research communications
κCl,2κCl-(μ2-3,5-dimethyl-1H-pyrazolato-1κN2:2κN1)(3,5-dimethyl-1H-pyrazole-2κN2){μ-2-[(2-hydroxyethyl)amino-1κ2N,O]ethanolato-1:2κ2O:O}dicopper(II)
of dichlorido-1aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, b"Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania, and cDepartment of Chemistry, Tajik National University, 17, Rudaki Avenue, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: sash65@mail.ru
The title compound, [Cu2(C5H7N2)(C4H10NO2)Cl2(C5H8N2)], is a pyrazolate aminoalcohol complex which contains two dimethylpyrazole molecules in monodentate and bidentate-bridged coordination modes and a monodeprotonated diethanolamine molecule. Both copper atoms are involved in the formation of non-planar five-membered chelate rings. One Cu atom is in a distorted tetrahedral environment formed by the pyridine nitrogen atom of the protonated dimethylpyrazole molecule, the N atom of the deprotonated bridged dimethylpyrazole, the Cl atom and the bridged O atom of the monodeprotonated diethanolamine. The second Cu atom has an intermediate environment between trigonal bipyramidal and square pyramidal, formed by the N atom of the deprotonated bridged dimethylpyrazole, the Cl atom and the N atom of the aminoalcohol, and two O atoms of the deprotonated and protonated OH groups. In the crystal, N—H⋯Cl hydrogen bonds link the molecules into antisymmetric chains running along the a-axis direction. Adjacent chains are connected by O—H⋯O hydrogen bonds involving the hydroxyl group as donor.
Keywords: copper; copper complexes; crystal structure; pyrazole; diethanolamine; X-ray crystallography; aminoalcohol ligand.
CCDC reference: 2023401
1. Chemical context
Metal complexes of paramagnetic metal ions formed by polynucleative or polydentate ligands are of great interest as they often exhibit non-trivial magnetic behaviour (Gumienna-Kontecka et al., 2007; Suleimanov et al., 2015; Gural'skiy et al., 2012). Among polydentate and polynucleative ligands, those containing both nitrogen and oxygen donor atoms are probably the most versatile and efficient chelators for the vast majority of metal ions (Pavlishchuk et al., 2010, 2011; Strotmeyer et al., 2003). Amino alcohol ligands and their derivatives are one of the most widely used representatives of N,O-chelators and attract attention as strong polydentate ligands that can form coordination compounds with transition metals (Hughes et al., 1972). Amino contain both amino and hydroxyl groups within the same molecule, and therefore they are good chelating and bridging ligands. Polynuclear complexes of 3d metals with amino or their deprotonated forms can show non-trivial properties as catalysts, materials with different magnetic properties or biologically active compounds (Reiter et al., 2006). Amino alcohol ligands are used to prepare copper(II) amino that can self-assemble to form both mono- and multinuclear complexes. In bionuclear copper complexes, the metal atoms can be connected by bridged oxygen atoms (alkoxy) from two different diethanolamine molecules (Tudor et al., 2003; Marin et al., 2005), or combined by a single oxygen atom from an amino alcohol and a bridged ligand molecule (Ashurov et al., 2015). There are several typical binding modes of tridentate amino alcohol ligands to copper(II) ions and other metals such as lanthanides, yttrium, and alkaline-earth metals (Breeze & Wang, 1994; Chen et al., 1995; Wang et al., 1995). It is a well-known fact that copper coordination compounds can be modified with amino For example, copper complexes with theophylline show promising potential antitumor action and can be modified with diethanolamine by similar coordination of amino to the copper atom (Madarász et al., 2000). Studies of both tridentate- and bidentate-coordinated amino alcohol ligands to the copper atom have been carried out (Wang, 1995). Complexes of 3d metals with a tricoordinated diethanolamine are interesting objects for synthesis and further studies (Buvaylo et al., 2009). Considering the above, we understand the importance of accumulating a theoretical information base on such coordination compounds, and therefore in this article we report the synthesis and of a new binuclear mixed-ligand copper(II) complex containing 3,5-dimethylpyrazole and diethanolamine (Fig. 1).
