri­methyl­sil­yl)amide ligand originally introduced by Bradley, N(SiMe3)2 (Alyea et al., 1972[Alyea, E. C., Bradley, D. C. & Copperthwaite, R. G. (1972). J. Chem. Soc., Dalton Trans. pp. 1580-1584.]; Bradley et al., 1972[Bradley, D. C., Ghotra, J. S. & Hart, F. A. (1972). J. Chem. Soc. Chem. Commun. pp. 349-350.], 1973[Bradley, D. C., Ghotra, J. S. & Hart, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1021-1023.]), and the di­methyl­silyl analog, N(SiHMe2)2 (Anwander et al., 1998[Anwander, R., Runte, O., Eppinger, J., Gerstberger, G., Herdtweck, E. & Spiegler, M. (1998). J. Chem. Soc. Dalton Trans. pp. 847-858.]; Bienfait et al., 2014[Bienfait, A. M., Schädle, C., Maichle-Mössmer, C., Törnroos, K. W. & Anwander, R. (2014). Dalton Trans. 43, 17324-17332.]; Meermann et al., 2008[Meermann, C., Gerstberger, G., Spiegler, M., Törnroos, K. W. & Anwander, R. (2008). Eur. J. Inorg. Chem. pp. 2014-2023.]), developed by Anwander. The neutral homoleptic complexes, Ln[N(SiMe3)2]3 and Ln[N(SiHMe2)2]3(THF)2, are heavily used in the rare-earth field.

In comparison, the NPh2 ligand has not been as extensively explored. The only neutral crystallographically characterized NPh2 rare-earth metal complexes in the literature are Yb(NPh2)3(THF)2 (1-Yb) (Yao et al., 2001[Yao, Y. M., Mao, L. S., Lu, X. H., Shen, Q. & Sun, J. (2001). J. Chin. Rare Earth Soc. 19, 308.]), Yb(NPh2)3[OP(NMe2)3]2 (Xu et al., 2007[Xu, X., Yao, Y., Zhang, Y. & Shen, Q. (2007). Inorg. Chem. 46, 3743-3751.]), and [(Ph2N)2Ce(μ-NPh2)]2 (2-Ce) (Coles et al., 2010[Coles, M. P., Hitchcock, P. B., Khvostov, A. V., Lappert, M. F., Li, Z. & Protchenko, A. V. (2010). Dalton Trans. 39, 6780-6788.]). Many of the rare-earth NPh2 species are complex anions such as [Ln(NPh2)4]1− (Yao et al., 2004[Yao, Y.-Y., Lu, X., Shen, Q. & Yu, K. (2004). J. Chem. Crystallogr. 34, 275-279.]; Wong et al., 1997a[Wong, W.-K., Zhang, L., Xue, F. & Mak, T. C. W. (1997a). Polyhedron, 16, 345-347.],b[Wong, W.-K., Zhang, L., Xue, F. & Mak, T. C. W. (1997b). Polyhedron, 16, 2013-2020.]; Yu et al., 2016[Yu, K.-X., Ding, Y.-S., Han, T., Leng, J.-D. & Zheng, Y.-Z. (2016). Inorg. Chem. Front. 3, 1028-1034.]), [Ln(NPh2)4]2− (Minhas et al., 1996[Minhas, R. K., Ma, Y., Song, J.-I. & Gambarotta, S. (1996). Inorg. Chem. 35, 1866-1873.]), and [(C5H4R)Ln(NPh2)3]1− (R = Me, tBu) (Mao et al., 1994[Mao, L., Shen, Q. & Jin, S. (1994). Polyhedron, 13, 1023-1025.]).

To remedy the dearth of structural information on this class, we report the structures shown in the Scheme of the THF-solvated monometallic complexes Ln(NPh2)3(THF)2, 1-Ln (Ln = Y, Er), the unsolvated bimetallic complexes [(Ph2N)2Ln(μ-NPh2)]2, 2-Ln (Ln = Y, Dy), and the tetra­metallic hydrolysis product {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2, 3-Er.

[Scheme 1]

2. Structural commentary

Monometallic Complexes. The metrical parameters of the Ln(NPh2)3(THF)2 complexes, 1-Ln (Ln = Y, Er), are shown in Table 1[link] and the displacement ellipsoid plot of 1-Er is shown in Fig. 1[link]. The 1-Ln complexes are not isomorphous; complex 1-Y crystallizes in the P21/c space group and 1-Er in P21/n. They contain five-coordinate LnIII ions with three amide and two neutral THF ligands arranged in a distorted trigonal–bipyramidal geometry. The divergence from perfect trigonal bipyramidal is evident by the three N(amide)—Ln1—N(amide) bond angles [1-Y: 130.61 (5), 122.03 (5), and 106.77 (5)°; 1-Er: 130.04 (6), 119.13 (5), and 110.83 (6)°] that deviate from 120° and the O1—Ln1—O2 bond angles [1-Y: 160.31 (4)°; 1-Er: 167.72 (4)°] that deviate from linearity. Complex 1-Y has a τ5 parameter (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of 0.50 indicating a geometry halfway between ideal square-pyramidal (τ5 = 0) and trigonal–bipyramidal (τ5 = 1). The τ5 value of 1-Er is 0.63 suggesting a geometry closer to trigonal–bipyramidal. The Ln—N(amide)avg bond distances are 2.26 (2) Å for 1-Y [Y1—N1 = 2.2612 (14), Y1—N2 = 2.2399 (14), Y1—N3 = 2.2870 (14) Å] and 2.25 (2) Å for 1-Er [Er1—N1 = 2.2733 (15), Er1—N2 = 2.2524 (15), Er1—N3 = 2.2344 (15) Å], which reflects the similar size of these two ions [six-coordinate ionic radii: Y(III), 0.9 Å; Er(III), 0.89 Å] (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The Ln—O(THF)avg bond lengths are 2.37 (2) Å for 1-Y [Y1—O1 = 2.3526 (11), Y1—O2 = 2.3838 (12) Å] and 2.342 (6) Å for 1-Er [Er1—O1 = 2.3475 (12), Er2—O2 = 2.3353 (11) Å].

Table 1
Selected bond distances (Å) and angles (°) of Ln(NPh2)3(THF)2, 1-Ln

Parameter 1-Y 1-Er
Ln1—N1 2.2612 (14) 2.2733 (15)
Ln1—N2 2.2399 (14) 2.2524 (15)
Ln1—N3 2.2870 (14) 2.2344 (15)
Ln1—N(amide)­avg 2.26 (2) 2.25 (2)
Ln1—O1 2.3526 (11) 2.3475 (12)
Ln1—O2 2.3838 (12) 2.3353 (11)
Ln1—O(THF)avg 2.37 (2) 2.342 (6)
N1—Ln1—N2 106.77 (5) 130.04 (6)
N1—Ln1—N3 130.61 (5) 119.13 (5)
N2—Ln1—N3 122.03 (5) 110.83 (6)
O1—Ln1—O2 160.31 (4) 167.72 (4)
[Figure 1]
Figure 1
Displacement ellipsoid plot of Er(NPh2)3(THF)2, 1-Er, drawn at the 50% probability level. Hydrogen atoms and co-crystallized solvent mol­ecules are omitted for clarity.

Bimetallic Complexes. The metrical parameters of [(Ph2N)2Ln(μ-NPh2)]2, 2-Ln (Ln = Y, Dy), are presented in Table 2[link] and the displacement ellipsoid plot of 2-Dy is in Fig. 2[link]. The two 2-Ln complexes (Ln = Y and Dy) are isomorphous and crystallize in the monoclinic P21/c space group. Each mol­ecule of 2-Ln is a dimer comprised of two (Ph2N)2Ln(μ-NPh2) units that are related by an inversion center. The (μ-NPh2) ligand involving atom N1 binds to one lanthanide center through the nitro­gen atom and links to the other lanthanide center via η6 coordination of one of the phenyl rings. The terminal NPh2 ligand involving N2 binds just through the nitro­gen donor atom. The other terminal NPh2 ligand containing N3 attaches to the Ln atom through the nitro­gen, but it also has a phenyl ring oriented toward the metal with Ln—C(ipso) and Ln—C(ortho) distances of 2.8235 (17) and 3.0169 (18) Å for Y and 2.836 (2) and 3.033 Å for Dy. These distances can be compared with the Ln1—N3 distances in these complexes: 2.2340 (15) Å for Y and 2.240 (2) Å for Dy. The bond distances of 2-Y and 2-Dy are close, which is consistent with their similar Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) ionic radii [six-coordinate ionic radii: Y(III), 0.9 Å; Dy(III), 0.912 Å].

Table 2
Selected bond distances (Å) and angles (°) of [(Ph2N)2Ln(μ-NPh2)]2, 2-Ln

Parameter 2-Y 2-Dy
Ln1—N1′ 2.3039 (15) 2.309 (2)
Ln1—N2 2.2294 (15) 2.228 (2)
Ln1—N3 2.2340 (15) 2.240 (2)
Ln1—N(amide)­avg 2.25 (3) 2.26 (4)
Ln1—C1 3.1300 (18) 3.151 (2)
Ln1—C2 2.9498 (18) 2.967 (2)
Ln1—C3 2.8400 (18) 2.858 (2)
Ln1—C4 2.8129 (19) 2.833 (2)
Ln1—C5 2.8898 (18) 2.904 (3)
Ln1—C6 3.0125 (19) 3.032 (3)
Ln1—Centroid(phen­yl) 2.584 2.605
Ln1—C31 2.8235 (17) 2.836 (2)
Ln1—C32 3.0169 (18) 3.033
Symmetry code: (′) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Displacement ellipsoid plot of [(Ph2N)2Dy(μ-NPh2)]2, 2-Dy, drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. The dashed lines represent the Ln—C(ortho) and Ln—C(ipso) distances discussed in the text. Symmetry code: (′) −x + 1, −y + 1, −z + 1.

The 2.228 (2)–2.240 (2) Å range of terminal Ln—N(amide) bond distances in 2-Ln is at the lower end of the 2.2343 (15)–2.2870 (14) Å range of distances in 1-Ln and slightly shorter than the Ln—N1 distances of the bridging NPh2 [Y1—N1′ = 2.3039 (15) and Dy1—N1′ = 2.309 (2) Å], as is typical for terminal vs bridging ligands. The Ln—N2 distances [Y, 2.2294 (15) Å; Dy 2.228 (2) Å] are similar and comparable to the Ln—N1 bond lengths. The Ln—(phenyl ring centroid distances are also similar [Y, 2.584 Å; Dy, 2.605 Å] with similar Ln—C(phen­yl) bond distance ranges [Y, 2.8129 (19)–3.1300 (18) Å; Dy, 2.833 (2)–3.151 (3) Å].

A Tetra­metallic Complex. The displacement ellipsoid plot and metrical parameters of {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2, 3-Er, are shown below in Figs. 3[link] and 4[link] and Table 3[link]. Complex 3-Er crystallizes in the triclinic P[\overline{1}] space group and is a tetra­metallic complex of ErIII comprised of two symmetrical {[(Ph2N)Er(μ-NPh2)]2(μ-O)}·(C6H6) units. The coordination environments of the two ErIII ions in this unit are different, as are all four NPh2 ligands. Er2 is five-coordinate with two μ-O bonds and three Er—N bonds. The bonding to Er1 is more complicated. It is bound to one μ-O ligand and one terminal NPh2 ligand through N3 with a short distance to ipso carbon C25. Er1 is also bound η6 to a phenyl group of one μ-NPh2 ligand and to another μ-NPh2 ligand through the N2 atom that also bridges to Er2. In addition, C13 and C18 of this μ-NPh2 ligand are oriented toward Er1. The differences in the coord­ination environments of Er1 and Er2 lead to inequivalent Er—O bond distances [Er1—O1 = 2.095 (3), Er2—O1 = 2.190 (3) Å, Er2—O1′ = 2.245 (3) Å]. The Er–O–Er angle is bent [Er1—O1—Er2 = 133.25 (14)°]. The closest distances between the ErIII ions are Er1⋯Er2′ = 3.5734 (3) Å and Er2⋯Er2′ = 3.4836 (4) Å.

Table 3
Selected bond distances (Å) and angles (°) of {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2, 3-Er

Parameter 3-Er
Er1—O1 2.095 (3)
Er2—O1 2.190 (3)
Er2—O1′ 2.245 (3)
Er1—N2 2.367 (4)
Er1—N3 2.222 (3)
Er2—N1 2.303 (3)
Er2—N4 2.313 (4)
Er1—C1 2.871 (4)
Er1—C2 2.988 (4)
Er1—C3 2.989 (4)
Er1—C4 2.884 (4)
Er1—C5 2.784 (4)
Er1—C6 2.761 (4)
Er1—Centroid(phen­yl) 2.516
Er1—C13 2.812 (4)
Er1—C18 2.805 (4)
Er1—C25 2.904 (4)
Er2—C19′ 2.903 (4)
Er1—O1—Er2 133.25 (14)
Er1—O1—Er2′ 110.82 (12)
Er2—O1—Er2′ 103.54 (11)
Er1⋯Er2′ 3.5734 (3)
Er2⋯Er2′ 3.4836 (4)
Symmetry code: (′) −x + 1, −y + 1, −z + 1.
[Figure 3]
Figure 3
Displacement ellipsoid plots drawn at the 50% probability level of the asymmetric unit of {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2, 3-Er, with atoms Er1′, Er2′, O1′, N2′ added for clarity (left) and the Er4O2 core of 3-Er (right). Hydrogen atoms and a mol­ecule of benzene in the asymmetric unit are omitted for clarity. Symmetry code: (′) −x + 1, −y + 1, −z + 1.
[Figure 4]
Figure 4
Unit-cell contents of {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2, 3-Er, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Symmetry code: (′) −x + 1, −y + 1, −z + 1.

3. Supra­molecular features

An examination of the packing diagrams for 1-Ln (Ln = Y, Er), 2-Ln (Ln = Y and Dy), and 3-Er shows close C—H⋯phenyl inter­actions throughout the structures, Tables 4–7[link][link][link][link] and Figs. 5–8[link][link][link][link]. Complex 3-Er has two mol­ecules of benzene in the unit cell.

Table 4
Inter­molecular contact lengths (Å) in 1-Y

vdW indicates the sum of the van der Waals radii of the two atoms.

Contact 1-Y Length − vdW
C5⋯C21 3.388 −0.012
C5⋯H41A 2.840 −0.060
C6⋯H33A 2.890 −0.010
C18⋯H5A 2.822 −0.078
C33⋯H40B 2.825 −0.075
H8A⋯H20A 2.391 −0.009
H18A⋯H18A 2.275 −0.125
H33A⋯H40B 2.271 −0.129
H34A⋯H40A 2.370 −0.030

Table 5
Inter­molecular contact lengths (Å) in 1-Er

vdW indicates the sum of the van der Waals radii of the two atoms.

Contact 1-Er Length − vdW
C8⋯H23 2.873 −0.027
C14⋯H21 2.835 −0.065
C21⋯H45B 2.897 −0.003

Table 6
Inter­molecular contact lengths (Å) in 2-Y and 2-Dy

Contact 2-Y Length − vdW 2-Dy Length − vdW
C15⋯H36A 2.749 −0.151 2.737 −0.163
C30⋯H15A 2.805 −0.095 2.800 −0.100
vdW indicates the sum of the van der Waals radii of the two atoms.

Table 7
Inter­molecular contact lengths (Å) in 3-Er

vdW indicates the sum of the van der Waals radii of the two atoms.

Contact 3-Er Length − vdW
H17A⋯H54A 2.370 −0.030
[Figure 5]
Figure 5
Packing structures and contacts for 1-Y.
[Figure 6]
Figure 6
Packing structures and contacts for 1-Er.
[Figure 7]
Figure 7
Packing structures and contacts for 2-Ln.
[Figure 8]
Figure 8
Packing structures and contacts for 3-Er.

4. Database survey

A search of the Cambridge Structural Database shows 1-Yb (Yao et al., 2001[Yao, Y. M., Mao, L. S., Lu, X. H., Shen, Q. & Sun, J. (2001). J. Chin. Rare Earth Soc. 19, 308.]) and 2-Ce (Coles et al., 2010[Coles, M. P., Hitchcock, P. B., Khvostov, A. V., Lappert, M. F., Li, Z. & Protchenko, A. V. (2010). Dalton Trans. 39, 6780-6788.]) have been reported. Complex 1-Yb is isomorphous with 1-Er. Complex 2-Ce is not isomorphous with 2-Y and 2-Dy and crystallizes in the C2/c space group. 2-Ce is structurally different in that the μ-NPh2 ligand bridges the two Ce atoms only through the nitro­gen donor atom and not via η6-phenyl-coordination as observed in 2-Y and 2-Dy. The tris­(amide) complex Yb(NPh2)3[OP(NMe2)3]2 (Xu et al., 2007[Xu, X., Yao, Y., Zhang, Y. & Shen, Q. (2007). Inorg. Chem. 46, 3743-3751.]) has also been reported.

5. Synthesis and crystallization

General Considerations. All manipulations and syntheses described below were conducted with rigorous exclusion of air and water using standard Schlenk line and glovebox tech­niques under an argon atmosphere. Solvents were sparged with UHP argon (Airgas) and dried by passage through columns containing Q-5 and mol­ecular sieves prior to use. LnCl3 was prepared from the previously reported literature procedure (Meyer et al., 1982[Meyer, G. & Ax, P. (1982). Mater. Res. Bull. 17, 1447-1455.]). The compounds Ln[N(SiMe3)2]3 were prepared from their literature procedures (Bradley et al., 1972[Bradley, D. C., Ghotra, J. S. & Hart, F. A. (1972). J. Chem. Soc. Chem. Commun. pp. 349-350.]). HNPh2 was purchased from commercial suppliers and used as received. NaNPh2 and KNPh2 were prepared by reaction of HNPh2 with NaH or KH in THF.

Synthesis and Crystallization of Y(NPh2)3(THF)2, 1-Y. In a glovebox, YCl3 (0.63 g, 3.2 mmol) was stirred for two days in THF (30 mL) in a Schlenk flask to ensure complete solvation. Under positive pressure of N2 on a Schlenk line, a solution of KNPh2 (1.9 g, 9.1 mmol) in THF (30 mL) was added dropwise to the YCl3 suspension in THF at 273 K over 15 min. The reaction vessel was allowed to warm to room temperature, and after 1 h, the solvent was removed under reduced pressure to yield a colorless solid. In a glovebox, the product was extracted with toluene and evaporated to dryness. The resulting solids were washed with hexane to yield 1-Y as a colorless solid (2.2 g, 90%). The colorless solid was dissolved in diethyl ether and stored at 245 K for three days to yield colorless crystals of 1-Y.

Synthesis and Crystallization of Er(NPh2)3(THF)2, 1-Er. In a glovebox, ErCl3 (243 mg, 0.887 mmol) was stirred in THF (10 mL), which gave a pink slurry. To the stirred suspension was added NaPh2 (500 mg, 2.62 mmol) in THF (10 mL) at 238 K dropwise over 5 min, and a color change to green–yellow and then pink was observed. After the addition, the resultant pink slurry was allowed to warm to room temperature and left to stir overnight. The volatiles were then removed under reduced pressure, which gave a pink gel. The gel was triturated with hexane several times to yield pink solids that were then dissolved in Et2O (17 mL) and stirred for several hours to ensure complete dissolution. Pink and colorless solids, presumably unreacted ErCl3 and NaNPh2, were centrifuged, and the volatiles of the supernatant were evaporated until supersaturation. As the concentrated pink solution warmed to room temperature, large pink hexa­gon-shaped crystals of Er(NPh2)3(THF)2, 1-Er, suitable for X-ray diffraction grew within minutes (260 mg, 36%).

Synthesis and Crystallization of [(NPh2)2Y(μ-NPh2)]2, 2-Y. In a glovebox free of coordinating solvents, Y[N(SiMe3)2]3 (300 mg, 0.526 mmol) was dissolved in toluene (10 mL). To the stirred solution was added HNPh2 (272 mg, 1.61 mmol) in toluene (10 mL). The resultant colorless solution was left to stir for 48 h. The color of the solution slowly changed to yellow and a yellow precipitate was observed. The volatiles were removed under vacuum, and the resultant yellow solids were washed with hexane. The solids were stirred in benzene for 48 h, and the resultant yellow slurry was then centrifuged to remove the insoluble material. Toluene (4 mL) was added to the supernatant and the solution was concentrated to 4 mL before it was layered with hexane (15 mL). After 48 h at room temperature, yellow rectangular blocks of [(Ph2N)2Y(μ-NPh2)]2, 2-Y, suitable for X-ray diffraction had formed.

Synthesis and Crystallization of [(Ph2N)2Dy(μ-NPh2)]2, 2-Dy. In a glovebox free of coordinating solvents, Dy[N(SiMe3)2]3 (300 mg, 0.466 mmol) was dissolved in toluene (10 mL). To the stirred solution was added HNPh2 (240 mg, 1.42 mmol) in toluene (10 mL). The resultant colorless solution was left to stir for 48 h and the color of the solution slowly turned to yellow and precipitated a yellow solid. The volatiles were removed, and the resultant yellow solids were washed with hexane. The solids were then stirred in benzene for 48 h, and the resultant yellow slurry was centrifuged to remove insoluble material. Toluene (4 mL) was added to the supernatant, and the solution was concentrated to 4 mL before it was layered with hexane (15 mL). After 48 h at room temperature, yellow rectangular blocks of [(Ph2N)2Dy(μ-NPh2)]2, 2-Dy, suitable for X-ray diffraction had formed.

Synthesis and Crystallization of {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2, 3-Er. In a glovebox free of coordinating solvents, Er[N(SiMe3)2]3 (300 mg, 0.463 mmol) was dissolved in toluene (10 mL). To the stirred solution was added HNPh2 (240 mg, 1.41 mmol) in toluene (10 mL). The resultant colorless solution was left to stir for 48 h, and the solution slowly changed color to yellow. The volatiles were removed, and the resultant yellow solids were washed with hexane. The solids were then stirred in benzene for 48 h, and the resultant yellow slurry was centrifuged to remove insoluble material. Toluene (4 mL) was added to the supernatant, and the solution was concentrated to 4 mL before it was layered with hexane (15 mL). After 48 h at room temperature, yellow rectangular blocks of {[(Ph2N)Er(μ-NPh2)]4(μ-O)2}·(C6H6)2, 3-Er, suitable for X-ray diffraction had formed. Compound 3-Er is a minor product of a formal hydrolysis of 2-Er, presumably from adventitious water.

6. Refinement

Refinement Details. The mol­ecules of 2-Ln and 3-Er are located about an inversion center. There were two mol­ecules of benzene solvent present per empirical formula unit in 3-Er. Crystal data, data collection and structure refinement details are summarized in Table 8[link]. H atoms in all five structures were placed in calculated positions and C—H bond distances were constrained to 0.95 Å for aromatic and to 0.99 Å CH2 groups, respectively. Uiso(H) values were set to 1.2Ueq(C).

Table 8
Experimental details

  1-Y 1-Er 2-Y 2-Dy 3-Er
Crystal data
Chemical formula [Y(C12H10N)3(C4H8O)2] [Er(C12H10N)3(C4H8O)2] [Y2(C12H10N)6] [Dy2(C12H10N)6] [Er4(C12H10N)8O2]·2C6H6
Mr 737.75 816.10 1187.08 1334.26 2202.93
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 143 173 88 88 88
a, b, c (Å) 15.3539 (9), 12.5259 (7), 20.2511 (12) 12.0946 (5), 19.1086 (8), 16.3609 (7) 9.2776 (5), 22.5591 (13), 13.4791 (8) 9.3068 (15), 22.475 (4), 13.513 (2) 12.8857 (8), 13.6846 (9), 13.7411 (9)
α, β, γ (°) 90, 107.207 (1), 90 90, 91.3697 (5), 90 90, 91.4966 (9), 90 90, 91.266 (2), 90 61.3447 (8), 82.7796 (10), 83.0804 (10)
V3) 3720.4 (4) 3780.1 (3) 2820.1 (3) 2825.8 (8) 2104.4 (2)
Z 4 4 2 2 1
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.61 2.26 2.10 2.67 4.01
Crystal size (mm) 0.52 × 0.38 × 0.37 0.48 × 0.39 × 0.33 0.28 × 0.24 × 0.15 0.20 × 0.12 × 0.11 0.35 × 0.28 × 0.11
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Numerical (SADABS; Krause et al, 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Sheldrick, 2014b[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al, 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al, 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (TWINABS; Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.537, 0.683 0.557, 0.695 0.622, 0.746 0.637, 0.746 0.254, 0.432
No. of measured, independent and observed [I > 2σ(I)] reflections 42053, 8829, 7562 46529, 9687, 8834 22940, 6851, 5604 34856, 7264, 6207 51658, 10308, 9209
Rint 0.025 0.018 0.037 0.037 0.052
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.04 0.019, 0.050, 1.04 0.032, 0.070, 1.03 0.026, 0.065, 1.05 0.027, 0.062, 0.96
No. of reflections 8829 9687 6851 7264 10308
No. of parameters 451 462 361 361 552
No. of restraints 0 28 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.47 0.70, −0.42 0.39, −0.35 2.65, −0.81 1.62, −1.10
Computer programs: APEX2 (Bruker, 2011, 2014[Bruker (2011, 2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009, 2013[Bruker (2009, 2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

The two tetra­hydro­furan ligands in 1-Er were modeled with disorder across two positions. For the ring of O1, two methyl­ene groups were included in the disorder, as well as the H atoms of the remaining CH2 groups. O—C bond distances were restrained to a target value of 1.47 (1) Å, C—C bond distances to a target value of 1.53 (1) Å. 1,3 distances between the oxygen atom and C38 and 39, and between C38B and C39B (e.g. the O—C—C angles) were restrained to be pairwise similar (with an esd of 0.02 Å). ADPs of the disordered carbon atoms (C38, C39, C38B, C39B) were constrained to be identical. Uij components of ADPs of atoms C39 and C40 were restrained to be similar with an esd of 0.01 Å2 and a distance cutoff of 4.0 Å. Subject to these conditions occupancies refined to 0.627 (12)/0.323 (12). For the ring involving O2, disorder was limited to one methyl­ene C atom and the H atoms of the two adjacent CH2 groups. No restraints were applied and occupancies refined to 0.633 (7)/0.367 (7).

The 3-Er structure was found to be multi-component and was refined as a three-component twin. The orientation matrices for the three components were identified using the program CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.]). The second component is related to the first by no obvious twin law. The third component is related to the first by non-merohedry by a 180° rotation around [01[\overline{1}]]. The three components were integrated using SAINT (Bruker, 2013[Bruker (2009, 2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and corrected for absorption using TWINABS (Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.]). The structure was solved using direct methods (Sheldrick 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) with only the non-overlapping reflections of main component 1. The structure was refined using all reflections of component 1 (including the overlapping reflections), resulting in minor component occupancies of 0.0615 (6) and 0.2010 (4).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011) for 1-Y; APEX2 (Bruker, 2014) for 1-Er, 2-Y, 2-Dy, 3-Er. For all structures, cell refinement: SAINT (Bruker, 2009). Data reduction: SAINT (Bruker, 2009) for 1-Y; SAINT (Bruker, 2013) for 1-Er, 2-Y, 2-Dy, 3-Er. Program(s) used to solve structure: SHELXS2008/4 (Sheldrick, 2008c) for 1-Y; SHELXT (Sheldrick, 2015a) for 1-Er, 2-Y, 2-Dy; SHELXS (Sheldrick, 2008c) for 3-Er. For all structures, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008d); software used to prepare material for publication: SHELXTL (Sheldrick, 2008d).

Tris(diphenylamido-κN)bis(tetrahydrofuran-κO)yttrium(III) (1-Y) top
Crystal data top
[Y(C12H10N)3(C4H8O)2]F(000) = 1544
Mr = 737.75Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.3539 (9) ÅCell parameters from 9981 reflections
b = 12.5259 (7) Åθ = 2.2–28.2°
c = 20.2511 (12) ŵ = 1.61 mm1
β = 107.207 (1)°T = 143 K
V = 3720.4 (4) Å3Irregular, colorless
Z = 40.52 × 0.38 × 0.37 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
7562 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
φ and ω scansθmax = 28.5°, θmin = 1.4°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 2019
Tmin = 0.537, Tmax = 0.683k = 1616
42053 measured reflectionsl = 2526
8829 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.044P)2 + 1.6736P]
where P = (Fo2 + 2Fc2)/3
8829 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A colorless crystal of approximate dimensions 0.373 x 0.377 x 0.520 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (15 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/c that was later determined to be correct.

The structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.0812 and Goof = 1.035 for 451 variables refined against 8829 data (0.75Å), R1 = 0.0313 for those 7562 data with I > 2.0sigma(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.25279 (2)0.20035 (2)0.12211 (2)0.01710 (5)
O10.20503 (8)0.07834 (9)0.19266 (6)0.0202 (2)
O20.26567 (8)0.36154 (9)0.06312 (6)0.0246 (3)
N10.30919 (10)0.28942 (11)0.22288 (7)0.0218 (3)
N20.37155 (9)0.12258 (11)0.09853 (7)0.0221 (3)
N30.11008 (9)0.20102 (11)0.04461 (7)0.0211 (3)
C10.36370 (11)0.24655 (14)0.28472 (9)0.0219 (3)
C20.40627 (12)0.14663 (14)0.28461 (9)0.0258 (4)
H2A0.40100.11210.24180.031*
C30.45564 (12)0.09783 (15)0.34571 (10)0.0308 (4)
H3A0.48240.02990.34410.037*
C40.46648 (14)0.14671 (18)0.40897 (10)0.0363 (5)
H4A0.49970.11270.45070.044*
C50.42786 (13)0.24610 (18)0.41004 (10)0.0340 (4)
H5A0.43630.28110.45310.041*
C60.37708 (12)0.29590 (15)0.34973 (9)0.0261 (4)
H6A0.35100.36400.35220.031*
C70.28589 (12)0.39899 (13)0.22410 (8)0.0219 (3)
C80.35150 (12)0.47838 (14)0.22855 (9)0.0258 (4)
H8A0.41260.45830.23300.031*
C90.32903 (14)0.58517 (15)0.22662 (10)0.0326 (4)
H9A0.37470.63790.23040.039*
C100.23979 (15)0.61557 (16)0.21918 (11)0.0364 (4)
H10A0.22400.68910.21750.044*
C110.17374 (14)0.53803 (16)0.21426 (11)0.0344 (4)
H11A0.11250.55850.20900.041*
C120.19682 (12)0.43051 (15)0.21696 (9)0.0260 (4)
H12A0.15120.37800.21390.031*
C130.46178 (11)0.15543 (14)0.10648 (8)0.0223 (3)
C140.49507 (12)0.24840 (15)0.14365 (10)0.0280 (4)
H14A0.45910.28420.16770.034*
C150.58011 (13)0.28907 (15)0.14586 (12)0.0345 (4)
H15A0.60120.35280.17090.041*
C160.63410 (13)0.23818 (17)0.11216 (11)0.0356 (4)
H16A0.69150.26740.11290.043*
C170.60379 (13)0.14390 (18)0.07720 (10)0.0353 (4)
H17A0.64130.10740.05470.042*
C180.51904 (12)0.10234 (16)0.07473 (9)0.0295 (4)
H18A0.49960.03700.05120.035*
C190.35113 (11)0.01295 (14)0.09203 (8)0.0214 (3)
C200.40967 (12)0.06562 (15)0.13115 (9)0.0260 (4)
H20A0.46850.04570.15960.031*
C210.38309 (13)0.17088 (16)0.12880 (10)0.0301 (4)
H21A0.42380.22250.15560.036*
C220.29726 (13)0.20271 (15)0.08766 (10)0.0303 (4)
H22A0.27900.27530.08670.036*
C230.23913 (12)0.12732 (15)0.04830 (9)0.0270 (4)
H23A0.18060.14840.01990.032*
C240.26538 (11)0.02058 (14)0.04980 (8)0.0230 (3)
H24A0.22480.03010.02190.028*
C250.03547 (11)0.18946 (14)0.07233 (8)0.0206 (3)
C260.00257 (11)0.08786 (14)0.08106 (9)0.0243 (3)
H26A0.02710.02690.06500.029*
C270.06539 (12)0.07479 (16)0.11287 (9)0.0292 (4)
H27A0.08670.00520.11870.035*
C280.10230 (12)0.16307 (18)0.13626 (9)0.0313 (4)
H28A0.14850.15420.15830.038*
C290.07127 (13)0.26385 (17)0.12718 (9)0.0308 (4)
H29A0.09670.32450.14280.037*
C300.00299 (12)0.27746 (15)0.09538 (9)0.0253 (4)
H30A0.01750.34730.08930.030*
C310.08840 (11)0.20715 (13)0.02667 (8)0.0205 (3)
C320.15870 (12)0.20298 (13)0.05869 (9)0.0225 (3)
H32A0.22020.19720.03060.027*
C330.14032 (13)0.20708 (14)0.12980 (9)0.0266 (4)
H33A0.18910.20320.14970.032*
C340.05132 (13)0.21681 (15)0.17243 (9)0.0297 (4)
H34A0.03860.21910.22130.036*
C350.01811 (12)0.22302 (16)0.14231 (9)0.0293 (4)
H35A0.07910.23090.17100.035*
C360.00112 (12)0.21802 (14)0.07121 (9)0.0251 (4)
H36A0.05060.22200.05220.030*
C370.22126 (13)0.03600 (14)0.20410 (9)0.0269 (4)
H37A0.28460.05450.20590.032*
H37B0.17870.07780.16670.032*
C380.20468 (13)0.05804 (15)0.27300 (9)0.0279 (4)
H38A0.25960.04250.31210.033*
H38B0.18590.13300.27620.033*
C390.12761 (12)0.01922 (14)0.27130 (9)0.0255 (4)
H39A0.06830.00800.24180.031*
H39B0.12320.03320.31830.031*
C400.15694 (12)0.11810 (14)0.24052 (9)0.0228 (3)
H40A0.10330.16130.21560.027*
H40B0.19790.16270.27710.027*
C410.33694 (14)0.39496 (18)0.03414 (11)0.0395 (5)
H41A0.36660.33230.02020.047*
H41B0.38380.43720.06820.047*
C420.28975 (18)0.4624 (3)0.02798 (16)0.0653 (8)
H42A0.32650.52650.03020.078*
H42B0.28040.42100.07120.078*
C430.1999 (2)0.4936 (2)0.01854 (13)0.0580 (7)
H43A0.19460.57230.01710.070*
H43B0.14900.46590.05710.070*
C440.19771 (14)0.44599 (15)0.04797 (11)0.0348 (4)
H44A0.21260.50040.08510.042*
H44B0.13650.41650.04390.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.01599 (8)0.01943 (8)0.01551 (8)0.00072 (6)0.00409 (6)0.00039 (6)
O10.0236 (6)0.0206 (6)0.0189 (5)0.0012 (5)0.0100 (5)0.0002 (4)
O20.0274 (6)0.0235 (6)0.0228 (6)0.0006 (5)0.0076 (5)0.0042 (5)
N10.0236 (7)0.0207 (7)0.0197 (7)0.0000 (6)0.0040 (6)0.0010 (5)
N20.0190 (7)0.0238 (7)0.0221 (7)0.0019 (6)0.0041 (6)0.0032 (6)
N30.0174 (6)0.0275 (7)0.0187 (7)0.0003 (6)0.0059 (5)0.0004 (6)
C10.0192 (8)0.0244 (9)0.0218 (8)0.0053 (7)0.0055 (6)0.0004 (7)
C20.0236 (8)0.0245 (9)0.0274 (9)0.0025 (7)0.0044 (7)0.0004 (7)
C30.0243 (9)0.0282 (9)0.0368 (10)0.0006 (7)0.0044 (8)0.0083 (8)
C40.0318 (10)0.0459 (12)0.0276 (10)0.0007 (9)0.0030 (8)0.0133 (9)
C50.0334 (10)0.0484 (12)0.0207 (9)0.0068 (9)0.0088 (8)0.0006 (8)
C60.0250 (9)0.0312 (9)0.0228 (8)0.0042 (7)0.0082 (7)0.0002 (7)
C70.0270 (8)0.0225 (8)0.0149 (7)0.0001 (7)0.0043 (6)0.0022 (6)
C80.0247 (8)0.0261 (9)0.0241 (8)0.0012 (7)0.0034 (7)0.0017 (7)
C90.0369 (10)0.0240 (9)0.0338 (10)0.0061 (8)0.0057 (8)0.0016 (8)
C100.0471 (12)0.0221 (9)0.0401 (11)0.0054 (8)0.0129 (9)0.0034 (8)
C110.0329 (10)0.0356 (10)0.0362 (10)0.0084 (8)0.0127 (8)0.0027 (8)
C120.0267 (9)0.0278 (9)0.0242 (9)0.0013 (7)0.0087 (7)0.0013 (7)
C130.0192 (8)0.0280 (8)0.0192 (8)0.0031 (7)0.0046 (6)0.0025 (7)
C140.0226 (8)0.0264 (9)0.0340 (10)0.0041 (7)0.0070 (7)0.0011 (8)
C150.0254 (9)0.0272 (10)0.0477 (12)0.0003 (7)0.0058 (9)0.0023 (8)
C160.0225 (9)0.0398 (11)0.0455 (12)0.0020 (8)0.0115 (8)0.0089 (9)
C170.0280 (9)0.0478 (12)0.0342 (10)0.0036 (9)0.0155 (8)0.0013 (9)
C180.0276 (9)0.0384 (10)0.0241 (9)0.0007 (8)0.0101 (7)0.0045 (8)
C190.0210 (8)0.0270 (8)0.0183 (7)0.0022 (7)0.0091 (6)0.0027 (6)
C200.0205 (8)0.0322 (9)0.0250 (9)0.0050 (7)0.0062 (7)0.0006 (7)
C210.0290 (9)0.0309 (9)0.0314 (10)0.0087 (8)0.0106 (8)0.0037 (8)
C220.0341 (10)0.0268 (9)0.0335 (10)0.0009 (8)0.0154 (8)0.0013 (8)
C230.0245 (8)0.0358 (10)0.0224 (8)0.0056 (7)0.0094 (7)0.0040 (7)
C240.0203 (8)0.0311 (9)0.0182 (8)0.0028 (7)0.0065 (6)0.0000 (7)
C250.0157 (7)0.0289 (9)0.0158 (7)0.0015 (6)0.0024 (6)0.0006 (6)
C260.0216 (8)0.0270 (9)0.0227 (8)0.0012 (7)0.0041 (7)0.0002 (7)
C270.0240 (9)0.0353 (10)0.0263 (9)0.0050 (7)0.0044 (7)0.0059 (8)
C280.0218 (8)0.0517 (12)0.0217 (9)0.0024 (8)0.0084 (7)0.0080 (8)
C290.0296 (9)0.0387 (10)0.0263 (9)0.0105 (8)0.0116 (8)0.0008 (8)
C300.0252 (8)0.0268 (9)0.0240 (8)0.0036 (7)0.0077 (7)0.0025 (7)
C310.0209 (8)0.0201 (8)0.0197 (8)0.0004 (6)0.0046 (6)0.0021 (6)
C320.0193 (8)0.0254 (8)0.0223 (8)0.0013 (7)0.0053 (6)0.0015 (7)
C330.0276 (9)0.0309 (9)0.0231 (8)0.0045 (7)0.0102 (7)0.0022 (7)
C340.0339 (10)0.0354 (10)0.0178 (8)0.0076 (8)0.0043 (7)0.0058 (7)
C350.0229 (8)0.0358 (10)0.0242 (9)0.0045 (7)0.0007 (7)0.0077 (7)
C360.0189 (8)0.0308 (9)0.0252 (9)0.0014 (7)0.0059 (7)0.0050 (7)
C370.0379 (10)0.0193 (8)0.0288 (9)0.0014 (7)0.0177 (8)0.0011 (7)
C380.0338 (9)0.0285 (9)0.0249 (9)0.0053 (8)0.0141 (8)0.0060 (7)
C390.0279 (9)0.0295 (9)0.0223 (8)0.0007 (7)0.0125 (7)0.0026 (7)
C400.0271 (8)0.0245 (8)0.0203 (8)0.0019 (7)0.0124 (7)0.0028 (7)
C410.0285 (10)0.0456 (12)0.0454 (12)0.0038 (9)0.0126 (9)0.0200 (10)
C420.0558 (15)0.0785 (19)0.0701 (18)0.0182 (14)0.0319 (14)0.0487 (16)
C430.0764 (18)0.0595 (16)0.0433 (13)0.0318 (14)0.0260 (13)0.0228 (12)
C440.0399 (11)0.0259 (9)0.0412 (11)0.0095 (8)0.0161 (9)0.0088 (8)
Geometric parameters (Å, º) top
Y1—N22.2399 (14)C21—C221.393 (3)
Y1—N12.2612 (14)C21—H21A0.9500
Y1—N32.2870 (14)C22—C231.379 (3)
Y1—O12.3526 (11)C22—H22A0.9500
Y1—O22.3838 (12)C23—C241.394 (3)
O1—C371.460 (2)C23—H23A0.9500
O1—C401.4682 (18)C24—H24A0.9500
O2—C411.448 (2)C25—C301.394 (2)
O2—C441.453 (2)C25—C261.400 (2)
N1—C11.392 (2)C26—C271.389 (2)
N1—C71.420 (2)C26—H26A0.9500
N2—C191.406 (2)C27—C281.388 (3)
N2—C131.408 (2)C27—H27A0.9500
N3—C311.384 (2)C28—C291.381 (3)
N3—C251.425 (2)C28—H28A0.9500
C1—C21.412 (2)C29—C301.394 (3)
C1—C61.413 (2)C29—H29A0.9500
C2—C31.387 (3)C30—H30A0.9500
C2—H2A0.9500C31—C361.410 (2)
C3—C41.385 (3)C31—C321.415 (2)
C3—H3A0.9500C32—C331.384 (2)
C4—C51.382 (3)C32—H32A0.9500
C4—H4A0.9500C33—C341.389 (3)
C5—C61.388 (3)C33—H33A0.9500
C5—H5A0.9500C34—C351.378 (3)
C6—H6A0.9500C34—H34A0.9500
C7—C121.389 (2)C35—C361.387 (2)
C7—C81.399 (2)C35—H35A0.9500
C8—C91.379 (3)C36—H36A0.9500
C8—H8A0.9500C37—C381.516 (2)
C9—C101.387 (3)C37—H37A0.9900
C9—H9A0.9500C37—H37B0.9900
C10—C111.386 (3)C38—C391.521 (2)
C10—H10A0.9500C38—H38A0.9900
C11—C121.390 (3)C38—H38B0.9900
C11—H11A0.9500C39—C401.514 (2)
C12—H12A0.9500C39—H39A0.9900
C13—C141.399 (3)C39—H39B0.9900
C13—C181.401 (2)C40—H40A0.9900
C14—C151.390 (3)C40—H40B0.9900
C14—H14A0.9500C41—C421.510 (3)
C15—C161.376 (3)C41—H41A0.9900
C15—H15A0.9500C41—H41B0.9900
C16—C171.385 (3)C42—C431.499 (4)
C16—H16A0.9500C42—H42A0.9900
C17—C181.389 (3)C42—H42B0.9900
C17—H17A0.9500C43—C441.483 (3)
C18—H18A0.9500C43—H43A0.9900
C19—C241.405 (2)C43—H43B0.9900
C19—C201.408 (2)C44—H44A0.9900
C20—C211.377 (3)C44—H44B0.9900
C20—H20A0.9500
N2—Y1—N1106.77 (5)C23—C22—H22A120.5
N2—Y1—N3122.03 (5)C21—C22—H22A120.5
N1—Y1—N3130.61 (5)C22—C23—C24120.69 (17)
N2—Y1—O1105.47 (5)C22—C23—H23A119.7
N1—Y1—O182.96 (5)C24—C23—H23A119.7
N3—Y1—O190.67 (5)C23—C24—C19120.84 (16)
N2—Y1—O293.90 (5)C23—C24—H24A119.6
N1—Y1—O288.17 (5)C19—C24—H24A119.6
N3—Y1—O281.81 (5)C30—C25—C26118.17 (16)
O1—Y1—O2160.31 (4)C30—C25—N3121.41 (15)
C37—O1—C40108.88 (12)C26—C25—N3120.30 (15)
C37—O1—Y1131.62 (9)C27—C26—C25120.97 (17)
C40—O1—Y1119.24 (9)C27—C26—H26A119.5
C41—O2—C44106.58 (14)C25—C26—H26A119.5
C41—O2—Y1129.24 (11)C28—C27—C26120.20 (18)
C44—O2—Y1124.16 (10)C28—C27—H27A119.9
C1—N1—C7116.41 (13)C26—C27—H27A119.9
C1—N1—Y1126.11 (11)C29—C28—C27119.41 (17)
C7—N1—Y1117.47 (10)C29—C28—H28A120.3
C19—N2—C13118.74 (14)C27—C28—H28A120.3
C19—N2—Y1105.76 (10)C28—C29—C30120.65 (18)
C13—N2—Y1133.16 (11)C28—C29—H29A119.7
C31—N3—C25116.31 (13)C30—C29—H29A119.7
C31—N3—Y1127.01 (11)C29—C30—C25120.59 (17)
C25—N3—Y1116.62 (10)C29—C30—H30A119.7
N1—C1—C2119.73 (15)C25—C30—H30A119.7
N1—C1—C6123.53 (16)N3—C31—C36124.10 (15)
C2—C1—C6116.70 (16)N3—C31—C32119.68 (15)
C3—C2—C1121.34 (17)C36—C31—C32116.22 (15)
C3—C2—H2A119.3C33—C32—C31121.81 (16)
C1—C2—H2A119.3C33—C32—H32A119.1
C4—C3—C2120.98 (18)C31—C32—H32A119.1
C4—C3—H3A119.5C32—C33—C34120.68 (17)
C2—C3—H3A119.5C32—C33—H33A119.7
C5—C4—C3118.57 (17)C34—C33—H33A119.7
C5—C4—H4A120.7C35—C34—C33118.52 (16)
C3—C4—H4A120.7C35—C34—H34A120.7
C4—C5—C6121.55 (18)C33—C34—H34A120.7
C4—C5—H5A119.2C34—C35—C36121.63 (17)
C6—C5—H5A119.2C34—C35—H35A119.2
C5—C6—C1120.81 (18)C36—C35—H35A119.2
C5—C6—H6A119.6C35—C36—C31121.13 (16)
C1—C6—H6A119.6C35—C36—H36A119.4
C12—C7—C8118.20 (16)C31—C36—H36A119.4
C12—C7—N1121.20 (15)O1—C37—C38104.91 (13)
C8—C7—N1120.50 (15)O1—C37—H37A110.8
C9—C8—C7121.21 (17)C38—C37—H37A110.8
C9—C8—H8A119.4O1—C37—H37B110.8
C7—C8—H8A119.4C38—C37—H37B110.8
C8—C9—C10120.01 (18)H37A—C37—H37B108.8
C8—C9—H9A120.0C37—C38—C39101.81 (14)
C10—C9—H9A120.0C37—C38—H38A111.4
C11—C10—C9119.59 (18)C39—C38—H38A111.4
C11—C10—H10A120.2C37—C38—H38B111.4
C9—C10—H10A120.2C39—C38—H38B111.4
C10—C11—C12120.23 (18)H38A—C38—H38B109.3
C10—C11—H11A119.9C40—C39—C38101.86 (14)
C12—C11—H11A119.9C40—C39—H39A111.4
C7—C12—C11120.75 (17)C38—C39—H39A111.4
C7—C12—H12A119.6C40—C39—H39B111.4
C11—C12—H12A119.6C38—C39—H39B111.4
C14—C13—C18117.60 (16)H39A—C39—H39B109.3
C14—C13—N2119.69 (15)O1—C40—C39105.26 (13)
C18—C13—N2122.58 (16)O1—C40—H40A110.7
C15—C14—C13120.84 (17)C39—C40—H40A110.7
C15—C14—H14A119.6O1—C40—H40B110.7
C13—C14—H14A119.6C39—C40—H40B110.7
C16—C15—C14120.81 (19)H40A—C40—H40B108.8
C16—C15—H15A119.6O2—C41—C42105.39 (16)
C14—C15—H15A119.6O2—C41—H41A110.7
C15—C16—C17119.20 (18)C42—C41—H41A110.7
C15—C16—H16A120.4O2—C41—H41B110.7
C17—C16—H16A120.4C42—C41—H41B110.7
C16—C17—C18120.52 (18)H41A—C41—H41B108.8
C16—C17—H17A119.7C43—C42—C41105.81 (19)
C18—C17—H17A119.7C43—C42—H42A110.6
C17—C18—C13120.93 (18)C41—C42—H42A110.6
C17—C18—H18A119.5C43—C42—H42B110.6
C13—C18—H18A119.5C41—C42—H42B110.6
C24—C19—N2119.45 (15)H42A—C42—H42B108.7
C24—C19—C20117.43 (16)C44—C43—C42106.26 (19)
N2—C19—C20122.85 (15)C44—C43—H43A110.5
C24—C19—Y185.35 (10)C42—C43—H43A110.5
N2—C19—Y146.94 (7)C44—C43—H43B110.5
C20—C19—Y1136.08 (11)C42—C43—H43B110.5
C21—C20—C19121.10 (17)H43A—C43—H43B108.7
C21—C20—H20A119.4O2—C44—C43106.06 (16)
C19—C20—H20A119.4O2—C44—H44A110.5
C20—C21—C22120.87 (17)C43—C44—H44A110.5
C20—C21—H21A119.6O2—C44—H44B110.5
C22—C21—H21A119.6C43—C44—H44B110.5
C23—C22—C21119.05 (17)H44A—C44—H44B108.7
C7—N1—C1—C2166.06 (15)C20—C21—C22—C230.8 (3)
Y1—N1—C1—C215.1 (2)C21—C22—C23—C240.4 (3)
C7—N1—C1—C616.3 (2)C22—C23—C24—C190.8 (3)
Y1—N1—C1—C6162.48 (13)N2—C19—C24—C23172.72 (15)
N1—C1—C2—C3175.27 (16)C20—C19—C24—C231.4 (2)
C6—C1—C2—C32.5 (2)Y1—C19—C24—C23139.09 (15)
C1—C2—C3—C41.4 (3)C31—N3—C25—C3095.94 (19)
C2—C3—C4—C50.7 (3)Y1—N3—C25—C3086.57 (17)
C3—C4—C5—C61.7 (3)C31—N3—C25—C2688.07 (19)
C4—C5—C6—C10.5 (3)Y1—N3—C25—C2689.42 (16)
N1—C1—C6—C5176.11 (16)C30—C25—C26—C271.1 (2)
C2—C1—C6—C51.6 (2)N3—C25—C26—C27175.01 (15)
C1—N1—C7—C12111.78 (18)C25—C26—C27—C280.4 (3)
Y1—N1—C7—C1267.13 (18)C26—C27—C28—C290.4 (3)
C1—N1—C7—C871.9 (2)C27—C28—C29—C300.5 (3)
Y1—N1—C7—C8109.15 (15)C28—C29—C30—C250.2 (3)
C12—C7—C8—C90.6 (3)C26—C25—C30—C291.0 (3)
N1—C7—C8—C9177.01 (16)N3—C25—C30—C29175.06 (16)
C7—C8—C9—C100.9 (3)C25—N3—C31—C369.5 (2)
C8—C9—C10—C110.5 (3)Y1—N3—C31—C36173.32 (12)
C9—C10—C11—C120.2 (3)C25—N3—C31—C32170.81 (15)
C8—C7—C12—C110.1 (3)Y1—N3—C31—C326.4 (2)
N1—C7—C12—C11176.30 (16)N3—C31—C32—C33178.94 (16)
C10—C11—C12—C70.5 (3)C36—C31—C32—C331.3 (2)
C19—N2—C13—C14150.24 (16)C31—C32—C33—C340.8 (3)
Y1—N2—C13—C149.6 (2)C32—C33—C34—C350.4 (3)
C19—N2—C13—C1834.0 (2)C33—C34—C35—C361.1 (3)
Y1—N2—C13—C18166.16 (13)C34—C35—C36—C310.5 (3)
C18—C13—C14—C153.1 (3)N3—C31—C36—C35179.59 (16)
N2—C13—C14—C15172.83 (17)C32—C31—C36—C350.7 (3)
C13—C14—C15—C160.7 (3)C40—O1—C37—C3815.01 (18)
C14—C15—C16—C171.6 (3)Y1—O1—C37—C38158.85 (11)
C15—C16—C17—C181.5 (3)O1—C37—C38—C3934.95 (18)
C16—C17—C18—C131.0 (3)C37—C38—C39—C4041.13 (17)
C14—C13—C18—C173.3 (3)C37—O1—C40—C3911.27 (17)
N2—C13—C18—C17172.56 (17)Y1—O1—C40—C39173.99 (10)
C13—N2—C19—C24146.07 (15)C38—C39—C40—O132.67 (17)
Y1—N2—C19—C2449.07 (17)C44—O2—C41—C4230.5 (2)
C13—N2—C19—C2040.1 (2)Y1—O2—C41—C42147.90 (17)
Y1—N2—C19—C20124.76 (14)O2—C41—C42—C4318.0 (3)
C13—N2—C19—Y1164.86 (18)C41—C42—C43—C440.8 (3)
C24—C19—C20—C211.0 (2)C41—O2—C44—C4331.4 (2)
N2—C19—C20—C21172.96 (16)Y1—O2—C44—C43147.18 (16)
Y1—C19—C20—C21113.04 (19)C42—C43—C44—O219.3 (3)
C19—C20—C21—C220.1 (3)
Tris(diphenylamido-κN)bis(tetrahydrofuran-κO)erbium(III) (1-Er) top
Crystal data top
[Er(C12H10N)3(C4H8O)2]F(000) = 1660
Mr = 816.10Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0946 (5) ÅCell parameters from 9998 reflections
b = 19.1086 (8) Åθ = 2.5–29.0°
c = 16.3609 (7) ŵ = 2.26 mm1
β = 91.3697 (5)°T = 173 K
V = 3780.1 (3) Å3Irregular, pink
Z = 40.48 × 0.39 × 0.33 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8834 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
φ and ω scansθmax = 29.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.557, Tmax = 0.695k = 2524
46529 measured reflectionsl = 2222
9687 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0257P)2 + 1.7012P]
where P = (Fo2 + 2Fc2)/3
9687 reflections(Δ/σ)max = 0.004
462 parametersΔρmax = 0.70 e Å3
28 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A pink crystal of approximate dimensions 0.332 x 0.389 x 0.482 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (15 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/n that was later determined to be correct.

The structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The tetrahydrofuran ligands were disordered and were included using multiple components with partial site-occupancy-factors.

Least-squares analysis yielded wR2 = 0.0504 and Goof = 1.041 for 462 variables refined against 9687 data (0.73 Å), R1 = 0.0194 for those 8834 data with I > 2.0sigma(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.46777 (2)0.72342 (2)0.36679 (2)0.02729 (3)
O10.41457 (11)0.78132 (6)0.48614 (8)0.0377 (3)
O20.49661 (10)0.64664 (6)0.25832 (7)0.0342 (3)
N10.28353 (12)0.71121 (8)0.33981 (9)0.0327 (3)
N20.58473 (13)0.65462 (8)0.43975 (9)0.0369 (3)
N30.55625 (12)0.81628 (8)0.31723 (10)0.0382 (3)
C10.24325 (13)0.64570 (9)0.30972 (11)0.0316 (3)
C20.23877 (18)0.58668 (11)0.35926 (13)0.0454 (5)
H20.26030.59020.41530.054*
C30.20326 (19)0.52253 (11)0.32804 (15)0.0533 (5)
H30.20100.48290.36290.064*
C40.17145 (18)0.51609 (11)0.24715 (14)0.0496 (5)
H40.14810.47210.22580.060*
C50.17397 (19)0.57433 (12)0.19752 (13)0.0503 (5)
H50.15150.57050.14170.060*
C60.20901 (16)0.63846 (10)0.22831 (11)0.0401 (4)
H60.20970.67810.19330.048*
C70.20194 (15)0.76085 (9)0.35533 (10)0.0325 (3)
C80.09037 (16)0.74366 (11)0.36552 (12)0.0388 (4)
H80.06690.69660.35830.047*
C90.01340 (19)0.79475 (13)0.38613 (14)0.0505 (5)
H90.06160.78190.39320.061*
C100.0446 (2)0.86363 (13)0.39638 (13)0.0541 (6)
H100.00810.89810.41060.065*
C110.1541 (2)0.88162 (11)0.38556 (12)0.0496 (5)
H110.17640.92900.39230.059*
C120.23129 (17)0.83184 (10)0.36517 (11)0.0401 (4)
H120.30580.84570.35760.048*
C130.68712 (15)0.62707 (11)0.41862 (11)0.0396 (4)
C140.73872 (17)0.57185 (11)0.46194 (14)0.0473 (5)
H140.70530.55380.50950.057*
C150.8377 (2)0.54336 (13)0.43620 (18)0.0636 (7)
H150.87100.50620.46640.076*
C160.8879 (2)0.56814 (17)0.36780 (18)0.0743 (9)
H160.95470.54760.35000.089*
C170.8405 (2)0.62298 (18)0.32529 (15)0.0707 (8)
H170.87580.64080.27840.085*
C180.74103 (17)0.65291 (14)0.35007 (13)0.0538 (6)
H180.70990.69100.32020.065*
C190.54807 (15)0.63758 (9)0.51950 (10)0.0341 (4)
C200.46354 (16)0.58936 (10)0.53102 (12)0.0398 (4)
H200.43440.56390.48550.048*
C210.42101 (19)0.57793 (11)0.60840 (13)0.0475 (5)
H210.36240.54550.61500.057*
C220.4635 (2)0.61339 (12)0.67505 (13)0.0526 (5)
H220.43380.60590.72760.063*
C230.5498 (2)0.65999 (12)0.66552 (12)0.0507 (5)
H230.58060.68360.71180.061*
C240.59134 (16)0.67236 (11)0.58859 (11)0.0415 (4)
H240.65000.70490.58260.050*
C250.63270 (15)0.85741 (11)0.36236 (12)0.0416 (4)
C260.69543 (17)0.82757 (13)0.42630 (13)0.0482 (5)
H260.69190.77850.43530.058*
C270.7629 (2)0.86864 (16)0.47698 (16)0.0645 (7)
H270.80370.84720.52050.077*
C280.7714 (2)0.93895 (17)0.4653 (2)0.0823 (10)
H280.81720.96680.50030.099*
C290.7123 (3)0.96868 (15)0.4017 (2)0.0867 (10)
H290.71851.01760.39240.104*
C300.6437 (2)0.92913 (13)0.35027 (18)0.0632 (7)
H300.60400.95120.30660.076*
C310.54035 (15)0.83254 (9)0.23354 (11)0.0350 (4)
C320.62980 (18)0.84668 (11)0.18308 (13)0.0462 (5)
H320.70250.84940.20610.055*
C330.6130 (2)0.85670 (13)0.10019 (15)0.0608 (7)
H330.67430.86680.06700.073*
C340.5090 (2)0.85236 (13)0.06487 (14)0.0627 (7)
H340.49850.85860.00760.075*
C350.4203 (2)0.83897 (12)0.11336 (14)0.0528 (5)
H350.34820.83600.08930.063*
C360.43466 (16)0.82969 (10)0.19732 (12)0.0406 (4)
H360.37230.82140.23020.049*
C370.32888 (16)0.75422 (11)0.53980 (11)0.0399 (4)
H37A0.34130.70400.55190.048*0.373 (12)
H37B0.25440.76000.51420.048*0.373 (12)
H37C0.35580.71220.56950.048*0.627 (12)
H37D0.26150.74160.50750.048*0.627 (12)
C380.3404 (9)0.7980 (6)0.6171 (5)0.0594 (9)0.373 (12)
H38A0.27280.82620.62490.071*0.373 (12)
H38B0.35150.76730.66540.071*0.373 (12)
C390.4396 (9)0.8454 (7)0.6074 (5)0.0594 (9)0.373 (12)
H39A0.42550.89250.63020.071*0.373 (12)
H39B0.50630.82540.63470.071*0.373 (12)
C38B0.3045 (6)0.8127 (3)0.5990 (4)0.0594 (9)0.627 (12)
H38C0.24640.84430.57670.071*0.627 (12)
H38D0.28100.79400.65230.071*0.627 (12)
C39B0.4123 (6)0.8488 (4)0.6068 (3)0.0594 (9)0.627 (12)
H39C0.46400.82310.64370.071*0.627 (12)
H39D0.40350.89720.62730.071*0.627 (12)
C400.4521 (2)0.84841 (14)0.51903 (15)0.0667 (7)
H40A0.53050.85650.50570.080*0.373 (12)
H40B0.40700.88700.49540.080*0.373 (12)
H40C0.41910.88770.48740.080*0.627 (12)
H40D0.53370.85210.51780.080*0.627 (12)
C410.4980 (2)0.66225 (11)0.17130 (12)0.0475 (5)
H41A0.55650.69680.15950.057*
H41B0.42580.68140.15230.057*
C420.5211 (2)0.59331 (14)0.12968 (13)0.0617 (7)
H42A0.57570.59940.08610.074*0.633 (7)
H42B0.45240.57320.10540.074*0.633 (7)
H42C0.47890.58960.07730.074*0.367 (7)
H42D0.60090.58850.11880.074*0.367 (7)
C430.5677 (4)0.54620 (19)0.1983 (2)0.0532 (12)0.633 (7)
H43A0.55250.49620.18680.064*0.633 (7)
H43B0.64830.55300.20640.064*0.633 (7)
C440.4865 (6)0.5413 (3)0.1856 (4)0.0460 (18)0.367 (7)
H44A0.52950.49770.17860.055*0.367 (7)
H44B0.40700.53060.17670.055*0.367 (7)
C450.50666 (19)0.57083 (10)0.26924 (12)0.0441 (4)
H45A0.43270.54870.27070.053*0.633 (7)
H45B0.54770.55980.32070.053*0.633 (7)
H45C0.45110.55330.30770.053*0.367 (7)
H45D0.58140.55820.29040.053*0.367 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02622 (4)0.02886 (4)0.02674 (4)0.00102 (3)0.00015 (3)0.00231 (3)
O10.0382 (7)0.0401 (7)0.0350 (7)0.0038 (5)0.0066 (5)0.0073 (5)
O20.0407 (7)0.0316 (6)0.0301 (6)0.0045 (5)0.0021 (5)0.0037 (5)
N10.0295 (7)0.0319 (7)0.0367 (8)0.0009 (6)0.0021 (6)0.0008 (6)
N20.0357 (8)0.0464 (9)0.0285 (7)0.0050 (6)0.0036 (6)0.0013 (6)
N30.0328 (7)0.0422 (9)0.0394 (8)0.0051 (6)0.0015 (6)0.0072 (7)
C10.0250 (7)0.0334 (8)0.0362 (8)0.0011 (6)0.0011 (6)0.0017 (7)
C20.0500 (11)0.0440 (11)0.0418 (10)0.0053 (9)0.0082 (8)0.0104 (8)
C30.0587 (13)0.0350 (10)0.0659 (14)0.0065 (9)0.0044 (11)0.0123 (9)
C40.0469 (11)0.0359 (10)0.0662 (14)0.0064 (8)0.0029 (10)0.0103 (9)
C50.0549 (12)0.0534 (12)0.0425 (10)0.0082 (10)0.0047 (9)0.0092 (9)
C60.0443 (10)0.0398 (10)0.0358 (9)0.0042 (8)0.0045 (8)0.0035 (7)
C70.0345 (9)0.0367 (9)0.0264 (8)0.0025 (7)0.0009 (6)0.0046 (6)
C80.0348 (9)0.0443 (10)0.0374 (9)0.0033 (8)0.0039 (7)0.0067 (8)
C90.0431 (11)0.0627 (13)0.0464 (11)0.0127 (10)0.0121 (9)0.0114 (10)
C100.0650 (14)0.0575 (13)0.0405 (11)0.0269 (11)0.0134 (10)0.0082 (9)
C110.0699 (14)0.0387 (10)0.0403 (10)0.0111 (10)0.0043 (10)0.0035 (8)
C120.0454 (10)0.0373 (9)0.0377 (9)0.0016 (8)0.0003 (8)0.0044 (8)
C130.0338 (9)0.0497 (11)0.0347 (9)0.0011 (8)0.0077 (7)0.0150 (8)
C140.0397 (10)0.0408 (10)0.0609 (13)0.0020 (8)0.0114 (9)0.0137 (9)
C150.0453 (12)0.0548 (14)0.0901 (19)0.0108 (10)0.0134 (12)0.0271 (13)
C160.0393 (12)0.103 (2)0.0801 (18)0.0149 (13)0.0079 (12)0.0497 (17)
C170.0423 (12)0.125 (3)0.0446 (12)0.0021 (14)0.0014 (10)0.0286 (14)
C180.0394 (10)0.0857 (17)0.0360 (10)0.0026 (11)0.0037 (8)0.0104 (10)
C190.0356 (9)0.0353 (9)0.0309 (8)0.0057 (7)0.0072 (7)0.0001 (7)
C200.0461 (10)0.0345 (9)0.0382 (9)0.0004 (8)0.0106 (8)0.0009 (7)
C210.0547 (12)0.0418 (10)0.0456 (11)0.0086 (9)0.0053 (9)0.0122 (9)
C220.0676 (14)0.0561 (13)0.0339 (10)0.0034 (11)0.0033 (9)0.0129 (9)
C230.0630 (13)0.0591 (13)0.0293 (9)0.0054 (10)0.0123 (9)0.0014 (9)
C240.0430 (10)0.0463 (10)0.0348 (9)0.0060 (8)0.0082 (7)0.0006 (8)
C250.0308 (9)0.0470 (11)0.0470 (10)0.0017 (8)0.0044 (8)0.0029 (8)
C260.0381 (10)0.0634 (13)0.0430 (10)0.0030 (9)0.0003 (8)0.0025 (10)
C270.0450 (12)0.093 (2)0.0548 (13)0.0044 (12)0.0061 (10)0.0214 (13)
C280.0579 (15)0.078 (2)0.110 (2)0.0052 (14)0.0187 (16)0.0500 (18)
C290.0721 (19)0.0491 (15)0.138 (3)0.0003 (13)0.0213 (19)0.0267 (17)
C300.0524 (13)0.0446 (12)0.0916 (19)0.0017 (10)0.0148 (13)0.0063 (12)
C310.0378 (9)0.0261 (8)0.0412 (9)0.0024 (7)0.0025 (7)0.0058 (7)
C320.0426 (10)0.0432 (11)0.0532 (12)0.0085 (8)0.0112 (9)0.0118 (9)
C330.0713 (16)0.0592 (14)0.0531 (13)0.0253 (12)0.0263 (12)0.0169 (11)
C340.0902 (19)0.0606 (14)0.0376 (11)0.0326 (13)0.0059 (11)0.0067 (10)
C350.0610 (13)0.0484 (12)0.0483 (12)0.0173 (10)0.0119 (10)0.0027 (9)
C360.0396 (10)0.0369 (9)0.0452 (10)0.0051 (8)0.0004 (8)0.0058 (8)
C370.0408 (10)0.0448 (10)0.0345 (9)0.0017 (8)0.0079 (7)0.0003 (8)
C380.051 (3)0.0699 (15)0.0579 (12)0.0018 (16)0.0153 (13)0.0210 (11)
C390.051 (3)0.0699 (15)0.0579 (12)0.0018 (16)0.0153 (13)0.0210 (11)
C38B0.051 (3)0.0699 (15)0.0579 (12)0.0018 (16)0.0153 (13)0.0210 (11)
C39B0.051 (3)0.0699 (15)0.0579 (12)0.0018 (16)0.0153 (13)0.0210 (11)
C400.0775 (17)0.0637 (15)0.0602 (14)0.0287 (13)0.0271 (12)0.0318 (12)
C410.0675 (14)0.0425 (11)0.0326 (9)0.0046 (10)0.0028 (9)0.0012 (8)
C420.094 (2)0.0530 (14)0.0379 (11)0.0079 (12)0.0039 (12)0.0103 (9)
C430.067 (3)0.0430 (18)0.050 (2)0.0125 (17)0.0045 (18)0.0118 (15)
C440.053 (4)0.035 (3)0.049 (3)0.004 (2)0.013 (3)0.013 (2)
C450.0623 (13)0.0312 (9)0.0384 (10)0.0047 (8)0.0038 (9)0.0036 (7)
Geometric parameters (Å, º) top
Er1—N32.2344 (15)C26—C271.392 (3)
Er1—N22.2524 (15)C26—H260.9500
Er1—N12.2733 (15)C27—C281.361 (4)
Er1—O22.3353 (11)C27—H270.9500
Er1—O12.3475 (12)C28—C291.371 (5)
O1—C401.458 (2)C28—H280.9500
O1—C371.469 (2)C29—C301.391 (4)
O2—C411.455 (2)C29—H290.9500
O2—C451.464 (2)C30—H300.9500
N1—C71.396 (2)C31—C361.397 (3)
N1—C11.427 (2)C31—C321.403 (3)
N2—C131.397 (2)C32—C331.380 (3)
N2—C191.426 (2)C32—H320.9500
N3—C251.409 (2)C33—C341.374 (4)
N3—C311.413 (2)C33—H330.9500
C1—C21.391 (3)C34—C351.373 (4)
C1—C61.392 (2)C34—H340.9500
C2—C31.392 (3)C35—C361.392 (3)
C2—H20.9500C35—H350.9500
C3—C41.375 (3)C36—H360.9500
C3—H30.9500C37—C38B1.512 (4)
C4—C51.378 (3)C37—C381.520 (7)
C4—H40.9500C37—H37A0.9900
C5—C61.387 (3)C37—H37B0.9900
C5—H50.9500C37—H37C0.9900
C6—H60.9500C37—H37D0.9900
C7—C81.403 (3)C38—C391.515 (8)
C7—C121.410 (3)C38—H38A0.9900
C8—C91.396 (3)C38—H38B0.9900
C8—H80.9500C39—C401.458 (8)
C9—C101.379 (4)C39—H39A0.9900
C9—H90.9500C39—H39B0.9900
C10—C111.383 (3)C38B—C39B1.479 (5)
C10—H100.9500C38B—H38C0.9900
C11—C121.380 (3)C38B—H38D0.9900
C11—H110.9500C39B—C401.525 (5)
C12—H120.9500C39B—H39C0.9900
C13—C181.401 (3)C39B—H39D0.9900
C13—C141.408 (3)C40—H40A0.9900
C14—C151.389 (3)C40—H40B0.9900
C14—H140.9500C40—H40C0.9900
C15—C161.370 (4)C40—H40D0.9900
C15—H150.9500C41—C421.512 (3)
C16—C171.375 (4)C41—H41A0.9900
C16—H160.9500C41—H41B0.9900
C17—C181.401 (3)C42—C441.421 (7)
C17—H170.9500C42—C431.535 (5)
C18—H180.9500C42—H42A0.9900
C19—C201.392 (3)C42—H42B0.9900
C19—C241.402 (2)C42—H42C0.9900
C20—C211.395 (3)C42—H42D0.9900
C20—H200.9500C43—C451.468 (4)
C21—C221.373 (3)C43—H43A0.9900
C21—H210.9500C43—H43B0.9900
C22—C231.383 (3)C44—C451.495 (6)
C22—H220.9500C44—H44A0.9900
C23—C241.387 (3)C44—H44B0.9900
C23—H230.9500C45—H45A0.9900
C24—H240.9500C45—H45B0.9900
C25—C301.391 (3)C45—H45C0.9900
C25—C261.399 (3)C45—H45D0.9900
N3—Er1—N2110.83 (6)C29—C30—C25120.5 (3)
N3—Er1—N1119.13 (5)C29—C30—H30119.8
N2—Er1—N1130.04 (6)C25—C30—H30119.8
N3—Er1—O298.14 (5)C36—C31—C32117.94 (18)
N2—Er1—O286.14 (5)C36—C31—N3120.30 (16)
N1—Er1—O287.22 (5)C32—C31—N3121.59 (17)
N3—Er1—O194.06 (5)C33—C32—C31120.5 (2)
N2—Er1—O190.89 (5)C33—C32—H32119.8
N1—Er1—O185.59 (5)C31—C32—H32119.8
O2—Er1—O1167.72 (4)C34—C33—C32121.1 (2)
C40—O1—C37107.88 (14)C34—C33—H33119.4
C40—O1—Er1129.21 (12)C32—C33—H33119.4
C37—O1—Er1122.85 (10)C35—C34—C33119.2 (2)
C41—O2—C45108.63 (13)C35—C34—H34120.4
C41—O2—Er1128.32 (11)C33—C34—H34120.4
C45—O2—Er1122.84 (10)C34—C35—C36120.9 (2)
C7—N1—C1114.95 (14)C34—C35—H35119.6
C7—N1—Er1126.06 (11)C36—C35—H35119.6
C1—N1—Er1118.82 (11)C35—C36—C31120.33 (19)
C13—N2—C19115.94 (15)C35—C36—H36119.8
C13—N2—Er1129.66 (12)C31—C36—H36119.8
C19—N2—Er1114.40 (11)O1—C37—C38B105.9 (2)
C25—N3—C31117.24 (15)O1—C37—C38104.6 (3)
C25—N3—Er1124.53 (12)O1—C37—H37A110.8
C31—N3—Er1118.10 (11)C38—C37—H37A110.8
C2—C1—C6117.53 (17)O1—C37—H37B110.8
C2—C1—N1121.89 (16)C38—C37—H37B110.8
C6—C1—N1120.57 (16)H37A—C37—H37B108.9
C1—C2—C3121.08 (19)O1—C37—H37C110.6
C1—C2—H2119.5C38B—C37—H37C110.6
C3—C2—H2119.5O1—C37—H37D110.6
C4—C3—C2120.58 (19)C38B—C37—H37D110.6
C4—C3—H3119.7H37C—C37—H37D108.7
C2—C3—H3119.7C39—C38—C37107.4 (5)
C3—C4—C5119.03 (19)C39—C38—H38A110.2
C3—C4—H4120.5C37—C38—H38A110.2
C5—C4—H4120.5C39—C38—H38B110.2
C4—C5—C6120.66 (19)C37—C38—H38B110.2
C4—C5—H5119.7H38A—C38—H38B108.5
C6—C5—H5119.7C40—C39—C38103.3 (6)
C5—C6—C1121.10 (18)C40—C39—H39A111.1
C5—C6—H6119.5C38—C39—H39A111.1
C1—C6—H6119.5C40—C39—H39B111.1
N1—C7—C8123.27 (17)C38—C39—H39B111.1
N1—C7—C12119.81 (16)H39A—C39—H39B109.1
C8—C7—C12116.86 (17)C39B—C38B—C37102.4 (3)
C9—C8—C7120.9 (2)C39B—C38B—H38C111.3
C9—C8—H8119.5C37—C38B—H38C111.3
C7—C8—H8119.5C39B—C38B—H38D111.3
C10—C9—C8121.0 (2)C37—C38B—H38D111.3
C10—C9—H9119.5H38C—C38B—H38D109.2
C8—C9—H9119.5C38B—C39B—C40102.4 (4)
C9—C10—C11118.8 (2)C38B—C39B—H39C111.3
C9—C10—H10120.6C40—C39B—H39C111.3
C11—C10—H10120.6C38B—C39B—H39D111.3
C12—C11—C10121.0 (2)C40—C39B—H39D111.3
C12—C11—H11119.5H39C—C39B—H39D109.2
C10—C11—H11119.5C39—C40—O1107.0 (5)
C11—C12—C7121.4 (2)O1—C40—C39B104.5 (3)
C11—C12—H12119.3C39—C40—H40A110.3
C7—C12—H12119.3O1—C40—H40A110.3
N2—C13—C18119.85 (19)C39—C40—H40B110.3
N2—C13—C14122.87 (19)O1—C40—H40B110.3
C18—C13—C14117.25 (19)H40A—C40—H40B108.6
C15—C14—C13121.0 (2)O1—C40—H40C110.9
C15—C14—H14119.5C39B—C40—H40C110.9
C13—C14—H14119.5O1—C40—H40D110.9
C16—C15—C14120.9 (3)C39B—C40—H40D110.9
C16—C15—H15119.5H40C—C40—H40D108.9
C14—C15—H15119.5O2—C41—C42105.57 (16)
C15—C16—C17119.3 (2)O2—C41—H41A110.6
C15—C16—H16120.4C42—C41—H41A110.6
C17—C16—H16120.4O2—C41—H41B110.6
C16—C17—C18121.0 (3)C42—C41—H41B110.6
C16—C17—H17119.5H41A—C41—H41B108.8
C18—C17—H17119.5C44—C42—C41105.0 (3)
C13—C18—C17120.5 (2)C41—C42—C43104.49 (19)
C13—C18—H18119.8C41—C42—H42A110.9
C17—C18—H18119.8C43—C42—H42A110.9
C20—C19—C24117.75 (17)C41—C42—H42B110.9
C20—C19—N2121.36 (16)C43—C42—H42B110.9
C24—C19—N2120.76 (17)H42A—C42—H42B108.9
C19—C20—C21120.95 (17)C44—C42—H42C110.7
C19—C20—H20119.5C41—C42—H42C110.7
C21—C20—H20119.5C44—C42—H42D110.7
C22—C21—C20120.3 (2)C41—C42—H42D110.7
C22—C21—H21119.9H42C—C42—H42D108.8
C20—C21—H21119.9C45—C43—C42102.0 (3)
C21—C22—C23119.8 (2)C45—C43—H43A111.4
C21—C22—H22120.1C42—C43—H43A111.4
C23—C22—H22120.1C45—C43—H43B111.4
C22—C23—C24120.18 (19)C42—C43—H43B111.4
C22—C23—H23119.9H43A—C43—H43B109.2
C24—C23—H23119.9C42—C44—C45106.3 (4)
C23—C24—C19120.98 (19)C42—C44—H44A110.5
C23—C24—H24119.5C45—C44—H44A110.5
C19—C24—H24119.5C42—C44—H44B110.5
C30—C25—C26117.1 (2)C45—C44—H44B110.5
C30—C25—N3122.6 (2)H44A—C44—H44B108.7
C26—C25—N3120.13 (19)O2—C45—C43105.2 (2)
C27—C26—C25121.0 (2)O2—C45—C44104.5 (3)
C27—C26—H26119.5O2—C45—H45A110.7
C25—C26—H26119.5C43—C45—H45A110.7
C28—C27—C26121.2 (3)O2—C45—H45B110.7
C28—C27—H27119.4C43—C45—H45B110.7
C26—C27—H27119.4H45A—C45—H45B108.8
C27—C28—C29118.4 (3)O2—C45—H45C110.8
C27—C28—H28120.8C44—C45—H45C110.8
C29—C28—H28120.8O2—C45—H45D110.8
C28—C29—C30121.8 (3)C44—C45—H45D110.8
C28—C29—H29119.1H45C—C45—H45D108.9
C30—C29—H29119.1
C7—N1—C1—C2103.9 (2)Er1—N3—C25—C30146.15 (19)
Er1—N1—C1—C271.7 (2)C31—N3—C25—C26146.81 (18)
C7—N1—C1—C677.5 (2)Er1—N3—C25—C2628.9 (2)
Er1—N1—C1—C6106.84 (17)C30—C25—C26—C272.0 (3)
C6—C1—C2—C31.2 (3)N3—C25—C26—C27173.3 (2)
N1—C1—C2—C3177.48 (19)C25—C26—C27—C281.0 (4)
C1—C2—C3—C40.1 (4)C26—C27—C28—C290.5 (5)
C2—C3—C4—C50.8 (4)C27—C28—C29—C300.9 (5)
C3—C4—C5—C60.6 (3)C28—C29—C30—C250.2 (5)
C4—C5—C6—C10.5 (3)C26—C25—C30—C291.6 (4)
C2—C1—C6—C51.3 (3)N3—C25—C30—C29173.6 (2)
N1—C1—C6—C5177.33 (18)C25—N3—C31—C36140.86 (18)
C1—N1—C7—C818.8 (2)Er1—N3—C31—C3643.1 (2)
Er1—N1—C7—C8156.41 (14)C25—N3—C31—C3244.0 (3)
C1—N1—C7—C12164.08 (16)Er1—N3—C31—C32131.98 (16)
Er1—N1—C7—C1220.7 (2)C36—C31—C32—C330.6 (3)
N1—C7—C8—C9175.84 (18)N3—C31—C32—C33174.59 (19)
C12—C7—C8—C91.3 (3)C31—C32—C33—C340.7 (3)
C7—C8—C9—C100.6 (3)C32—C33—C34—C351.1 (4)
C8—C9—C10—C110.3 (3)C33—C34—C35—C360.1 (4)
C9—C10—C11—C120.2 (3)C34—C35—C36—C311.2 (3)
C10—C11—C12—C70.6 (3)C32—C31—C36—C351.6 (3)
N1—C7—C12—C11175.93 (17)N3—C31—C36—C35173.69 (18)
C8—C7—C12—C111.3 (3)C40—O1—C37—C38B8.2 (4)
C19—N2—C13—C18165.92 (17)Er1—O1—C37—C38B169.3 (4)
Er1—N2—C13—C1813.5 (3)C40—O1—C37—C3815.1 (6)
C19—N2—C13—C1416.3 (3)Er1—O1—C37—C38167.4 (5)
Er1—N2—C13—C14164.33 (14)O1—C37—C38—C394.4 (9)
N2—C13—C14—C15176.38 (18)C37—C38—C39—C4021.8 (10)
C18—C13—C14—C151.5 (3)O1—C37—C38B—C39B30.9 (5)
C13—C14—C15—C160.1 (3)C37—C38B—C39B—C4040.7 (5)
C14—C15—C16—C171.4 (4)C38—C39—C40—O131.4 (8)
C15—C16—C17—C181.1 (4)C37—O1—C40—C3930.0 (5)
N2—C13—C18—C17176.2 (2)Er1—O1—C40—C39152.7 (5)
C14—C13—C18—C171.8 (3)C37—O1—C40—C39B17.1 (4)
C16—C17—C18—C130.5 (4)Er1—O1—C40—C39B165.6 (3)
C13—N2—C19—C20106.2 (2)C38B—C39B—C40—O136.4 (5)
Er1—N2—C19—C2074.27 (19)C45—O2—C41—C425.6 (2)
C13—N2—C19—C2477.9 (2)Er1—O2—C41—C42179.56 (14)
Er1—N2—C19—C24101.57 (17)O2—C41—C42—C4423.5 (4)
C24—C19—C20—C212.1 (3)O2—C41—C42—C4317.4 (3)
N2—C19—C20—C21173.83 (18)C41—C42—C43—C4533.5 (3)
C19—C20—C21—C221.2 (3)C41—C42—C44—C4532.0 (5)
C20—C21—C22—C230.8 (3)C41—O2—C45—C4327.7 (3)
C21—C22—C23—C241.7 (4)Er1—O2—C45—C43157.2 (2)
C22—C23—C24—C190.7 (3)C41—O2—C45—C4413.3 (4)
C20—C19—C24—C231.2 (3)Er1—O2—C45—C44161.9 (3)
N2—C19—C24—C23174.82 (18)C42—C43—C45—O237.2 (3)
C31—N3—C25—C3038.1 (3)C42—C44—C45—O228.5 (5)
Bis[µ-1κN:2(η6)-diphenylamido]bis[bis(diphenylamido-κN)yttrium(III)] (2-Y) top
Crystal data top
[Y2(C12H10N)6]F(000) = 1224
Mr = 1187.08Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2776 (5) ÅCell parameters from 8538 reflections
b = 22.5591 (13) Åθ = 2.2–28.5°
c = 13.4791 (8) ŵ = 2.10 mm1
β = 91.4966 (9)°T = 88 K
V = 2820.1 (3) Å3Irregular, colorless
Z = 20.28 × 0.24 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5604 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
φ and ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1211
Tmin = 0.622, Tmax = 0.746k = 2929
22940 measured reflectionsl = 1818
6851 independent reflections
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2 + 1.5469P]
where P = (Fo2 + 2Fc2)/3
6851 reflections(Δ/σ)max = 0.005
361 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A colorless crystal of approximate dimensions 0.146 x 0.239 x 0.284 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (30 sec/frame scan time for a hemisphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL4 program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/c that was later determined to be correct.

The structure was solved using the coordinates of the dysprosium analogue and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about an inversion center.