2. Structural commentary
The ) consists of dinuclear Cu2(Hdmpz)(dmpz-H)(HDEA)Cl2 (Hdmpz = 3,5-dimethyl-1H-pyrazole, dmpz-H = deprotonated 3,5-dimethyl-pyrazole, and HDEA = monodeprotonated diethanolamine) units enclosed in two antisymmetrically oriented rows along the a axis. The consists of two unrelated structural fragments from both rows (Fig. 2). Along the a axis within one row, each molecule is bonded to the preceding and subsequent ones by hydrogen bonds of the same length. Along the b axis, the formation of molecules into dimers is due to hydrogen bonds of equal length between the bridged oxygen atom and the non-deprotonated hydroxy group of the adjacent molecule. The title dinuclear pyrazolate amino-alcohol compound forms a cyclic structure. Two copper atoms bridged by an oxygen atom of a deprotonated diethanolamine and by a molecule of deprotonated dimethylpyrazole form a five-membered bimetallic ring. The five-membered metallocycle has a non-planar structure. The N atoms of the bridging molecule of dimethylpyrazole are in the plane of the metallocycle while the bridging O atom is out of this plane by 0.802 (1) Å. The angle between the Cu1/O1/Cu2 and Cu1/Cu2/N3/N4 planes is 45.85 (8)°. The geometrical environment of Cu1 with a of 4 is different from that of Cu2, which exhibits a of 5. The Cu1 atom is in a distorted tetrahedral environment formed by the pyridine N atom of the non-deprotonated dimethylpyrazole molecule, the N atom of the deprotonated bridging dimethylpyrazole, the Cl atom and the bridging O atom of the monodeprotonated diethanolamine. The environment of the Cu2 metal center is intermediate between trigonal bipyramidal and square pyramidal, formed by the N atom of the deprotonated bridged dimethylpyrazole, the Cl atom and the aminoalcohol N atom, and two O atoms of the deprotonated and non-deprotonated OH groups. The intermetallic distance between Cu1 and Cu2 is 3.2439 (4) Å. The diethanolamine fragment is coordinated by all donor atoms to copper in a tridentate mode (with atom O1 bridging the two metal centers Cu1 and Cu2) and forms two similar non-planar five-membered metallocycles. It is worth mentioning that the Cu1—O1 distance of 1.9388 (13) Å (Table 1) differs significantly from the Cu2—O2 distance of 2.2441 (14) Å.
of the title compound (Fig. 2
|
3. Supramolecular features
In the crystal, hydrogen bonds (Table 2) are observed between the N and Cl atoms (N1—H1⋯Cl2 and N5–H5⋯Cl1) leading to the formation of antisymmetric chains running along the a-axis direction (Fig. 3). Adjacent chains are connected by hydrogen bonds between the hydroxyl group as donor and the O1 atom of the adjacent molecule as acceptor. There are different fragments that are potential H-atom donors or acceptors and further analysis of the structure indicates the presence of multiple non-covalent intermolecular interactions. The (Fig. 4) consists of discrete parallel-packed one-dimensional supramolecular formations, which are assembled by connecting two infinite chains (formed by N—H⋯Cl hydrogen bonds) via O—H⋯O hydrogen-bonding interactions.
The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 software (Turner et al., 2018), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.6711 (red) to 1.7846 (blue) a.u. The pale-red spots in Fig. 5 represent short contacts and negative dnorm values on the surface corresponding to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 6a. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are given in Fig. 6b. At 64.1%, the largest contribution to the overall crystal packing comes from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 8.2%, and H⋯N/N⋯H contacts contribute 2.4% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯O/O⋯H contacts make a 2.7% contribution, forming the inner sharp tips of the Hirshfeld surface, while H⋯Cl/Cl⋯H contacts contribute 19.1% and form the outer sharp tips in the fingerprint plot.
4. Database survey
A search of the Cambridge Structural database (CSD version 5.41; November 2019; Groom et al., 2016) for the CuNH(CCO)2 moiety (diethanolamine is coordinated to the copper atom) gave 168 hits. Most similar to the title compound are the dinuclear complexes with coordinated diethanolamine molecules, and copper atoms connected by a bridging oxygen atom and some other ligands, see: refcodes ELESAP (Tudor et al., 2003), FARKAL (Marin et al., 2005) and WITBAC (Madarász et al., 2000).