Least-squares analysis yielded wR2 = 0.0697 and Goof = 1.030 for 361 variables refined against 6851 data (0.73 Å), R1 = 0.0315 for those 5604 data with I > 2.0sigma(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.54944 (2)0.53325 (2)0.68672 (2)0.01043 (5)
N10.31265 (16)0.46134 (6)0.45267 (11)0.0129 (3)
N20.64877 (16)0.59961 (6)0.79024 (11)0.0132 (3)
N30.62857 (16)0.44684 (6)0.74806 (11)0.0123 (3)
C10.30672 (19)0.49921 (8)0.53141 (13)0.0120 (4)
C20.3512 (2)0.55933 (8)0.51771 (13)0.0129 (4)
H2A0.39500.57010.45740.016*
C30.3323 (2)0.60236 (8)0.58964 (14)0.0153 (4)
H3A0.35730.64230.57600.018*
C40.2766 (2)0.58774 (8)0.68228 (14)0.0165 (4)
H4A0.26490.61710.73200.020*
C50.23913 (19)0.52870 (8)0.69904 (14)0.0156 (4)
H5A0.20040.51800.76110.019*
C60.2570 (2)0.48498 (8)0.62716 (13)0.0139 (4)
H6A0.23560.44490.64270.017*
C70.2581 (2)0.40201 (8)0.46423 (13)0.0130 (4)
C80.3273 (2)0.35982 (8)0.52516 (14)0.0152 (4)
H8A0.40880.37100.56500.018*
C90.2776 (2)0.30176 (8)0.52768 (15)0.0185 (4)
H9A0.32500.27350.56940.022*
C100.1594 (2)0.28487 (8)0.46973 (15)0.0208 (4)
H10A0.12660.24500.47080.025*
C110.0890 (2)0.32637 (9)0.41005 (15)0.0209 (4)
H11A0.00730.31490.37060.025*
C120.1375 (2)0.38481 (8)0.40774 (14)0.0160 (4)
H12A0.08790.41310.36730.019*
C130.5619 (2)0.65051 (8)0.80710 (14)0.0130 (4)
C140.5344 (2)0.69157 (8)0.73156 (14)0.0154 (4)
H14A0.58400.68850.67100.019*
C150.4350 (2)0.73698 (8)0.74429 (15)0.0188 (4)
H15A0.41400.76350.69110.023*
C160.3665 (2)0.74394 (8)0.83363 (15)0.0197 (4)
H16A0.29900.77510.84210.024*
C170.3979 (2)0.70446 (8)0.91100 (15)0.0179 (4)
H17A0.35320.70930.97310.021*
C180.4940 (2)0.65819 (8)0.89794 (14)0.0154 (4)
H18A0.51400.63150.95100.019*
C190.7884 (2)0.60107 (8)0.83245 (13)0.0130 (4)
C200.8629 (2)0.54780 (8)0.85134 (13)0.0141 (4)
H20A0.81730.51110.83580.017*
C211.0012 (2)0.54779 (9)0.89210 (14)0.0170 (4)
H21A1.04840.51120.90550.020*
C221.0721 (2)0.60080 (9)0.91365 (14)0.0189 (4)
H22A1.16720.60070.94150.023*
C231.0012 (2)0.65389 (9)0.89366 (14)0.0190 (4)
H23A1.04920.69040.90690.023*
C240.8614 (2)0.65436 (8)0.85456 (13)0.0155 (4)
H24A0.81430.69120.84250.019*
C250.7441 (2)0.40688 (8)0.74930 (13)0.0124 (4)
C260.8493 (2)0.40999 (8)0.67643 (14)0.0152 (4)
H26A0.84440.44090.62850.018*
C270.9602 (2)0.36881 (9)0.67311 (15)0.0190 (4)
H27A1.02830.37120.62180.023*
C280.9729 (2)0.32415 (8)0.74394 (16)0.0202 (4)
H28A1.04600.29480.73960.024*
C290.8770 (2)0.32330 (8)0.82083 (15)0.0192 (4)
H29A0.88840.29470.87220.023*
C300.7640 (2)0.36378 (8)0.82387 (14)0.0149 (4)
H30A0.69930.36230.87720.018*
C310.5091 (2)0.43248 (8)0.80708 (13)0.0121 (4)
C320.4588 (2)0.47383 (8)0.87565 (13)0.0140 (4)
H32A0.51160.50930.88800.017*
C330.3312 (2)0.46328 (9)0.92599 (13)0.0169 (4)
H33A0.29690.49210.97100.020*
C340.2549 (2)0.41164 (9)0.91104 (14)0.0186 (4)
H34A0.16830.40480.94520.022*
C350.3065 (2)0.36940 (9)0.84486 (14)0.0185 (4)
H35A0.25600.33310.83560.022*
C360.4298 (2)0.37982 (8)0.79293 (13)0.0144 (4)
H36A0.46170.35110.74690.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.01069 (9)0.00997 (8)0.01062 (9)0.00022 (7)0.00014 (6)0.00005 (7)
N10.0126 (8)0.0122 (7)0.0139 (7)0.0011 (6)0.0014 (6)0.0014 (6)
N20.0136 (8)0.0108 (7)0.0150 (8)0.0010 (6)0.0008 (6)0.0003 (6)
N30.0114 (8)0.0124 (7)0.0131 (8)0.0013 (6)0.0025 (6)0.0009 (6)
C10.0085 (9)0.0150 (9)0.0125 (9)0.0019 (7)0.0012 (7)0.0005 (7)
C20.0117 (9)0.0148 (9)0.0124 (9)0.0011 (7)0.0013 (7)0.0017 (7)
C30.0133 (10)0.0145 (9)0.0179 (9)0.0018 (7)0.0030 (8)0.0004 (7)
C40.0129 (10)0.0202 (9)0.0161 (9)0.0056 (8)0.0025 (8)0.0057 (7)
C50.0090 (9)0.0245 (10)0.0134 (9)0.0024 (8)0.0007 (7)0.0001 (8)
C60.0115 (9)0.0164 (9)0.0137 (9)0.0002 (7)0.0012 (7)0.0019 (7)
C70.0151 (10)0.0121 (8)0.0119 (9)0.0012 (7)0.0049 (7)0.0002 (7)
C80.0129 (10)0.0167 (9)0.0162 (9)0.0008 (7)0.0029 (8)0.0010 (7)
C90.0199 (11)0.0150 (9)0.0210 (10)0.0020 (8)0.0063 (8)0.0038 (8)
C100.0270 (12)0.0134 (9)0.0226 (10)0.0053 (8)0.0081 (9)0.0012 (8)
C110.0210 (11)0.0238 (10)0.0180 (10)0.0094 (8)0.0008 (8)0.0025 (8)
C120.0163 (10)0.0185 (9)0.0133 (9)0.0003 (8)0.0017 (8)0.0021 (7)
C130.0107 (9)0.0112 (8)0.0168 (9)0.0024 (7)0.0030 (7)0.0017 (7)
C140.0176 (10)0.0127 (9)0.0159 (9)0.0027 (7)0.0004 (8)0.0004 (7)
C150.0206 (11)0.0127 (9)0.0229 (10)0.0003 (8)0.0033 (8)0.0039 (8)
C160.0149 (10)0.0140 (9)0.0299 (11)0.0040 (8)0.0023 (8)0.0010 (8)
C170.0174 (10)0.0187 (9)0.0177 (10)0.0006 (8)0.0022 (8)0.0034 (8)
C180.0159 (10)0.0149 (9)0.0154 (9)0.0006 (7)0.0015 (8)0.0012 (7)
C190.0141 (10)0.0167 (9)0.0082 (8)0.0003 (7)0.0021 (7)0.0010 (7)
C200.0167 (10)0.0143 (9)0.0115 (9)0.0006 (7)0.0028 (7)0.0015 (7)
C210.0160 (10)0.0204 (9)0.0148 (9)0.0039 (8)0.0033 (8)0.0007 (7)
C220.0123 (10)0.0275 (10)0.0171 (9)0.0009 (8)0.0022 (8)0.0039 (8)
C230.0162 (10)0.0206 (10)0.0205 (10)0.0035 (8)0.0024 (8)0.0063 (8)
C240.0181 (10)0.0135 (9)0.0150 (9)0.0003 (8)0.0034 (8)0.0015 (7)
C250.0115 (9)0.0109 (8)0.0146 (9)0.0009 (7)0.0017 (7)0.0033 (7)
C260.0137 (10)0.0166 (9)0.0153 (9)0.0018 (7)0.0002 (7)0.0007 (7)
C270.0110 (10)0.0240 (10)0.0222 (10)0.0012 (8)0.0022 (8)0.0078 (8)
C280.0120 (10)0.0165 (9)0.0317 (11)0.0033 (8)0.0055 (8)0.0055 (8)
C290.0176 (11)0.0153 (9)0.0242 (11)0.0011 (8)0.0067 (8)0.0019 (8)
C300.0150 (10)0.0150 (9)0.0148 (9)0.0010 (7)0.0007 (7)0.0015 (7)
C310.0110 (9)0.0143 (9)0.0108 (8)0.0020 (7)0.0019 (7)0.0038 (7)
C320.0148 (9)0.0150 (9)0.0121 (9)0.0005 (7)0.0008 (7)0.0001 (7)
C330.0158 (10)0.0225 (9)0.0123 (9)0.0060 (8)0.0002 (7)0.0014 (8)
C340.0112 (10)0.0285 (11)0.0161 (9)0.0002 (8)0.0009 (8)0.0079 (8)
C350.0168 (10)0.0208 (9)0.0175 (10)0.0053 (8)0.0041 (8)0.0046 (8)
C360.0152 (10)0.0149 (9)0.0132 (9)0.0004 (7)0.0005 (7)0.0001 (7)
Geometric parameters (Å, º) top
Y1—Cnt2.584C14—C151.392 (3)
Y1—N22.2294 (15)C14—H14A0.9500
Y1—N32.2340 (15)C15—C161.386 (3)
Y1—N1i2.3039 (15)C15—H15A0.9500
Y1—C42.8129 (19)C16—C171.396 (3)
Y1—C312.8235 (17)C16—H16A0.9500
Y1—C32.8400 (18)C17—C181.387 (3)
Y1—C52.8898 (18)C17—H17A0.9500
Y1—C22.9498 (18)C18—H18A0.9500
Y1—C63.0125 (19)C19—C201.406 (2)
Y1—C323.0169 (18)C19—C241.408 (2)
Y1—C13.1300 (18)C20—C211.383 (3)
N1—C11.365 (2)C20—H20A0.9500
N1—C71.441 (2)C21—C221.392 (3)
N1—Y1i2.3039 (15)C21—H21A0.9500
N2—C191.401 (2)C22—C231.389 (3)
N2—C131.425 (2)C22—H22A0.9500
N3—C251.400 (2)C23—C241.387 (3)
N3—C311.419 (2)C23—H23A0.9500
C1—C61.419 (3)C24—H24A0.9500
C1—C21.431 (2)C25—C261.404 (3)
C2—C31.386 (3)C25—C301.407 (3)
C2—H2A0.9500C26—C271.388 (3)
C3—C41.403 (3)C26—H26A0.9500
C3—H3A0.9500C27—C281.391 (3)
C4—C51.396 (3)C27—H27A0.9500
C4—H4A0.9500C28—C291.384 (3)
C5—C61.396 (3)C28—H28A0.9500
C5—H5A0.9500C29—C301.391 (3)
C6—H6A0.9500C29—H29A0.9500
C7—C121.392 (3)C30—H30A0.9500
C7—C81.402 (2)C31—C321.402 (3)
C8—C91.389 (3)C31—C361.408 (2)
C8—H8A0.9500C32—C331.400 (3)
C9—C101.383 (3)C32—H32A0.9500
C9—H9A0.9500C33—C341.375 (3)
C10—C111.387 (3)C33—H33A0.9500
C10—H10A0.9500C34—C351.398 (3)
C11—C121.394 (3)C34—H34A0.9500
C11—H11A0.9500C35—C361.376 (3)
C12—H12A0.9500C35—H35A0.9500
C13—C141.395 (2)C36—H36A0.9500
C13—C181.402 (3)
Cnt—Y1—N1i100.5C5—C6—H6A119.4
Cnt—Y1—N2123.8C1—C6—H6A119.4
Cnt—Y1—N3121.4Y1—C6—H6A118.6
N2—Y1—N3103.17 (5)C12—C7—C8118.71 (17)
N2—Y1—N1i104.21 (5)C12—C7—N1118.64 (16)
N3—Y1—N1i99.43 (5)C8—C7—N1122.51 (16)
N2—Y1—C494.41 (5)C9—C8—C7120.47 (18)
N3—Y1—C4132.53 (6)C9—C8—H8A119.8
N1i—Y1—C4118.56 (5)C7—C8—H8A119.8
N2—Y1—C31103.88 (5)C10—C9—C8120.32 (18)
N3—Y1—C3129.77 (5)C10—C9—H9A119.8
N1i—Y1—C31126.59 (5)C8—C9—H9A119.8
C4—Y1—C31103.38 (6)C9—C10—C11119.74 (18)
N2—Y1—C3101.33 (5)C9—C10—H10A120.1
N3—Y1—C3150.68 (6)C11—C10—H10A120.1
N1i—Y1—C389.86 (5)C10—C11—C12120.26 (19)
C4—Y1—C328.73 (5)C10—C11—H11A119.9
C31—Y1—C3127.13 (5)C12—C11—H11A119.9
N2—Y1—C5112.58 (6)C7—C12—C11120.47 (18)
N3—Y1—C5105.43 (6)C7—C12—H12A119.8
N1i—Y1—C5128.61 (5)C11—C12—H12A119.8
C4—Y1—C528.31 (5)C14—C13—C18118.54 (17)
C31—Y1—C577.94 (5)C14—C13—N2120.80 (17)
C3—Y1—C549.47 (5)C18—C13—N2120.51 (16)
N2—Y1—C2126.06 (5)C15—C14—C13120.50 (18)
N3—Y1—C2130.70 (5)C15—C14—H14A119.7
N1i—Y1—C273.02 (5)C13—C14—H14A119.7
C4—Y1—C249.74 (5)C16—C15—C14120.75 (18)
C31—Y1—C2121.00 (5)C16—C15—H15A119.6
C3—Y1—C227.62 (5)C14—C15—H15A119.6
C5—Y1—C256.59 (5)C15—C16—C17119.01 (18)
N2—Y1—C6139.83 (5)C15—C16—H16A120.5
N3—Y1—C693.91 (5)C17—C16—H16A120.5
N1i—Y1—C6108.49 (5)C18—C17—C16120.52 (18)
C4—Y1—C649.37 (5)C18—C17—H17A119.7
C31—Y1—C674.34 (5)C16—C17—H17A119.7
C3—Y1—C656.81 (5)C17—C18—C13120.57 (17)
C5—Y1—C627.25 (5)C17—C18—H18A119.7
C2—Y1—C647.72 (5)C13—C18—H18A119.7
N2—Y1—C3283.68 (5)N2—C19—C20119.88 (16)
N3—Y1—C3252.85 (5)N2—C19—C24122.71 (16)
N1i—Y1—C32152.25 (5)C20—C19—C24117.37 (17)
C4—Y1—C3286.65 (5)C21—C20—C19121.25 (17)
C31—Y1—C3227.52 (5)C21—C20—H20A119.4
C3—Y1—C32115.01 (5)C19—C20—H20A119.4
C5—Y1—C3268.62 (5)C20—C21—C22120.75 (18)
C2—Y1—C32123.95 (5)C20—C21—H21A119.6
C6—Y1—C3278.19 (5)C22—C21—H21A119.6
N2—Y1—C1149.52 (5)C23—C22—C21118.79 (18)
N3—Y1—C1104.90 (5)C23—C22—H22A120.6
N1i—Y1—C182.69 (5)C21—C22—H22A120.6
C4—Y1—C157.44 (5)C24—C23—C22120.89 (18)
C31—Y1—C194.75 (5)C24—C23—H23A119.6
C3—Y1—C148.48 (5)C22—C23—H23A119.6
C5—Y1—C147.88 (5)C23—C24—C19120.91 (17)
C2—Y1—C127.02 (5)C23—C24—H24A119.5
C6—Y1—C126.62 (5)C19—C24—H24A119.5
C32—Y1—C1104.12 (5)N3—C25—C26120.34 (16)
C1—N1—C7118.43 (15)N3—C25—C30122.66 (17)
C1—N1—Y1i129.47 (12)C26—C25—C30116.97 (17)
C7—N1—Y1i109.96 (11)C27—C26—C25121.22 (18)
C19—N2—C13115.92 (14)C27—C26—H26A119.4
C19—N2—Y1129.23 (12)C25—C26—H26A119.4
C13—N2—Y1114.50 (11)C26—C27—C28120.82 (19)
C25—N3—C31117.09 (15)C26—C27—H27A119.6
C25—N3—Y1144.12 (12)C28—C27—H27A119.6
C31—N3—Y198.78 (10)C29—C28—C27118.65 (18)
N1—C1—C6125.92 (16)C29—C28—H28A120.7
N1—C1—C2118.38 (16)C27—C28—H28A120.7
C6—C1—C2115.69 (16)C28—C29—C30120.84 (18)
N1—C1—Y1129.11 (12)C28—C29—H29A119.6
C6—C1—Y172.07 (10)C30—C29—H29A119.6
C2—C1—Y169.46 (10)C29—C30—C25121.16 (18)
C3—C2—C1122.09 (17)C29—C30—H30A119.4
C3—C2—Y171.78 (10)C25—C30—H30A119.4
C1—C2—Y183.53 (10)C32—C31—C36117.97 (17)
C3—C2—H2A119.0C32—C31—N3119.75 (16)
C1—C2—H2A119.0C36—C31—N3122.01 (16)
Y1—C2—H2A116.1C32—C31—Y183.94 (11)
C2—C3—C4120.94 (17)C36—C31—Y1132.71 (12)
C2—C3—Y180.60 (11)N3—C31—Y151.44 (8)
C4—C3—Y174.56 (10)C33—C32—C31120.45 (17)
C2—C3—H3A119.5C33—C32—Y1137.96 (12)
C4—C3—H3A119.5C31—C32—Y168.54 (10)
Y1—C3—H3A115.8C33—C32—H32A119.8
C5—C4—C3117.86 (17)C31—C32—H32A119.8
C5—C4—Y178.91 (11)Y1—C32—H32A67.7
C3—C4—Y176.71 (11)C34—C33—C32120.75 (18)
C5—C4—H4A121.1C34—C33—H33A119.6
C3—C4—H4A121.1C32—C33—H33A119.6
Y1—C4—H4A114.2C33—C34—C35119.16 (18)
C6—C5—C4121.80 (17)C33—C34—H34A120.4
C6—C5—Y181.28 (11)C35—C34—H34A120.4
C4—C5—Y172.79 (11)C36—C35—C34120.73 (18)
C6—C5—H5A119.1C36—C35—H35A119.6
C4—C5—H5A119.1C34—C35—H35A119.6
Y1—C5—H5A117.4C35—C36—C31120.90 (17)
C5—C6—C1121.28 (17)C35—C36—H36A119.6
C5—C6—Y171.47 (11)C31—C36—H36A119.6
C1—C6—Y181.32 (11)
C7—N1—C1—C63.1 (3)C14—C15—C16—C170.3 (3)
Y1i—N1—C1—C6158.49 (14)C15—C16—C17—C181.4 (3)
C7—N1—C1—C2175.55 (16)C16—C17—C18—C130.4 (3)
Y1i—N1—C1—C222.9 (2)C14—C13—C18—C172.2 (3)
C7—N1—C1—Y198.74 (18)N2—C13—C18—C17173.45 (17)
Y1i—N1—C1—Y162.81 (19)C13—N2—C19—C20157.34 (16)
N1—C1—C2—C3171.99 (17)Y1—N2—C19—C2029.9 (2)
C6—C1—C2—C36.8 (3)C13—N2—C19—C2424.8 (2)
Y1—C1—C2—C363.73 (16)Y1—N2—C19—C24148.01 (14)
N1—C1—C2—Y1124.28 (15)N2—C19—C20—C21179.41 (17)
C6—C1—C2—Y156.97 (15)C24—C19—C20—C211.4 (3)
C1—C2—C3—C44.2 (3)C19—C20—C21—C221.4 (3)
Y1—C2—C3—C465.55 (16)C20—C21—C22—C230.1 (3)
C1—C2—C3—Y169.72 (16)C21—C22—C23—C241.1 (3)
C2—C3—C4—C50.9 (3)C22—C23—C24—C191.1 (3)
Y1—C3—C4—C569.60 (15)N2—C19—C24—C23178.09 (17)
C2—C3—C4—Y168.71 (16)C20—C19—C24—C230.2 (3)
C3—C4—C5—C60.6 (3)C31—N3—C25—C26164.66 (16)
Y1—C4—C5—C667.73 (17)Y1—N3—C25—C2616.9 (3)
C3—C4—C5—Y168.36 (15)C31—N3—C25—C3017.7 (2)
C4—C5—C6—C13.6 (3)Y1—N3—C25—C30160.73 (15)
Y1—C5—C6—C167.05 (16)N3—C25—C26—C27176.41 (17)
C4—C5—C6—Y163.42 (16)C30—C25—C26—C275.8 (3)
N1—C1—C6—C5172.21 (17)C25—C26—C27—C282.0 (3)
C2—C1—C6—C56.4 (3)C26—C27—C28—C293.2 (3)
Y1—C1—C6—C562.04 (16)C27—C28—C29—C304.3 (3)
N1—C1—C6—Y1125.75 (18)C28—C29—C30—C250.2 (3)
C2—C1—C6—Y155.60 (14)N3—C25—C30—C29177.55 (17)
C1—N1—C7—C12114.78 (19)C26—C25—C30—C294.8 (3)
Y1i—N1—C7—C1280.29 (18)C25—N3—C31—C32126.76 (17)
C1—N1—C7—C869.5 (2)Y1—N3—C31—C3252.32 (17)
Y1i—N1—C7—C895.41 (17)C25—N3—C31—C3659.3 (2)
C12—C7—C8—C91.1 (3)Y1—N3—C31—C36121.64 (15)
N1—C7—C8—C9174.64 (17)C25—N3—C31—Y1179.08 (17)
C7—C8—C9—C100.2 (3)C36—C31—C32—C331.7 (3)
C8—C9—C10—C111.0 (3)N3—C31—C32—C33172.48 (16)
C9—C10—C11—C120.5 (3)Y1—C31—C32—C33133.99 (16)
C8—C7—C12—C111.6 (3)C36—C31—C32—Y1135.72 (16)
N1—C7—C12—C11174.28 (17)N3—C31—C32—Y138.49 (13)
C10—C11—C12—C70.8 (3)C31—C32—C33—C341.6 (3)
C19—N2—C13—C14105.47 (19)Y1—C32—C33—C3492.7 (2)
Y1—N2—C13—C1468.39 (19)C32—C33—C34—C350.2 (3)
C19—N2—C13—C1879.0 (2)C33—C34—C35—C361.9 (3)
Y1—N2—C13—C18107.16 (16)C34—C35—C36—C311.7 (3)
C18—C13—C14—C153.9 (3)C32—C31—C36—C350.1 (3)
N2—C13—C14—C15171.74 (17)N3—C31—C36—C35174.01 (17)
C13—C14—C15—C163.0 (3)Y1—C31—C36—C35109.05 (19)
Symmetry code: (i) x+1, y+1, z+1.
Bis[µ-1κN:2(η6)-diphenylamido]bis[bis(diphenylamido-κN)dysprosium(III)] (2-Dy) top
Crystal data top
[Dy2(C12H10N)6]F(000) = 1332
Mr = 1334.26Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3068 (15) ÅCell parameters from 9898 reflections
b = 22.475 (4) Åθ = 2.4–29.1°
c = 13.513 (2) ŵ = 2.67 mm1
β = 91.266 (2)°T = 88 K
V = 2825.8 (8) Å3Rectangle, yellow
Z = 20.20 × 0.12 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
φ and ω scansθmax = 29.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.637, Tmax = 0.746k = 2930
34856 measured reflectionsl = 1818
7264 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0347P)2 + 1.5774P]
where P = (Fo2 + 2Fc2)/3
7264 reflections(Δ/σ)max = 0.004
361 parametersΔρmax = 2.65 e Å3
0 restraintsΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A yellow crystal of approximate dimensions 0.111 x 0.116 x 0.201 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (20 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/c that was later determined to be correct.

The structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about an inversion center.