5. Synthesis and crystallization
A 1.76 mmol diethanolamine solution was added dropwise to a 1.15 mmol acetonitrile solution of complex Cu4(μ2-Cl)6(μ4-O)(C5H8N2)4 under stirring. The mixture was stirred for a further 2 h with oxygen access and without heating. Amino alcohol was added to the brown solution and the colour of the mixture changed to green. Dark-green crystals of the title compound suitable for a single crystal X-ray analysis were obtained in 55% yield by slow gas diffusion in an acetonitrile/hexane isolated system. Elemental analysis of C14H25Cl2Cu2N5O2: found C 33.96, H 5.267 and N 14.13% (calculated C 34.08, H 5.1, N 14.19%). The starting compound Cu4(μ2-Cl)6(μ4-O)(C5H8N2)4 is a polymorphic modification of the already known tetranuclear copper pyrazole-containing cluster Cu4OCl6(C5H8N2)4 and was obtained from the Cu–CuCl2·2H2O–Hdmpz system.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). The O2—H2A distance was restrained to 0.85±0.01 Å. The N and O atoms were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2023401
https://doi.org/10.1107/S2056989020011184/zq2256sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020011184/zq2256Isup2.hkl
here is checkcif pdf file. DOI: https://doi.org/10.1107/S2056989020011184/zq2256sup3.pdf
here is the IR-spectrum of title compound. DOI: https://doi.org/10.1107/S2056989020011184/zq2256sup4.txt
Supporting information file. DOI: https://doi.org/10.1107/S2056989020011184/zq2256Isup5.mol
here is the pdf version of the article. DOI: https://doi.org/10.1107/S2056989020011184/zq2256sup6.pdf
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu2(C5H7N2)(C4H10NO2)Cl2(C5H8N2)] | Z = 2 |
Mr = 493.37 | F(000) = 504 |
Triclinic, P1 | Dx = 1.629 Mg m−3 |
a = 9.0732 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.7460 (6) Å | Cell parameters from 4259 reflections |
c = 11.5578 (6) Å | θ = 1.8–29.2° |
α = 92.373 (4)° | µ = 2.40 mm−1 |
β = 102.383 (5)° | T = 180 K |
γ = 112.703 (5)° | Prism, clear intense green |
V = 1005.70 (10) Å3 | 0.4 × 0.3 × 0.3 mm |
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer | 4681 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4108 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 29.5°, θmin = 1.8° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −13→13 |
Tmin = 0.553, Tmax = 1.000 | l = −15→15 |
8833 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0223P)2 + 0.5005P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4681 reflections | Δρmax = 0.36 e Å−3 |
239 parameters | Δρmin = −0.43 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8325 (3) | 0.5970 (2) | 0.87558 (18) | 0.0213 (4) | |