Least-squares analysis yielded wR2 = 0.0652 and Goof = 1.046 for 361 variables refined against 7264 data (0.73 Å), R1 = 0.0255 for those 6207 data with I > 2.0sigma(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.55102 (2)0.53447 (2)0.68682 (2)0.01129 (4)
N10.3123 (2)0.46206 (8)0.45361 (15)0.0138 (4)
N20.6513 (2)0.59985 (9)0.79130 (15)0.0139 (4)
N30.6285 (2)0.44733 (9)0.74828 (15)0.0138 (4)
C10.3069 (2)0.50018 (11)0.53188 (17)0.0134 (5)
C20.3516 (3)0.56042 (11)0.51798 (18)0.0146 (5)
H2A0.39590.57110.45790.018*
C30.3323 (3)0.60366 (11)0.58969 (18)0.0160 (5)
H3A0.35710.64380.57590.019*
C40.2765 (3)0.58902 (11)0.68239 (19)0.0167 (5)
H4A0.26400.61850.73190.020*
C50.2401 (3)0.52961 (11)0.69925 (19)0.0174 (5)
H5A0.20220.51880.76140.021*
C60.2576 (3)0.48579 (11)0.62774 (18)0.0159 (5)
H6A0.23630.44560.64330.019*
C70.2582 (3)0.40265 (11)0.46475 (17)0.0143 (5)
C80.3269 (3)0.36010 (11)0.52499 (19)0.0165 (5)
H8A0.40810.37120.56470.020*
C90.2771 (3)0.30160 (11)0.5272 (2)0.0204 (5)
H9A0.32400.27310.56860.024*
C100.1591 (3)0.28486 (12)0.4689 (2)0.0218 (6)
H10A0.12590.24490.46980.026*
C110.0900 (3)0.32678 (12)0.4093 (2)0.0219 (5)
H11A0.00930.31540.36950.026*
C120.1381 (3)0.38532 (11)0.40750 (18)0.0180 (5)
H12A0.08920.41380.36710.022*
C130.5638 (2)0.65068 (10)0.80820 (18)0.0140 (5)
C140.5361 (3)0.69171 (11)0.73263 (19)0.0169 (5)
H14A0.58590.68870.67220.020*
C150.4358 (3)0.73717 (12)0.7450 (2)0.0208 (5)
H15A0.41470.76370.69190.025*
C160.3668 (3)0.74397 (11)0.8343 (2)0.0199 (5)
H16A0.29870.77500.84260.024*
C170.3988 (3)0.70468 (12)0.9116 (2)0.0198 (5)
H17A0.35410.70960.97360.024*
C180.4956 (3)0.65840 (11)0.89879 (18)0.0155 (5)
H18A0.51570.63170.95190.019*
C190.7902 (3)0.60156 (11)0.83350 (17)0.0137 (5)
C200.8640 (3)0.54784 (11)0.85176 (18)0.0151 (5)
H20A0.81870.51110.83580.018*
C211.0022 (3)0.54794 (12)0.89280 (19)0.0178 (5)
H21A1.04910.51120.90630.021*
C221.0730 (3)0.60102 (12)0.91443 (19)0.0202 (5)
H22A1.16750.60080.94240.024*
C231.0027 (3)0.65426 (12)0.89423 (19)0.0196 (5)
H23A1.05060.69090.90710.024*
C240.8628 (3)0.65475 (11)0.85541 (18)0.0167 (5)
H24A0.81580.69170.84360.020*
C250.7434 (2)0.40709 (10)0.74912 (18)0.0131 (5)
C260.8493 (3)0.41048 (11)0.67664 (19)0.0165 (5)
H26A0.84510.44160.62920.020*
C270.9598 (3)0.36907 (12)0.6732 (2)0.0207 (5)
H27A1.02790.37140.62200.025*
C280.9724 (3)0.32419 (12)0.7439 (2)0.0224 (6)
H28A1.04540.29480.73960.027*
C290.8761 (3)0.32334 (12)0.8204 (2)0.0211 (5)
H29A0.88730.29460.87160.025*
C300.7631 (3)0.36389 (11)0.82377 (19)0.0164 (5)
H30A0.69840.36240.87710.020*
C310.5088 (3)0.43281 (11)0.80700 (17)0.0130 (5)
C320.4586 (3)0.47398 (11)0.87570 (18)0.0148 (5)
H32A0.51130.50950.88820.018*
C330.3314 (3)0.46332 (11)0.92619 (19)0.0179 (5)
H33A0.29760.49210.97170.022*
C340.2549 (3)0.41167 (12)0.91064 (19)0.0205 (5)
H34A0.16830.40480.94480.025*
C350.3055 (3)0.36945 (12)0.84425 (19)0.0190 (5)
H35A0.25440.33320.83450.023*
C360.4298 (3)0.38005 (11)0.79245 (18)0.0155 (5)
H36A0.46220.35130.74650.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01278 (6)0.00898 (6)0.01212 (6)0.00032 (4)0.00080 (4)0.00024 (4)
N10.0153 (10)0.0108 (10)0.0152 (10)0.0026 (8)0.0009 (8)0.0011 (8)
N20.0159 (10)0.0090 (9)0.0168 (10)0.0003 (8)0.0000 (8)0.0017 (8)
N30.0153 (10)0.0101 (9)0.0162 (10)0.0014 (8)0.0024 (8)0.0020 (8)
C10.0117 (11)0.0145 (12)0.0141 (11)0.0011 (9)0.0004 (9)0.0012 (9)
C20.0135 (11)0.0149 (12)0.0155 (12)0.0008 (9)0.0010 (9)0.0010 (9)
C30.0149 (11)0.0128 (11)0.0201 (12)0.0017 (9)0.0041 (9)0.0001 (10)
C40.0145 (11)0.0190 (13)0.0165 (12)0.0034 (9)0.0012 (9)0.0046 (9)
C50.0137 (11)0.0234 (14)0.0150 (12)0.0022 (10)0.0012 (9)0.0012 (10)
C60.0150 (12)0.0162 (12)0.0165 (12)0.0001 (10)0.0026 (9)0.0027 (10)
C70.0164 (11)0.0118 (11)0.0150 (11)0.0007 (9)0.0057 (9)0.0007 (9)
C80.0152 (11)0.0161 (12)0.0183 (12)0.0003 (9)0.0012 (9)0.0031 (9)
C90.0249 (14)0.0134 (12)0.0232 (13)0.0015 (10)0.0074 (11)0.0042 (10)
C100.0277 (14)0.0137 (12)0.0243 (14)0.0048 (11)0.0081 (11)0.0015 (10)
C110.0232 (13)0.0209 (14)0.0215 (13)0.0084 (11)0.0010 (10)0.0014 (11)
C120.0207 (12)0.0176 (13)0.0159 (12)0.0025 (10)0.0010 (10)0.0019 (10)
C130.0136 (11)0.0095 (11)0.0190 (12)0.0025 (9)0.0005 (9)0.0022 (9)
C140.0216 (13)0.0121 (12)0.0169 (12)0.0016 (10)0.0003 (10)0.0007 (9)
C150.0248 (13)0.0137 (12)0.0236 (13)0.0002 (10)0.0049 (11)0.0032 (10)
C160.0170 (12)0.0139 (12)0.0286 (14)0.0017 (10)0.0003 (10)0.0007 (10)
C170.0181 (12)0.0188 (13)0.0226 (13)0.0012 (10)0.0037 (10)0.0000 (10)
C180.0160 (12)0.0139 (12)0.0165 (12)0.0004 (9)0.0014 (9)0.0014 (9)
C190.0147 (11)0.0140 (12)0.0124 (11)0.0005 (9)0.0036 (9)0.0026 (9)
C200.0163 (12)0.0118 (11)0.0173 (12)0.0007 (9)0.0047 (9)0.0006 (9)
C210.0164 (12)0.0198 (13)0.0173 (12)0.0050 (10)0.0045 (10)0.0008 (10)
C220.0151 (12)0.0274 (14)0.0182 (12)0.0015 (11)0.0013 (10)0.0020 (11)
C230.0168 (12)0.0201 (13)0.0221 (13)0.0041 (10)0.0042 (10)0.0058 (10)
C240.0177 (12)0.0143 (12)0.0183 (12)0.0013 (10)0.0038 (10)0.0015 (10)
C250.0127 (11)0.0103 (11)0.0163 (11)0.0008 (9)0.0027 (9)0.0040 (9)
C260.0159 (12)0.0160 (12)0.0177 (12)0.0013 (9)0.0001 (9)0.0015 (9)
C270.0138 (12)0.0215 (13)0.0270 (14)0.0023 (10)0.0016 (10)0.0074 (11)
C280.0137 (12)0.0181 (13)0.0353 (15)0.0039 (10)0.0043 (11)0.0074 (11)
C290.0210 (13)0.0150 (12)0.0268 (14)0.0006 (10)0.0085 (11)0.0034 (10)
C300.0177 (12)0.0150 (12)0.0165 (12)0.0006 (10)0.0016 (9)0.0002 (9)
C310.0133 (11)0.0128 (12)0.0129 (11)0.0021 (9)0.0009 (9)0.0008 (9)
C320.0173 (12)0.0125 (12)0.0148 (12)0.0002 (9)0.0004 (9)0.0004 (9)
C330.0161 (12)0.0224 (13)0.0154 (12)0.0064 (10)0.0019 (10)0.0005 (10)
C340.0157 (12)0.0278 (15)0.0178 (13)0.0001 (10)0.0013 (10)0.0073 (10)
C350.0185 (12)0.0195 (13)0.0187 (13)0.0047 (10)0.0045 (10)0.0037 (10)
C360.0188 (12)0.0130 (12)0.0145 (12)0.0006 (9)0.0000 (9)0.0007 (9)
Geometric parameters (Å, º) top
Dy1—Cnt2.605C14—C151.396 (4)
Dy1—N22.228 (2)C14—H14A0.9500
Dy1—N32.240 (2)C15—C161.387 (4)
Dy1—N1i2.309 (2)C15—H15A0.9500
Dy1—C42.833 (2)C16—C171.395 (4)
Dy1—C312.836 (2)C16—H16A0.9500
Dy1—C32.858 (2)C17—C181.389 (3)
Dy1—C52.904 (3)C17—H17A0.9500
Dy1—C22.967 (2)C18—H18A0.9500
Dy1—C63.032 (3)C19—C241.401 (3)
Dy1—C13.151 (2)C19—C201.408 (3)
N1—C11.363 (3)C20—C211.390 (4)
N1—C71.436 (3)C20—H20A0.9500
N1—Dy1i2.309 (2)C21—C221.391 (4)
N2—C191.402 (3)C21—H21A0.9500
N2—C131.424 (3)C22—C231.388 (4)
N3—C251.400 (3)C22—H22A0.9500
N3—C311.420 (3)C23—C241.393 (3)
C1—C61.421 (3)C23—H23A0.9500
C1—C21.430 (3)C24—H24A0.9500
C2—C31.387 (3)C25—C261.407 (3)
C2—H2A0.9500C25—C301.409 (3)
C3—C41.406 (3)C26—C271.389 (4)
C3—H3A0.9500C26—H26A0.9500
C4—C51.398 (4)C27—C281.392 (4)
C4—H4A0.9500C27—H27A0.9500
C5—C61.392 (4)C28—C291.384 (4)
C5—H5A0.9500C28—H28A0.9500
C6—H6A0.9500C29—C301.393 (4)
C7—C121.400 (3)C29—H29A0.9500
C7—C81.401 (3)C30—H30A0.9500
C8—C91.395 (3)C31—C321.398 (3)
C8—H8A0.9500C31—C361.407 (3)
C9—C101.388 (4)C32—C331.400 (4)
C9—H9A0.9500C32—H32A0.9500
C10—C111.388 (4)C33—C341.376 (4)
C10—H10A0.9500C33—H33A0.9500
C11—C121.390 (4)C34—C351.395 (4)
C11—H11A0.9500C34—H34A0.9500
C12—H12A0.9500C35—C361.387 (3)
C13—C141.396 (3)C35—H35A0.9500
C13—C181.402 (3)C36—H36A0.9500
Cnt—Dy1—N1i100.3C12—C7—C8118.7 (2)
Cnt—Dy1—N2124.6C12—C7—N1118.6 (2)
Cnt—Dy1—N3120.9C8—C7—N1122.6 (2)
N2—Dy1—N3102.41 (7)C9—C8—C7120.5 (2)
N2—Dy1—N1i105.54 (7)C9—C8—H8A119.7
N3—Dy1—N1i98.95 (7)C7—C8—H8A119.7
N2—Dy1—C495.33 (7)C10—C9—C8120.2 (2)
N3—Dy1—C4131.97 (7)C10—C9—H9A119.9
N1i—Dy1—C4118.75 (7)C8—C9—H9A119.9
N2—Dy1—C31103.29 (7)C11—C10—C9119.7 (2)
N3—Dy1—C3129.63 (7)C11—C10—H10A120.2
N1i—Dy1—C31125.71 (7)C9—C10—H10A120.2
C4—Dy1—C31102.97 (7)C10—C11—C12120.5 (2)
N2—Dy1—C3102.49 (7)C10—C11—H11A119.7
N3—Dy1—C3150.00 (7)C12—C11—H11A119.7
N1i—Dy1—C390.23 (7)C11—C12—C7120.4 (2)
C4—Dy1—C328.60 (7)C11—C12—H12A119.8
C31—Dy1—C3126.53 (7)C7—C12—H12A119.8
N2—Dy1—C5113.08 (7)C14—C13—C18118.5 (2)
N3—Dy1—C5104.98 (7)C14—C13—N2120.6 (2)
N1i—Dy1—C5128.06 (7)C18—C13—N2120.7 (2)
C4—Dy1—C528.16 (7)C13—C14—C15120.6 (2)
C31—Dy1—C577.63 (7)C13—C14—H14A119.7
C3—Dy1—C549.20 (7)C15—C14—H14A119.7
N2—Dy1—C2127.14 (7)C16—C15—C14120.6 (2)
N3—Dy1—C2130.36 (7)C16—C15—H15A119.7
N1i—Dy1—C273.02 (7)C14—C15—H15A119.7
C4—Dy1—C249.48 (7)C15—C16—C17119.1 (2)
C31—Dy1—C2120.44 (7)C15—C16—H16A120.5
C3—Dy1—C227.47 (7)C17—C16—H16A120.5
C5—Dy1—C256.28 (7)C18—C17—C16120.6 (2)
N2—Dy1—C6140.08 (7)C18—C17—H17A119.7
N3—Dy1—C693.59 (7)C16—C17—H17A119.7
N1i—Dy1—C6107.76 (7)C17—C18—C13120.6 (2)
C4—Dy1—C649.02 (7)C17—C18—H18A119.7
C31—Dy1—C674.02 (7)C13—C18—H18A119.7
C3—Dy1—C656.45 (7)C24—C19—N2123.0 (2)
C5—Dy1—C627.01 (7)C24—C19—C20117.6 (2)
C2—Dy1—C647.48 (7)N2—C19—C20119.3 (2)
N2—Dy1—C1150.23 (7)C21—C20—C19120.8 (2)
N3—Dy1—C1104.70 (7)C21—C20—H20A119.6
N1i—Dy1—C182.21 (7)C19—C20—H20A119.6
C4—Dy1—C156.99 (7)C20—C21—C22121.0 (2)
C31—Dy1—C194.39 (7)C20—C21—H21A119.5
C3—Dy1—C148.09 (7)C22—C21—H21A119.5
C5—Dy1—C147.51 (7)C23—C22—C21118.6 (2)
C2—Dy1—C126.82 (7)C23—C22—H22A120.7
C6—Dy1—C126.48 (6)C21—C22—H22A120.7
C1—N1—C7118.9 (2)C22—C23—C24120.9 (2)
C1—N1—Dy1i130.32 (16)C22—C23—H23A119.5
C7—N1—Dy1i108.57 (14)C24—C23—H23A119.5
C19—N2—C13116.00 (19)C23—C24—C19121.0 (2)
C19—N2—Dy1130.18 (15)C23—C24—H24A119.5
C13—N2—Dy1113.43 (15)C19—C24—H24A119.5
C25—N3—C31117.1 (2)N3—C25—C26120.4 (2)
C25—N3—Dy1143.80 (16)N3—C25—C30122.5 (2)
C31—N3—Dy199.10 (14)C26—C25—C30117.0 (2)
N1—C1—C6125.6 (2)C27—C26—C25121.2 (2)
N1—C1—C2118.5 (2)C27—C26—H26A119.4
C6—C1—C2115.9 (2)C25—C26—H26A119.4
N1—C1—Dy1129.12 (16)C26—C27—C28120.9 (2)
C6—C1—Dy172.09 (14)C26—C27—H27A119.5
C2—C1—Dy169.39 (13)C28—C27—H27A119.5
C3—C2—C1121.9 (2)C29—C28—C27118.5 (2)
C3—C2—Dy171.89 (14)C29—C28—H28A120.8
C1—C2—Dy183.80 (14)C27—C28—H28A120.8
C3—C2—H2A119.0C28—C29—C30121.1 (2)
C1—C2—H2A119.0C28—C29—H29A119.4
Dy1—C2—H2A115.6C30—C29—H29A119.4
C2—C3—C4121.0 (2)C29—C30—C25120.9 (2)
C2—C3—Dy180.64 (14)C29—C30—H30A119.5
C4—C3—Dy174.73 (14)C25—C30—H30A119.5
C2—C3—H3A119.5C32—C31—C36118.0 (2)
C4—C3—H3A119.5C32—C31—N3119.8 (2)
Dy1—C3—H3A115.6C36—C31—N3122.0 (2)
C5—C4—C3117.7 (2)C32—C31—Dy184.24 (15)
C5—C4—Dy178.75 (14)C36—C31—Dy1132.67 (17)
C3—C4—Dy176.67 (14)N3—C31—Dy151.27 (11)
C5—C4—H4A121.2C31—C32—C33120.6 (2)
C3—C4—H4A121.2C31—C32—H32A119.7
Dy1—C4—H4A114.3C33—C32—H32A119.7
C6—C5—C4122.0 (2)C34—C33—C32120.7 (2)
C6—C5—Dy181.62 (15)C34—C33—H33A119.7
C4—C5—Dy173.09 (14)C32—C33—H33A119.7
C6—C5—H5A119.0C33—C34—C35119.4 (2)
C4—C5—H5A119.0C33—C34—H34A120.3
Dy1—C5—H5A116.8C35—C34—H34A120.3
C5—C6—C1121.1 (2)C36—C35—C34120.3 (2)
C5—C6—Dy171.38 (14)C36—C35—H35A119.8
C1—C6—Dy181.43 (14)C34—C35—H35A119.8
C5—C6—H6A119.4C35—C36—C31120.9 (2)
C1—C6—H6A119.4C35—C36—H36A119.5
Dy1—C6—H6A118.5C31—C36—H36A119.5
C7—N1—C1—C63.2 (4)C13—C14—C15—C162.9 (4)
Dy1i—N1—C1—C6158.01 (18)C14—C15—C16—C170.1 (4)
C7—N1—C1—C2175.7 (2)C15—C16—C17—C181.7 (4)
Dy1i—N1—C1—C223.2 (3)C16—C17—C18—C130.6 (4)
C7—N1—C1—Dy198.6 (2)C14—C13—C18—C172.2 (4)
Dy1i—N1—C1—Dy162.5 (3)N2—C13—C18—C17173.4 (2)
N1—C1—C2—C3171.6 (2)C13—N2—C19—C2425.1 (3)
C6—C1—C2—C37.3 (3)Dy1—N2—C19—C24147.11 (19)
Dy1—C1—C2—C364.1 (2)C13—N2—C19—C20157.4 (2)
N1—C1—C2—Dy1124.3 (2)Dy1—N2—C19—C2030.4 (3)
C6—C1—C2—Dy156.81 (19)C24—C19—C20—C211.8 (3)
C1—C2—C3—C44.5 (4)N2—C19—C20—C21179.5 (2)
Dy1—C2—C3—C465.8 (2)C19—C20—C21—C221.8 (4)
C1—C2—C3—Dy170.3 (2)C20—C21—C22—C230.0 (4)
C2—C3—C4—C50.6 (4)C21—C22—C23—C241.6 (4)
Dy1—C3—C4—C569.5 (2)C22—C23—C24—C191.5 (4)
C2—C3—C4—Dy168.9 (2)N2—C19—C24—C23177.8 (2)
C3—C4—C5—C60.0 (4)C20—C19—C24—C230.2 (3)
Dy1—C4—C5—C668.3 (2)C31—N3—C25—C26164.9 (2)
C3—C4—C5—Dy168.3 (2)Dy1—N3—C25—C2616.2 (4)
C4—C5—C6—C13.3 (4)C31—N3—C25—C3018.4 (3)
Dy1—C5—C6—C167.2 (2)Dy1—N3—C25—C30160.5 (2)
C4—C5—C6—Dy164.0 (2)N3—C25—C26—C27176.6 (2)
N1—C1—C6—C5172.2 (2)C30—C25—C26—C276.5 (4)
C2—C1—C6—C56.7 (3)C25—C26—C27—C282.5 (4)
Dy1—C1—C6—C562.1 (2)C26—C27—C28—C293.0 (4)
N1—C1—C6—Dy1125.7 (2)C27—C28—C29—C304.2 (4)
C2—C1—C6—Dy155.40 (19)C28—C29—C30—C250.0 (4)
C1—N1—C7—C12115.4 (3)N3—C25—C30—C29177.9 (2)
Dy1i—N1—C7—C1279.6 (2)C26—C25—C30—C295.3 (4)
C1—N1—C7—C869.5 (3)C25—N3—C31—C32126.7 (2)
Dy1i—N1—C7—C895.5 (2)Dy1—N3—C31—C3252.6 (2)
C12—C7—C8—C90.4 (4)C25—N3—C31—C3659.1 (3)
N1—C7—C8—C9174.7 (2)Dy1—N3—C31—C36121.6 (2)
C7—C8—C9—C100.5 (4)C25—N3—C31—Dy1179.3 (2)
C8—C9—C10—C110.7 (4)C36—C31—C32—C331.6 (4)
C9—C10—C11—C120.1 (4)N3—C31—C32—C33172.8 (2)
C10—C11—C12—C70.8 (4)Dy1—C31—C32—C33134.2 (2)
C8—C7—C12—C111.1 (4)C31—C32—C33—C341.3 (4)
N1—C7—C12—C11174.2 (2)C32—C33—C34—C350.4 (4)
C19—N2—C13—C14105.8 (3)C33—C34—C35—C361.6 (4)
Dy1—N2—C13—C1467.8 (2)C34—C35—C36—C311.2 (4)
C19—N2—C13—C1878.7 (3)C32—C31—C36—C350.4 (4)
Dy1—N2—C13—C18107.7 (2)N3—C31—C36—C35173.8 (2)
C18—C13—C14—C154.0 (4)Dy1—C31—C36—C35109.2 (3)
N2—C13—C14—C15171.7 (2)
Symmetry code: (i) x+1, y+1, z+1.
Bis(µ-diphenylamido-κ2N:N)bis[µ-1κN:2(η6)-diphenylamido]tetrakis(diphenylamido-κN)di-µ3-oxido-tetraerbium(III) benzene disolvate (3-Er) top
Crystal data top
[Er4(C12H10N)8O2]·2C6H6Z = 1
Mr = 2202.93F(000) = 1084
Triclinic, P1Dx = 1.738 Mg m3
a = 12.8857 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6846 (9) ÅCell parameters from 8814 reflections
c = 13.7411 (9) Åθ = 2.2–29.1°
α = 61.3447 (8)°µ = 4.01 mm1
β = 82.7796 (10)°T = 88 K
γ = 83.0804 (10)°Irregular, yellow
V = 2104.4 (2) Å30.35 × 0.28 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
9209 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
φ and ω scansθmax = 29.2°, θmin = 1.6°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 1717
Tmin = 0.254, Tmax = 0.432k = 1518
51658 measured reflectionsl = 018
10308 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0328P)2]
where P = (Fo2 + 2Fc2)/3
10308 reflections(Δ/σ)max = 0.001
552 parametersΔρmax = 1.62 e Å3
0 restraintsΔρmin = 1.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A yellow crystal of approximate dimensions 0.106 x 0.278 x 0.347 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package and the CELL_NOW were used to determine the unit-cell parameters. Data was collected using a 10 sec/frame scan time for a sphere of diffraction data. The raw frame data was processed using SAINT and TWINABS to yield the reflection data file (HKLF5 format). Subsequent calculations were carried out using the SHELXTL program. There were no systematic absences nor any diffraction symmetry other than the Friedel condition The centrosymmetric triclinic space group P-1 was assigned and later determined to be correct.

The structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about an inversion center. There were two molecules of benzene solvent present per empirical formula-unit.

At convergence, wR2 = 0.0624 and Goof = 0.96 for 552 variables refined against 10308 data (0.73Å), R1 = 0.0273 for those 9209 with I > 2.0sigma(I). The structure was refined as a three-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.71708 (2)0.58391 (2)0.33190 (2)0.01164 (5)
Er20.56207 (2)0.40689 (2)0.61938 (2)0.01102 (5)
O10.5913 (2)0.4965 (2)0.4381 (2)0.0130 (6)
N10.6896 (3)0.5078 (3)0.6255 (3)0.0150 (7)
N20.5780 (3)0.7048 (3)0.2301 (3)0.0129 (7)
N30.7699 (3)0.4884 (3)0.2397 (3)0.0179 (7)
N40.6547 (3)0.2348 (3)0.6816 (3)0.0138 (7)
C10.7748 (3)0.5260 (3)0.5492 (3)0.0145 (8)
C20.8211 (3)0.6295 (4)0.4871 (4)0.0179 (9)
H2A0.79890.68820.50490.021*
C30.8985 (3)0.6476 (4)0.4003 (4)0.0217 (10)
H3A0.92670.71860.35950.026*
C40.9348 (3)0.5633 (4)0.3728 (4)0.0190 (9)
H4A0.98570.57670.31230.023*
C50.8946 (3)0.4586 (4)0.4364 (4)0.0171 (9)
H5A0.92140.39930.42100.021*
C60.8166 (3)0.4392 (4)0.5213 (3)0.0149 (9)
H6A0.79020.36730.56200.018*
C70.6791 (3)0.5710 (3)0.6850 (3)0.0167 (9)
C80.7583 (3)0.5611 (4)0.7512 (4)0.0203 (9)
H8A0.82160.51770.75120.024*
C90.7450 (4)0.6141 (4)0.8168 (4)0.0262 (10)
H9A0.79890.60650.86170.031*
C100.6529 (4)0.6782 (4)0.8166 (4)0.0298 (11)
H10A0.64360.71420.86170.036*
C110.5748 (4)0.6898 (4)0.7509 (4)0.0254 (11)
H11A0.51180.73370.75090.030*
C120.5885 (4)0.6368 (4)0.6845 (4)0.0205 (9)
H12A0.53500.64610.63850.025*
C130.6320 (3)0.8012 (3)0.1977 (4)0.0147 (9)
C140.6592 (3)0.8810 (4)0.0865 (4)0.0173 (9)
H14A0.63020.87890.02730.021*
C150.7272 (4)0.9618 (4)0.0627 (4)0.0224 (10)
H15A0.74381.01460.01260.027*
C160.7714 (4)0.9671 (4)0.1468 (4)0.0238 (11)
H16A0.81851.02260.12960.029*
C170.7457 (4)0.8899 (4)0.2568 (4)0.0208 (10)
H17A0.77550.89240.31540.025*
C180.6762 (3)0.8086 (3)0.2813 (4)0.0154 (9)
H18A0.65860.75720.35680.018*
C190.5232 (3)0.6974 (4)0.1504 (3)0.0140 (8)
C200.5248 (4)0.5954 (4)0.1537 (4)0.0202 (9)
H20A0.56330.53310.20730.024*
C210.4706 (4)0.5814 (4)0.0793 (4)0.0249 (10)
H21A0.47220.51010.08300.030*
C220.4153 (4)0.6706 (4)0.0016 (4)0.0246 (10)
H22A0.38100.66200.05090.030*
C230.4095 (3)0.7730 (4)0.0007 (4)0.0229 (10)
H23A0.36960.83420.05370.028*
C240.4611 (3)0.7876 (4)0.0734 (4)0.0197 (9)
H24A0.45490.85790.07270.024*
C250.8398 (3)0.5580 (4)0.1525 (4)0.0178 (9)
C260.8081 (4)0.6696 (4)0.0868 (4)0.0218 (10)
H26A0.73730.69460.09620.026*
C270.8765 (4)0.7462 (4)0.0078 (4)0.0299 (11)
H27A0.85320.82240.03460.036*
C280.9786 (4)0.7094 (4)0.0078 (4)0.0298 (11)
H28A1.02630.76010.06170.036*
C291.0112 (4)0.5979 (4)0.0555 (4)0.0271 (11)
H29A1.08110.57260.04300.033*
C300.9446 (3)0.5233 (4)0.1360 (4)0.0224 (10)
H30A0.96960.44810.18050.027*
C310.7641 (3)0.3809 (4)0.2550 (4)0.0194 (9)
C320.7791 (3)0.3575 (4)0.1648 (4)0.0242 (10)
H32A0.79460.41560.09170.029*
C330.7714 (4)0.2495 (5)0.1822 (5)0.0279 (11)
H33A0.78380.23440.12090.033*
C340.7463 (4)0.1649 (4)0.2860 (5)0.0295 (12)
H34A0.74070.09180.29670.035*
C350.7291 (4)0.1870 (4)0.3758 (5)0.0298 (11)
H35A0.71100.12880.44810.036*
C360.7382 (3)0.2932 (4)0.3602 (4)0.0234 (10)
H36A0.72670.30690.42240.028*
C370.6008 (3)0.1578 (4)0.6696 (3)0.0155 (9)
C380.5506 (3)0.1928 (4)0.5726 (3)0.0178 (9)
H38A0.55530.26780.51550.021*
C390.4943 (4)0.1223 (4)0.5565 (4)0.0225 (10)
H39A0.46160.14890.48920.027*
C400.4859 (4)0.0141 (4)0.6380 (4)0.0230 (10)
H40A0.44770.03480.62740.028*
C410.5337 (3)0.0241 (4)0.7369 (4)0.0233 (10)
H41A0.52760.09900.79360.028*
C420.5899 (3)0.0469 (4)0.7526 (4)0.0186 (9)
H42A0.62160.02010.82050.022*
C430.7467 (3)0.1943 (4)0.7385 (3)0.0167 (9)
C440.8148 (3)0.1077 (4)0.7362 (4)0.0207 (10)
H44A0.79680.07060.69790.025*
C450.9077 (4)0.0742 (4)0.7877 (4)0.0285 (11)
H45A0.95170.01440.78520.034*
C460.9372 (4)0.1280 (4)0.8436 (4)0.0310 (12)
H46A1.00070.10510.87950.037*
C470.8718 (4)0.2152 (4)0.8456 (4)0.0266 (11)
H47A0.89130.25340.88220.032*
C480.7779 (3)0.2476 (4)0.7946 (4)0.0211 (10)
H48A0.73390.30710.79770.025*
C491.0007 (4)0.8477 (5)0.5371 (5)0.0363 (13)
H49A1.06830.83610.50610.044*
C500.9877 (4)0.8289 (5)0.6451 (5)0.0380 (13)
H50A1.04580.80230.68950.046*
C510.8906 (5)0.8483 (5)0.6894 (5)0.0424 (14)
H51A0.88230.83690.76370.051*
C520.8041 (4)0.8847 (5)0.6255 (5)0.0365 (13)
H52A0.73680.89770.65600.044*
C530.8177 (4)0.9014 (4)0.5189 (5)0.0326 (12)
H53A0.75920.92540.47520.039*
C540.9157 (4)0.8838 (5)0.4732 (5)0.0329 (12)
H54A0.92430.89630.39850.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01054 (9)0.01134 (10)0.01106 (9)0.00114 (7)0.00026 (7)0.00374 (7)
Er20.01002 (9)0.01011 (10)0.01026 (8)0.00106 (7)0.00127 (7)0.00248 (7)
O10.0114 (14)0.0144 (15)0.0126 (13)0.0020 (11)0.0011 (11)0.0060 (11)
N10.0160 (18)0.0145 (18)0.0150 (16)0.0019 (14)0.0014 (14)0.0072 (14)
N20.0142 (17)0.0123 (17)0.0125 (16)0.0025 (14)0.0005 (13)0.0059 (14)
N30.0184 (18)0.0159 (19)0.0183 (17)0.0009 (15)0.0016 (15)0.0072 (15)
N40.0132 (17)0.0133 (18)0.0149 (16)0.0011 (14)0.0026 (13)0.0063 (14)
C10.014 (2)0.012 (2)0.0132 (18)0.0010 (16)0.0058 (16)0.0014 (16)
C20.016 (2)0.017 (2)0.021 (2)0.0027 (17)0.0060 (17)0.0075 (18)
C30.015 (2)0.022 (3)0.022 (2)0.0070 (18)0.0036 (18)0.0042 (18)
C40.012 (2)0.025 (2)0.016 (2)0.0036 (17)0.0029 (16)0.0057 (18)
C50.016 (2)0.018 (2)0.0156 (19)0.0047 (17)0.0063 (17)0.0064 (17)
C60.012 (2)0.017 (2)0.0135 (18)0.0032 (16)0.0037 (15)0.0043 (16)
C70.021 (2)0.012 (2)0.0162 (19)0.0026 (17)0.0014 (17)0.0054 (16)
C80.021 (2)0.018 (2)0.022 (2)0.0006 (18)0.0034 (18)0.0088 (18)
C90.028 (2)0.027 (3)0.028 (2)0.003 (2)0.008 (2)0.015 (2)
C100.045 (3)0.025 (3)0.027 (2)0.001 (2)0.004 (2)0.018 (2)
C110.028 (3)0.020 (2)0.030 (2)0.002 (2)0.004 (2)0.014 (2)
C120.023 (2)0.019 (2)0.018 (2)0.0013 (18)0.0055 (18)0.0068 (18)
C130.010 (2)0.011 (2)0.018 (2)0.0024 (15)0.0012 (16)0.0035 (16)
C140.019 (2)0.015 (2)0.019 (2)0.0018 (17)0.0008 (17)0.0081 (17)
C150.023 (2)0.012 (2)0.026 (2)0.0031 (18)0.0059 (19)0.0053 (18)
C160.019 (2)0.016 (2)0.039 (3)0.0037 (18)0.000 (2)0.015 (2)
C170.021 (2)0.018 (2)0.029 (2)0.0010 (18)0.0042 (19)0.016 (2)
C180.015 (2)0.012 (2)0.018 (2)0.0008 (16)0.0039 (16)0.0058 (16)
C190.0080 (19)0.018 (2)0.0136 (18)0.0033 (16)0.0017 (15)0.0053 (16)
C200.024 (2)0.017 (2)0.018 (2)0.0017 (18)0.0071 (18)0.0058 (18)
C210.034 (3)0.022 (2)0.023 (2)0.005 (2)0.007 (2)0.012 (2)
C220.023 (2)0.034 (3)0.019 (2)0.000 (2)0.0063 (18)0.014 (2)
C230.021 (2)0.027 (3)0.016 (2)0.0011 (19)0.0050 (18)0.0067 (19)
C240.019 (2)0.018 (2)0.020 (2)0.0005 (18)0.0010 (17)0.0070 (18)
C250.021 (2)0.018 (2)0.019 (2)0.0015 (18)0.0006 (17)0.0119 (18)
C260.018 (2)0.024 (3)0.024 (2)0.0005 (19)0.0035 (18)0.013 (2)
C270.027 (3)0.028 (3)0.027 (3)0.007 (2)0.008 (2)0.009 (2)
C280.029 (3)0.032 (3)0.030 (3)0.011 (2)0.006 (2)0.016 (2)
C290.020 (2)0.039 (3)0.028 (2)0.002 (2)0.003 (2)0.020 (2)
C300.017 (2)0.028 (3)0.023 (2)0.0006 (19)0.0032 (18)0.013 (2)
C310.009 (2)0.026 (2)0.028 (2)0.0013 (17)0.0000 (17)0.018 (2)
C320.019 (2)0.029 (3)0.030 (2)0.003 (2)0.0010 (19)0.018 (2)
C330.017 (2)0.041 (3)0.042 (3)0.001 (2)0.006 (2)0.033 (3)
C340.020 (2)0.028 (3)0.052 (3)0.004 (2)0.005 (2)0.028 (3)
C350.024 (2)0.023 (3)0.042 (3)0.005 (2)0.004 (2)0.016 (2)
C360.018 (2)0.026 (3)0.031 (3)0.0043 (19)0.0055 (19)0.019 (2)
C370.014 (2)0.017 (2)0.0130 (18)0.0007 (17)0.0023 (16)0.0063 (17)
C380.019 (2)0.015 (2)0.0162 (19)0.0011 (17)0.0018 (17)0.0049 (17)
C390.021 (2)0.027 (3)0.024 (2)0.0035 (19)0.0029 (19)0.016 (2)
C400.025 (2)0.022 (2)0.029 (2)0.0068 (19)0.003 (2)0.018 (2)
C410.028 (2)0.014 (2)0.025 (2)0.0029 (19)0.007 (2)0.0091 (19)
C420.019 (2)0.018 (2)0.017 (2)0.0001 (17)0.0018 (17)0.0072 (18)
C430.011 (2)0.015 (2)0.0128 (18)0.0003 (16)0.0007 (15)0.0014 (16)
C440.017 (2)0.021 (2)0.019 (2)0.0022 (18)0.0004 (17)0.0063 (18)
C450.018 (2)0.027 (3)0.026 (2)0.002 (2)0.0027 (19)0.003 (2)
C460.013 (2)0.035 (3)0.025 (2)0.001 (2)0.0031 (19)0.001 (2)
C470.022 (2)0.028 (3)0.020 (2)0.011 (2)0.0058 (19)0.0003 (19)
C480.017 (2)0.016 (2)0.019 (2)0.0024 (18)0.0006 (17)0.0003 (17)
C490.027 (3)0.038 (3)0.047 (3)0.004 (2)0.001 (2)0.022 (3)
C500.033 (3)0.037 (3)0.039 (3)0.005 (2)0.007 (2)0.012 (3)
C510.050 (4)0.049 (4)0.029 (3)0.010 (3)0.002 (3)0.017 (3)
C520.033 (3)0.036 (3)0.036 (3)0.005 (2)0.003 (2)0.014 (2)
C530.032 (3)0.031 (3)0.036 (3)0.003 (2)0.007 (2)0.016 (2)
C540.034 (3)0.038 (3)0.031 (3)0.006 (2)0.001 (2)0.019 (2)
Geometric parameters (Å, º) top
Er1—Cnt2.516C19—Er2i2.903 (4)
Er1—O12.095 (3)C20—C211.403 (6)
Er1—N32.222 (3)C20—H20A0.9500
Er1—N22.367 (4)C21—C221.367 (7)
Er1—C62.761 (4)C21—H21A0.9500
Er1—C52.784 (4)C22—C231.380 (7)
Er1—C182.805 (4)C22—H22A0.9500
Er1—C132.812 (4)C23—C241.385 (6)
Er1—C12.871 (4)C23—H23A0.9500
Er1—C42.884 (4)C24—H24A0.9500
Er1—C252.904 (4)C25—C261.392 (6)
Er1—C22.988 (4)C25—C301.404 (6)
Er1—C32.989 (4)C26—C271.394 (6)
Er2—O12.190 (3)C26—H26A0.9500
Er2—O1i2.245 (3)C27—C281.379 (7)
Er2—N12.303 (3)C27—H27A0.9500
Er2—N42.313 (4)C28—C291.387 (7)
Er2—N2i2.563 (3)C28—H28A0.9500
Er2—C19i2.903 (4)C29—C301.375 (6)
Er2—Er2i3.4836 (4)C29—H29A0.9500
Er2—Er1i3.5734 (3)C30—H30A0.9500
O1—Er2i2.245 (3)C31—C361.398 (7)
N1—C11.376 (5)C31—C321.408 (6)
N1—C71.434 (5)C32—C331.393 (7)
N2—C131.415 (5)C32—H32A0.9500
N2—C191.425 (5)C33—C341.368 (8)
N2—Er2i2.563 (3)C33—H33A0.9500
N3—C311.393 (6)C34—C351.391 (7)
N3—C251.412 (5)C34—H34A0.9500
N4—C431.408 (5)C35—C361.381 (7)
N4—C371.411 (5)C35—H35A0.9500
C1—C21.417 (6)C36—H36A0.9500
C1—C61.442 (6)C37—C381.397 (6)
C2—C31.398 (6)C37—C421.405 (6)
C2—H2A0.9500C38—C391.386 (6)
C3—C41.391 (6)C38—H38A0.9500
C3—H3A0.9500C39—C401.370 (7)
C4—C51.395 (6)C39—H39A0.9500
C4—H4A0.9500C40—C411.396 (7)
C5—C61.383 (6)C40—H40A0.9500
C5—H5A0.9500C41—C421.388 (6)
C6—H6A0.9500C41—H41A0.9500
C7—C121.385 (6)C42—H42A0.9500
C7—C81.403 (6)C43—C441.398 (6)
C8—C91.387 (6)C43—C481.406 (7)
C8—H8A0.9500C44—C451.383 (6)
C9—C101.389 (7)C44—H44A0.9500
C9—H9A0.9500C45—C461.399 (8)
C10—C111.380 (7)C45—H45A0.9500
C10—H10A0.9500C46—C471.385 (7)
C11—C121.397 (6)C46—H46A0.9500
C11—H11A0.9500C47—C481.393 (6)
C12—H12A0.9500C47—H47A0.9500
C13—C181.395 (6)C48—H48A0.9500
C13—C141.416 (6)C49—C501.371 (8)
C14—C151.383 (6)C49—C541.383 (8)
C14—H14A0.9500C49—H49A0.9500
C15—C161.386 (7)C50—C511.374 (8)
C15—H15A0.9500C50—H50A0.9500
C16—C171.392 (7)C51—C521.398 (8)
C16—H16A0.9500C51—H51A0.9500
C17—C181.400 (6)C52—C531.362 (7)
C17—H17A0.9500C52—H52A0.9500
C18—H18A0.9500C53—C541.384 (7)
C19—C201.372 (6)C53—H53A0.9500
C19—C241.416 (6)C54—H54A0.9500
Cnt—Er1—O1103.8Er1—C6—H6A115.2
Cnt—Er1—N1148.5C12—C7—C8118.6 (4)
Cnt—Er1—N2106.2C12—C7—N1121.1 (4)
O1—Er1—N3102.87 (12)C8—C7—N1120.2 (4)
O1—Er1—N281.47 (11)C9—C8—C7120.7 (4)
N3—Er1—N2102.68 (13)C9—C8—H8A119.7
O1—Er1—C678.87 (11)C7—C8—H8A119.7
N3—Er1—C695.72 (13)C8—C9—C10119.9 (4)
N2—Er1—C6155.59 (12)C8—C9—H9A120.1
O1—Er1—C5104.41 (12)C10—C9—H9A120.1
N3—Er1—C577.15 (13)C11—C10—C9120.1 (5)
N2—Er1—C5174.04 (12)C11—C10—H10A119.9
C6—Er1—C528.87 (12)C9—C10—H10A119.9
O1—Er1—C18107.51 (12)C10—C11—C12119.9 (5)
N3—Er1—C18137.18 (13)C10—C11—H11A120.0
N2—Er1—C1854.34 (12)C12—C11—H11A120.0
C6—Er1—C18119.04 (13)C7—C12—C11120.8 (4)
C5—Er1—C18121.87 (13)C7—C12—H12A119.6
O1—Er1—C13105.59 (11)C11—C12—H12A119.6
N3—Er1—C13113.71 (13)C18—C13—N2116.8 (4)
N2—Er1—C1330.18 (11)C18—C13—C14117.1 (4)
C6—Er1—C13147.75 (13)N2—C13—C14125.3 (4)
C5—Er1—C13144.46 (12)C18—C13—Er175.3 (2)
C18—Er1—C1328.76 (12)N2—C13—Er157.2 (2)
O1—Er1—C176.44 (11)C14—C13—Er1131.7 (3)
N3—Er1—C1125.21 (13)C15—C14—C13121.1 (4)
N2—Er1—C1130.40 (12)C15—C14—H14A119.5
C6—Er1—C129.58 (12)C13—C14—H14A119.5
C5—Er1—C151.58 (12)C14—C15—C16121.1 (4)
C18—Er1—C191.24 (12)C14—C15—H15A119.4
C13—Er1—C1119.16 (12)C16—C15—H15A119.4
O1—Er1—C4129.68 (12)C15—C16—C17118.9 (4)
N3—Er1—C485.36 (13)C15—C16—H16A120.5
N2—Er1—C4145.78 (12)C17—C16—H16A120.5
C6—Er1—C450.82 (12)C16—C17—C18120.1 (4)
C5—Er1—C428.43 (12)C16—C17—H17A120.0
C18—Er1—C497.37 (13)C18—C17—H17A120.0
C13—Er1—C4116.22 (12)C13—C18—C17121.7 (4)
C1—Er1—C459.66 (12)C13—C18—Er175.9 (2)
O1—Er1—C25130.35 (12)C17—C18—Er1129.9 (3)
N3—Er1—C2528.19 (12)C13—C18—H18A119.2
N2—Er1—C2598.55 (12)C17—C18—H18A119.2
C6—Er1—C25105.17 (13)Er1—C18—H18A65.9
C5—Er1—C2578.44 (13)C20—C19—C24118.4 (4)
C18—Er1—C25112.34 (12)C20—C19—N2118.0 (4)
C13—Er1—C2596.02 (12)C24—C19—N2123.4 (4)
C1—Er1—C25129.44 (12)C20—C19—Er2i87.9 (3)
C4—Er1—C2572.95 (12)C24—C19—Er2i116.4 (3)
O1—Er1—C2100.08 (11)N2—C19—Er2i61.94 (19)
N3—Er1—C2132.84 (13)C19—C20—C21121.1 (4)
N2—Er1—C2121.19 (12)C19—C20—H20A119.4
C6—Er1—C249.61 (12)C21—C20—H20A119.4
C5—Er1—C257.37 (13)C22—C21—C20119.9 (5)
C18—Er1—C270.02 (12)C22—C21—H21A120.1
C13—Er1—C298.66 (12)C20—C21—H21A120.1
C1—Er1—C227.89 (11)C21—C22—C23120.0 (4)
C4—Er1—C248.81 (12)C21—C22—H22A120.0
C25—Er1—C2120.41 (12)C23—C22—H22A120.0
O1—Er1—C3125.75 (12)C22—C23—C24120.8 (4)
N3—Er1—C3111.63 (13)C22—C23—H23A119.6
N2—Er1—C3126.87 (12)C24—C23—H23A119.6
C6—Er1—C357.72 (12)C23—C24—C19119.7 (4)
C5—Er1—C348.83 (13)C23—C24—H24A120.2
C18—Er1—C373.12 (12)C19—C24—H24A120.2
C13—Er1—C397.40 (12)C26—C25—C30117.5 (4)
C1—Er1—C349.59 (12)C26—C25—N3119.1 (4)
C4—Er1—C327.32 (12)C30—C25—N3123.0 (4)
C25—Er1—C393.91 (12)C26—C25—Er184.9 (3)
C2—Er1—C327.06 (11)C30—C25—Er1134.4 (3)
O1—Er2—O1i76.46 (11)N3—C25—Er148.0 (2)
O1—Er2—N186.63 (11)C25—C26—C27122.3 (4)
O1i—Er2—N1115.28 (12)C25—C26—H26A118.8
O1—Er2—N4107.41 (11)C27—C26—H26A118.8
O1i—Er2—N4145.79 (11)C28—C27—C26118.9 (5)
N1—Er2—N498.93 (12)C28—C27—H27A120.6
O1—Er2—N2i140.60 (11)C26—C27—H27A120.6
O1i—Er2—N2i74.44 (10)C27—C28—C29119.6 (5)
N1—Er2—N2i129.93 (12)C27—C28—H28A120.2
N4—Er2—N2i83.60 (12)C29—C28—H28A120.2
O1—Er2—C19i167.75 (11)C30—C29—C28121.4 (5)
O1i—Er2—C19i91.60 (11)C30—C29—H29A119.3
N1—Er2—C19i101.16 (12)C28—C29—H29A119.3
N4—Er2—C19i80.92 (12)C29—C30—C25120.2 (5)
N2i—Er2—C19i29.38 (11)C29—C30—H30A119.9
O1—Er2—Er2i38.79 (7)C25—C30—H30A119.9
O1i—Er2—Er2i37.67 (7)N3—C31—C36121.0 (4)
N1—Er2—Er2i103.78 (9)N3—C31—C32121.5 (4)
N4—Er2—Er2i136.14 (9)C36—C31—C32117.5 (4)
N2i—Er2—Er2i108.23 (8)C33—C32—C31120.3 (5)
C19i—Er2—Er2i129.22 (8)C33—C32—H32A119.8
O1—Er2—Er1i104.75 (7)C31—C32—H32A119.8
O1i—Er2—Er1i33.22 (7)C34—C33—C32121.1 (5)
N1—Er2—Er1i133.86 (9)C34—C33—H33A119.5
N4—Er2—Er1i118.69 (8)C32—C33—H33A119.5
N2i—Er2—Er1i41.42 (8)C33—C34—C35119.4 (5)
C19i—Er2—Er1i63.05 (8)C33—C34—H34A120.3
Er2i—Er2—Er1i67.723 (6)C35—C34—H34A120.3
O1—Er2—Er122.83 (7)C36—C35—C34120.2 (5)
O1i—Er2—Er193.38 (7)C36—C35—H35A119.9
N1—Er2—Er165.26 (9)C34—C35—H35A119.9
N4—Er2—Er1101.68 (8)C35—C36—C31121.5 (5)
N2i—Er2—Er1163.43 (8)C35—C36—H36A119.3
C19i—Er2—Er1166.36 (8)C31—C36—H36A119.3
Er2i—Er2—Er157.225 (7)C38—C37—C42116.8 (4)
Er1i—Er2—Er1124.949 (6)C38—C37—N4119.5 (4)
Er1—O1—Er2133.25 (14)C42—C37—N4123.6 (4)
Er1—O1—Er2i110.82 (12)C39—C38—C37122.5 (4)
Er2—O1—Er2i103.54 (11)C39—C38—H38A118.8
C1—N1—C7116.7 (3)C37—C38—H38A118.8
C1—N1—Er2116.2 (3)C40—C39—C38119.7 (5)
C7—N1—Er2125.9 (3)C40—C39—H39A120.1
C13—N2—C19119.3 (3)C38—C39—H39A120.1
C13—N2—Er192.6 (2)C39—C40—C41119.8 (4)
C19—N2—Er1128.1 (3)C39—C40—H40A120.1
C13—N2—Er2i138.0 (3)C41—C40—H40A120.1
C19—N2—Er2i88.7 (2)C42—C41—C40120.3 (4)
Er1—N2—Er2i92.84 (11)C42—C41—H41A119.9
C31—N3—C25117.6 (4)C40—C41—H41A119.9
C31—N3—Er1137.7 (3)C41—C42—C37121.0 (4)
C25—N3—Er1103.8 (3)C41—C42—H42A119.5
C43—N4—C37117.5 (4)C37—C42—H42A119.5
C43—N4—Er2130.3 (3)C44—C43—C48116.7 (4)
C37—N4—Er2111.8 (3)C44—C43—N4123.6 (4)
N1—C1—C2124.2 (4)C48—C43—N4119.5 (4)
N1—C1—C6119.8 (4)C45—C44—C43122.2 (5)
C2—C1—C6115.7 (4)C45—C44—H44A118.9
N1—C1—Er1112.7 (3)C43—C44—H44A118.9
C2—C1—Er180.6 (2)C44—C45—C46120.3 (5)
C6—C1—Er171.0 (2)C44—C45—H45A119.8
C3—C2—C1121.8 (4)C46—C45—H45A119.8
C3—C2—Er176.5 (3)C47—C46—C45118.7 (5)
C1—C2—Er171.5 (2)C47—C46—H46A120.7
C3—C2—H2A119.1C45—C46—H46A120.7
C1—C2—H2A119.1C46—C47—C48120.7 (5)
Er1—C2—H2A124.5C46—C47—H47A119.7
C4—C3—C2121.0 (4)C48—C47—H47A119.7
C4—C3—Er172.1 (2)C47—C48—C43121.5 (5)
C2—C3—Er176.4 (2)C47—C48—H48A119.3
C4—C3—H3A119.5C43—C48—H48A119.3
C2—C3—H3A119.5C50—C49—C54120.0 (5)
Er1—C3—H3A123.4C50—C49—H49A120.0
C3—C4—C5118.4 (4)C54—C49—H49A120.0
C3—C4—Er180.6 (2)C49—C50—C51120.2 (6)
C5—C4—Er171.8 (2)C49—C50—H50A119.9
C3—C4—H4A120.8C51—C50—H50A119.9
C5—C4—H4A120.8C50—C51—C52120.3 (5)
Er1—C4—H4A117.7C50—C51—H51A119.9
C6—C5—C4121.6 (4)C52—C51—H51A119.9
C6—C5—Er174.6 (2)C53—C52—C51119.0 (5)
C4—C5—Er179.8 (3)C53—C52—H52A120.5
C6—C5—H5A119.2C51—C52—H52A120.5
C4—C5—H5A119.2C52—C53—C54121.0 (5)
Er1—C5—H5A117.0C52—C53—H53A119.5
C5—C6—C1121.3 (4)C54—C53—H53A119.5
C5—C6—Er176.5 (2)C49—C54—C53119.6 (5)
C1—C6—Er179.4 (2)C49—C54—H54A120.2
C5—C6—H6A119.4C53—C54—H54A120.2
C1—C6—H6A119.4
C7—N1—C1—C231.7 (6)Er1—N2—C19—Er2i92.6 (2)
Er2—N1—C1—C2136.5 (4)C24—C19—C20—C213.1 (6)
C7—N1—C1—C6153.8 (4)N2—C19—C20—C21178.6 (4)
Er2—N1—C1—C638.0 (5)Er2i—C19—C20—C21122.1 (4)
C7—N1—C1—Er1125.8 (3)C19—C20—C21—C220.3 (7)
Er2—N1—C1—Er142.4 (3)C20—C21—C22—C232.6 (7)
N1—C1—C2—C3171.4 (4)C21—C22—C23—C241.5 (7)
C6—C1—C2—C33.3 (6)C22—C23—C24—C191.9 (6)
Er1—C1—C2—C360.2 (4)C20—C19—C24—C234.1 (6)
N1—C1—C2—Er1111.2 (4)N2—C19—C24—C23179.4 (4)
C6—C1—C2—Er163.5 (3)Er2i—C19—C24—C23106.9 (4)
C1—C2—C3—C41.3 (7)C31—N3—C25—C26138.6 (4)
Er1—C2—C3—C459.1 (4)Er1—N3—C25—C2650.2 (5)
C1—C2—C3—Er157.8 (4)C31—N3—C25—C3048.7 (6)
C2—C3—C4—C52.1 (6)Er1—N3—C25—C30122.5 (4)
Er1—C3—C4—C563.3 (4)C31—N3—C25—Er1171.2 (5)
C2—C3—C4—Er161.2 (4)C30—C25—C26—C270.6 (7)
C3—C4—C5—C63.3 (6)N3—C25—C26—C27172.5 (4)
Er1—C4—C5—C664.7 (4)Er1—C25—C26—C27137.5 (5)
C3—C4—C5—Er168.0 (4)C25—C26—C27—C281.6 (8)
C4—C5—C6—C11.2 (6)C26—C27—C28—C290.5 (8)
Er1—C5—C6—C168.5 (4)C27—C28—C29—C301.7 (8)
C4—C5—C6—Er167.3 (4)C28—C29—C30—C252.7 (7)
N1—C1—C6—C5172.8 (4)C26—C25—C30—C291.6 (7)
C2—C1—C6—C52.1 (6)N3—C25—C30—C29174.4 (4)
Er1—C1—C6—C567.0 (4)Er1—C25—C30—C29113.1 (5)
N1—C1—C6—Er1105.9 (4)C25—N3—C31—C36150.8 (4)
C2—C1—C6—Er169.1 (3)Er1—N3—C31—C3616.4 (7)
C1—N1—C7—C12124.5 (4)C25—N3—C31—C3232.3 (6)
Er2—N1—C7—C1242.3 (5)Er1—N3—C31—C32160.5 (3)
C1—N1—C7—C859.9 (5)N3—C31—C32—C33179.0 (4)
Er2—N1—C7—C8133.3 (4)C36—C31—C32—C332.0 (7)
C12—C7—C8—C91.5 (7)C31—C32—C33—C341.9 (7)
N1—C7—C8—C9174.3 (4)C32—C33—C34—C350.6 (8)
C7—C8—C9—C100.4 (7)C33—C34—C35—C360.6 (8)
C8—C9—C10—C110.3 (8)C34—C35—C36—C310.4 (7)
C9—C10—C11—C120.0 (8)N3—C31—C36—C35177.9 (4)
C8—C7—C12—C111.8 (6)C32—C31—C36—C350.9 (7)
N1—C7—C12—C11173.9 (4)C43—N4—C37—C38144.9 (4)
C10—C11—C12—C71.1 (7)Er2—N4—C37—C3841.8 (4)
C19—N2—C13—C18174.3 (4)C43—N4—C37—C4238.1 (6)
Er1—N2—C13—C1848.5 (4)Er2—N4—C37—C42135.2 (4)
Er2i—N2—C13—C1848.7 (6)C42—C37—C38—C391.2 (6)
C19—N2—C13—C1416.4 (6)N4—C37—C38—C39178.4 (4)
Er1—N2—C13—C14120.8 (4)C37—C38—C39—C400.5 (7)
Er2i—N2—C13—C14142.0 (4)C38—C39—C40—C410.3 (7)
C19—N2—C13—Er1137.2 (4)C39—C40—C41—C420.3 (7)
Er2i—N2—C13—Er197.2 (4)C40—C41—C42—C370.5 (7)
C18—C13—C14—C150.5 (6)C38—C37—C42—C411.3 (6)
N2—C13—C14—C15168.8 (4)N4—C37—C42—C41178.3 (4)
Er1—C13—C14—C1593.8 (5)C37—N4—C43—C4432.4 (6)
C13—C14—C15—C160.3 (7)Er2—N4—C43—C44155.8 (3)
C14—C15—C16—C170.6 (7)C37—N4—C43—C48152.6 (4)
C15—C16—C17—C180.1 (7)Er2—N4—C43—C4819.2 (5)
N2—C13—C18—C17169.1 (4)C48—C43—C44—C451.0 (6)
C14—C13—C18—C171.1 (6)N4—C43—C44—C45176.2 (4)
Er1—C13—C18—C17128.5 (4)C43—C44—C45—C460.7 (7)
N2—C13—C18—Er140.6 (3)C44—C45—C46—C470.3 (7)
C14—C13—C18—Er1129.6 (4)C45—C46—C47—C481.0 (7)
C16—C17—C18—C130.9 (7)C46—C47—C48—C430.7 (7)
C16—C17—C18—Er199.2 (5)C44—C43—C48—C470.3 (6)
C13—N2—C19—C20142.4 (4)N4—C43—C48—C47175.7 (4)
Er1—N2—C19—C2022.0 (5)C54—C49—C50—C511.6 (9)
Er2i—N2—C19—C2070.6 (4)C49—C50—C51—C521.6 (9)
C13—N2—C19—C2442.4 (6)C50—C51—C52—C530.5 (9)
Er1—N2—C19—C24162.8 (3)C51—C52—C53—C540.6 (8)
Er2i—N2—C19—C24104.6 (4)C50—C49—C54—C530.5 (9)
C13—N2—C19—Er2i147.0 (4)C52—C53—C54—C490.6 (8)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond distances (Å) and angles (°) of Ln(NPh2)3(THF)2, 1-Ln top
Parameter1-Y1-Er
Ln1—N12.2612 (14)2.2733 (15)
Ln1—N22.2399 (14)2.2524 (15)
Ln1—N32.2870 (14)2.2344 (15)
Ln1—N(amide)avg2.26 (2)2.25 (2)
Ln1—O12.3526 (11)2.3475 (12)
Ln1—O22.3838 (12)2.3353 (11)
Ln1—O(THF)avg2.37 (2)2.342 (6)
N1—Ln1—N2106.77 (5)130.04 (6)
N1—Ln1—N3130.61 (5)119.13 (5)
N2—Ln1—N3122.03 (5)110.83 (6)
O1—Ln1—O2160.31 (4)167.72 (4)
Selected bond distances (Å) and angles (°) of [(Ph2N)2Ln(µ-NPh2)]2, 2-Ln top
Parameter2-Y2-Dy
Ln1—N1'2.3039 (15)2.309 (2)
Ln1—N22.2294 (15)2.228 (2)
Ln1—N32.2340 (15)2.240 (2)
Ln1—N(amide)avg2.25 (3)2.26 (4)
Ln1—C13.1300 (18)3.151 (2)
Ln1—C22.9498 (18)2.967 (2)
Ln1—C32.8400 (18)2.858 (2)
Ln1—C42.8129 (19)2.833 (2)
Ln1—C52.8898 (18)2.904 (3)
Ln1—C63.0125 (19)3.032 (3)
Ln1—Centroid(phenyl)2.5842.605
Ln1—C312.8235 (17)2.836 (2)
Ln1—C323.0169 (18)3.033
Symmetry code: (') -x + 1, -y + 1, -z + 1.
Selected bond distances (Å) and angles (°) of {[(Ph2N)Er(µ-NPh2)]4(µ-O)2}·(C6H6)2, 3-Er top
Parameter3-Er
Er1—O12.095 (3)
Er2—O12.190 (3)
Er2—O1'2.245 (3)
Er1—N22.367 (4)
Er1—N32.222 (3)
Er2—N12.303 (3)
Er2—N42.313 (4)
Er1—C12.871 (4)
Er1—C22.988 (4)
Er1—C32.989 (4)
Er1—C42.884 (4)
Er1—C52.784 (4)
Er1—C62.761 (4)
Er1—Centroid(phenyl)2.516
Er1—C132.812 (4)
Er1—C182.805 (4)
Er1—C252.904 (4)
Er2—C19'2.903 (4)
Er1—O1—Er2133.25 (14)
Er1—O1—Er2'110.82 (12)
Er2—O1—Er2'103.54 (11)
Er1···Er2'3.5734 (3)
Er2···Er2'3.4836 (4)
Symmetry code: (') -x + 1, -y + 1, -z + 1.
Intermolecular contact lengths (Å) in 1-Y top
vdW indicates the sum of the van der Waals radii of the two atoms.
Contact1-YLength - vdW
C5···C213.388-0.012
C5···H41A2.840-0.060
C6···H33A2.890-0.010
C18···H5A2.822-0.078
C33···H40B2.825-0.075
H8A···H20A2.391-0.009
H18A···H18A'2.275-0.125
H33A···H40B2.271-0.129
H34A···H40A2.370-0.030
Intermolecular contact lengths (Å) in 1-Er top
vdW indicates the sum of the van der Waals radii of the two atoms.
Contact1-ErLength - vdW
C8···H232.873-0.027
C14···H212.835-0.065
C21···H45B2.897-0.003
Intermolecular contact lengths (Å) in 2-Y and 2-Dy top
Contact2-YLength - vdW2-DyLength - vdW
C15···H36A2.749-0.1512.737-0.163
C30···H15A2.805-0.0952.800-0.100
vdW indicates the sum of the van der Waals radii of the two atoms.
Intermolecular contact lengths (Å) in 3-Er top
vdW indicates the sum of the van der Waals radii of the two atoms.
Contact3-ErLength - vdW
H17A···H54A2.370-0.030
 