C2 | 0.7173 (3) | 0.6360 (2) | 0.9068 (2) | 0.0303 (5) | |
H2 | 0.737259 | 0.705862 | 0.966030 | 0.036* | |
C3 | 0.5648 (3) | 0.5504 (2) | 0.8325 (2) | 0.0249 (5) | |
C4 | 1.0153 (3) | 0.6516 (2) | 0.9206 (2) | 0.0299 (5) | |
H4A | 1.053223 | 0.583541 | 0.900423 | 0.045* | |
H4B | 1.045118 | 0.675213 | 1.005925 | 0.045* | |
H4C | 1.065349 | 0.731079 | 0.884536 | 0.045* | |
C5 | 0.3987 (3) | 0.5503 (3) | 0.8250 (3) | 0.0427 (7) | |
H5A | 0.360893 | 0.577420 | 0.750146 | 0.064* | |
H5B | 0.405616 | 0.612959 | 0.889610 | 0.064* | |
H5C | 0.322664 | 0.460389 | 0.830295 | 0.064* | |
C6 | 0.3858 (3) | 0.1471 (2) | 0.84323 (18) | 0.0222 (5) | |
C7 | 0.2607 (3) | 0.0678 (2) | 0.89308 (19) | 0.0237 (5) | |
H7 | 0.271158 | 0.021651 | 0.958574 | 0.028* | |
C8 | 0.1163 (3) | 0.0714 (2) | 0.82511 (17) | 0.0189 (4) | |
C9 | 0.5663 (3) | 0.1797 (3) | 0.8802 (2) | 0.0411 (7) | |
H9A | 0.604540 | 0.168147 | 0.810855 | 0.062* | |
H9B | 0.585441 | 0.119540 | 0.934917 | 0.062* | |
H9C | 0.624799 | 0.272188 | 0.918419 | 0.062* | |
C10 | −0.0560 (3) | 0.0091 (2) | 0.8396 (2) | 0.0265 (5) | |
H10A | −0.073035 | 0.071365 | 0.891799 | 0.040* | |
H10B | −0.072923 | −0.073948 | 0.873356 | 0.040* | |
H10C | −0.132710 | −0.010057 | 0.762932 | 0.040* | |
C11 | 0.1643 (3) | 0.2883 (2) | 0.41712 (17) | 0.0192 (4) | |
H11A | 0.113125 | 0.213856 | 0.351586 | 0.023* | |
H11B | 0.265007 | 0.353315 | 0.401922 | 0.023* | |
C12 | 0.0478 (3) | 0.3565 (2) | 0.42571 (19) | 0.0209 (4) | |
H12A | 0.107248 | 0.443231 | 0.477042 | 0.025* | |
H12B | 0.002000 | 0.373194 | 0.347020 | 0.025* | |
C13 | −0.2144 (2) | 0.1487 (2) | 0.39115 (18) | 0.0210 (4) | |
H13A | −0.163870 | 0.108472 | 0.343581 | 0.025* | |
H13B | −0.289446 | 0.177492 | 0.337517 | 0.025* | |
C14 | −0.3067 (3) | 0.0466 (2) | 0.4624 (2) | 0.0234 (5) | |
H14A | −0.363395 | 0.085052 | 0.505581 | 0.028* | |
H14B | −0.388495 | −0.033863 | 0.409321 | 0.028* | |
Cl1 | 0.57083 (6) | 0.33924 (5) | 0.50253 (4) | 0.02235 (12) | |
Cl2 | −0.05593 (7) | 0.31818 (6) | 0.74647 (5) | 0.02968 (14) | |
Cu1 | 0.41923 (3) | 0.31469 (2) | 0.63633 (2) | 0.01473 (7) | |
Cu2 | 0.02665 (3) | 0.20789 (2) | 0.61602 (2) | 0.01395 (7) | |
N1 | 0.7493 (2) | 0.49360 (18) | 0.78604 (15) | 0.0175 (4) | |
H1 | 0.788 (3) | 0.446 (2) | 0.749 (2) | 0.021* | |
N2 | 0.5853 (2) | 0.46264 (17) | 0.75898 (15) | 0.0182 (4) | |
N3 | 0.3203 (2) | 0.19520 (17) | 0.74924 (14) | 0.0172 (4) | |
N4 | 0.1545 (2) | 0.14748 (17) | 0.73807 (14) | 0.0166 (3) | |
N5 | −0.0860 (2) | 0.26688 (17) | 0.47523 (15) | 0.0156 (3) | |
H5 | −0.133 (3) | 0.308 (2) | 0.499 (2) | 0.019* | |
O1 | 0.20146 (16) | 0.23756 (13) | 0.52738 (11) | 0.0144 (3) | |
O2 | −0.19285 (18) | 0.01036 (14) | 0.54515 (13) | 0.0228 (3) | |
H2A | −0.200 (2) | −0.0673 (12) | 0.5176 (19) | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0227 (11) | 0.0187 (11) | 0.0162 (10) | 0.0030 (8) | 0.0029 (8) | 0.0002 (8) |
C2 | 0.0311 (13) | 0.0258 (12) | 0.0283 (12) | 0.0063 (10) | 0.0088 (10) | −0.0104 (10) |
C3 | 0.0250 (12) | 0.0215 (11) | 0.0293 (12) | 0.0088 (9) | 0.0111 (9) | −0.0017 (9) |
C4 | 0.0221 (12) | 0.0329 (13) | 0.0233 (12) | 0.0027 (10) | −0.0004 (9) | −0.0024 (10) |
C5 | 0.0312 (15) | 0.0431 (16) | 0.0576 (18) | 0.0179 (12) | 0.0162 (13) | −0.0080 (14) |
C6 | 0.0232 (11) | 0.0251 (12) | 0.0208 (11) | 0.0128 (9) | 0.0044 (8) | 0.0053 (9) |
C7 | 0.0303 (12) | 0.0264 (12) | 0.0174 (10) | 0.0135 (10) | 0.0071 (9) | 0.0093 (9) |
C8 | 0.0247 (11) | 0.0188 (10) | 0.0149 (10) | 0.0090 (9) | 0.0076 (8) | 0.0027 (8) |
C9 | 0.0271 (14) | 0.0578 (19) | 0.0427 (15) | 0.0214 (13) | 0.0059 (11) | 0.0249 (13) |
C10 | 0.0276 (12) | 0.0299 (12) | 0.0251 (11) | 0.0108 (10) | 0.0132 (9) | 0.0106 (9) |
C11 | 0.0163 (10) | 0.0270 (11) | 0.0155 (10) | 0.0085 (9) | 0.0058 (8) | 0.0080 (8) |
C12 | 0.0192 (11) | 0.0214 (11) | 0.0231 (11) | 0.0078 (8) | 0.0067 (8) | 0.0115 (9) |
C13 | 0.0162 (10) | 0.0233 (11) | 0.0206 (10) | 0.0076 (8) | 0.0003 (8) | −0.0015 (9) |
C14 | 0.0148 (10) | 0.0187 (11) | 0.0344 (12) | 0.0053 (8) | 0.0054 (9) | −0.0027 (9) |
Cl1 | 0.0171 (3) | 0.0277 (3) | 0.0228 (3) | 0.0076 (2) | 0.00912 (19) | 0.0017 (2) |
Cl2 | 0.0361 (3) | 0.0433 (3) | 0.0217 (3) | 0.0284 (3) | 0.0089 (2) | −0.0001 (2) |
Cu1 | 0.01202 (13) | 0.01529 (13) | 0.01474 (12) | 0.00332 (9) | 0.00345 (9) | 0.00108 (9) |
Cu2 | 0.01386 (13) | 0.01565 (13) | 0.01402 (12) | 0.00676 (10) | 0.00508 (9) | 0.00341 (9) |
N1 | 0.0144 (9) | 0.0178 (9) | 0.0193 (9) | 0.0061 (7) | 0.0034 (7) | −0.0003 (7) |
N2 | 0.0153 (9) | 0.0193 (9) | 0.0192 (9) | 0.0059 (7) | 0.0052 (7) | 0.0006 (7) |
N3 | 0.0149 (9) | 0.0198 (9) | 0.0177 (8) | 0.0073 (7) | 0.0047 (7) | 0.0048 (7) |
N4 | 0.0160 (9) | 0.0173 (9) | 0.0175 (8) | 0.0063 (7) | 0.0069 (7) | 0.0041 (7) |
N5 | 0.0144 (9) | 0.0148 (9) | 0.0192 (9) | 0.0068 (7) | 0.0060 (7) | 0.0014 (7) |
O1 | 0.0129 (7) | 0.0162 (7) | 0.0143 (7) | 0.0053 (5) | 0.0046 (5) | 0.0047 (5) |
O2 | 0.0245 (8) | 0.0128 (7) | 0.0268 (8) | 0.0043 (6) | 0.0040 (6) | 0.0010 (6) |
C1—C2 | 1.372 (3) | C11—H11B | 0.9700 |
C1—C4 | 1.490 (3) | C11—C12 | 1.517 (3) |
C1—N1 | 1.341 (3) | C11—O1 | 1.432 (2) |
C2—H2 | 0.9300 | C12—H12A | 0.9700 |
C2—C3 | 1.393 (3) | C12—H12B | 0.9700 |
C3—C5 | 1.490 (3) | C12—N5 | 1.473 (3) |
C3—N2 | 1.335 (3) | C13—H13A | 0.9700 |
C4—H4A | 0.9600 | C13—H13B | 0.9700 |
C4—H4B | 0.9600 | C13—C14 | 1.499 (3) |
C4—H4C | 0.9600 | C13—N5 | 1.478 (2) |
C5—H5A | 0.9600 | C14—H14A | 0.9700 |
C5—H5B | 0.9600 | C14—H14B | 0.9700 |
C5—H5C | 0.9600 | C14—O2 | 1.432 (3) |
C6—C7 | 1.386 (3) | Cu1—Cl1 | 2.2403 (6) |
C6—C9 | 1.494 (3) | Cu1—N2 | 1.9635 (16) |
C6—N3 | 1.344 (3) | Cu1—N3 | 1.9770 (17) |
C7—H7 | 0.9300 | Cu1—O1 | 1.9388 (13) |
C7—C8 | 1.391 (3) | Cu2—Cl2 | 2.2937 (6) |
C8—C10 | 1.494 (3) | Cu2—N4 | 1.9268 (17) |
C8—N4 | 1.341 (3) | Cu2—N5 | 1.9916 (17) |
C9—H9A | 0.9600 | Cu2—O1 | 2.0001 (13) |
C9—H9B | 0.9600 | Cu2—O2 | 2.2441 (14) |
C9—H9C | 0.9600 | N1—H1 | 0.87 (2) |
C10—H10A | 0.9600 | N1—N2 | 1.353 (2) |
C10—H10B | 0.9600 | N3—N4 | 1.363 (2) |
C10—H10C | 0.9600 | N5—H5 | 0.80 (2) |
C11—H11A | 0.9700 | O2—H2A | 0.853 (9) |
C2—C1—C4 | 131.7 (2) | N5—C12—H12B | 109.9 |
N1—C1—C2 | 106.26 (19) | H13A—C13—H13B | 108.4 |
N1—C1—C4 | 122.0 (2) | C14—C13—H13A | 110.0 |
C1—C2—H2 | 126.7 | C14—C13—H13B | 110.0 |
C1—C2—C3 | 106.60 (19) | N5—C13—H13A | 110.0 |
C3—C2—H2 | 126.7 | N5—C13—H13B | 110.0 |
C2—C3—C5 | 129.4 (2) | N5—C13—C14 | 108.28 (16) |
N2—C3—C2 | 109.4 (2) | C13—C14—H14A | 109.8 |
N2—C3—C5 | 121.1 (2) | C13—C14—H14B | 109.8 |
C1—C4—H4A | 109.5 | H14A—C14—H14B | 108.3 |
C1—C4—H4B | 109.5 | O2—C14—C13 | 109.25 (16) |
C1—C4—H4C | 109.5 | O2—C14—H14A | 109.8 |
H4A—C4—H4B | 109.5 | O2—C14—H14B | 109.8 |
H4A—C4—H4C | 109.5 | N2—Cu1—Cl1 | 96.92 (5) |
H4B—C4—H4C | 109.5 | N2—Cu1—N3 | 96.00 (7) |
C3—C5—H5A | 109.5 | N3—Cu1—Cl1 | 144.30 (5) |
C3—C5—H5B | 109.5 | O1—Cu1—Cl1 | 98.89 (4) |
C3—C5—H5C | 109.5 | O1—Cu1—N2 | 148.51 (7) |
H5A—C5—H5B | 109.5 | O1—Cu1—N3 | 86.76 (6) |
H5A—C5—H5C | 109.5 | N4—Cu2—Cl2 | 95.29 (5) |
H5B—C5—H5C | 109.5 | N4—Cu2—N5 | 171.92 (7) |
C7—C6—C9 | 129.3 (2) | N4—Cu2—O1 | 87.45 (6) |
N3—C6—C7 | 108.86 (19) | N4—Cu2—O2 | 99.70 (6) |
N3—C6—C9 | 121.9 (2) | N5—Cu2—Cl2 | 92.21 (5) |
C6—C7—H7 | 127.0 | N5—Cu2—O1 | 84.77 (6) |
C6—C7—C8 | 105.95 (19) | N5—Cu2—O2 | 81.29 (6) |
C8—C7—H7 | 127.0 | O1—Cu2—Cl2 | 142.41 (4) |
C7—C8—C10 | 130.0 (2) | O1—Cu2—O2 | 112.12 (5) |
N4—C8—C7 | 108.08 (19) | O2—Cu2—Cl2 | 104.35 (4) |
N4—C8—C10 | 121.88 (19) | C1—N1—H1 | 127.8 (15) |
C6—C9—H9A | 109.5 | C1—N1—N2 | 111.74 (17) |
C6—C9—H9B | 109.5 | N2—N1—H1 | 120.4 (15) |
C6—C9—H9C | 109.5 | C3—N2—Cu1 | 129.29 (15) |
H9A—C9—H9B | 109.5 | C3—N2—N1 | 105.97 (16) |
H9A—C9—H9C | 109.5 | N1—N2—Cu1 | 124.74 (13) |
H9B—C9—H9C | 109.5 | C6—N3—Cu1 | 132.39 (15) |
C8—C10—H10A | 109.5 | C6—N3—N4 | 107.94 (17) |
C8—C10—H10B | 109.5 | N4—N3—Cu1 | 119.66 (13) |
C8—C10—H10C | 109.5 | C8—N4—Cu2 | 132.78 (14) |
H10A—C10—H10B | 109.5 | C8—N4—N3 | 109.16 (16) |
H10A—C10—H10C | 109.5 | N3—N4—Cu2 | 117.88 (13) |
H10B—C10—H10C | 109.5 | C12—N5—C13 | 115.41 