Acknowledgements

We thank Jordan F. Corbey for assistance with X-ray crystallography.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1855328).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlyea, E. C., Bradley, D. C. & Copperthwaite, R. G. (1972). J. Chem. Soc., Dalton Trans. pp. 1580–1584.  Google Scholar
First citationAnwander, R., Runte, O., Eppinger, J., Gerstberger, G., Herdtweck, E. & Spiegler, M. (1998). J. Chem. Soc. Dalton Trans. pp. 847–858.  Web of Science CSD CrossRef Google Scholar
First citationBienfait, A. M., Schädle, C., Maichle-Mössmer, C., Törnroos, K. W. & Anwander, R. (2014). Dalton Trans. 43, 17324–17332.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBradley, D. C., Ghotra, J. S. & Hart, F. A. (1972). J. Chem. Soc. Chem. Commun. pp. 349–350.  CrossRef Web of Science Google Scholar
First citationBradley, D. C., Ghotra, J. S. & Hart, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1021–1023.  CrossRef Web of Science Google Scholar
First citationBruker (2009, 2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011, 2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColes, M. P., Hitchcock, P. B., Khvostov, A. V., Lappert, M. F., Li, Z. & Protchenko, A. V. (2010). Dalton Trans. 39, 6780–6788.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMao, L., Shen, Q. & Jin, S. (1994). Polyhedron, 13, 1023–1025.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeermann, C., Gerstberger, G., Spiegler, M., Törnroos, K. W. & Anwander, R. (2008). Eur. J. Inorg. Chem. pp. 2014–2023.  Web of Science CSD CrossRef Google Scholar
First citationMeyer, G. & Ax, P. (1982). Mater. Res. Bull. 17, 1447–1455.  CrossRef CAS Web of Science Google Scholar
First citationMinhas, R. K., Ma, Y., Song, J.-I. & Gambarotta, S. (1996). Inorg. Chem. 35, 1866–1873.  CSD CrossRef CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWong, W.-K., Zhang, L., Xue, F. & Mak, T. C. W. (1997a). Polyhedron, 16, 345–347.  CSD CrossRef CAS Google Scholar
First citationWong, W.-K., Zhang, L., Xue, F. & Mak, T. C. W. (1997b). Polyhedron, 16, 2013–2020.  CSD CrossRef CAS Web of Science Google Scholar
First citationXu, X., Yao, Y., Zhang, Y. & Shen, Q. (2007). Inorg. Chem. 46, 3743–3751.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYao, Y. M., Mao, L. S., Lu, X. H., Shen, Q. & Sun, J. (2001). J. Chin. Rare Earth Soc. 19, 308.  Google Scholar
First citationYao, Y.-Y., Lu, X., Shen, Q. & Yu, K. (2004). J. Chem. Crystallogr. 34, 275–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, K.-X., Ding, Y.-S., Han, T., Leng, J.-D. & Zheng, Y.-Z. (2016). Inorg. Chem. Front. 3, 1028–1034.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds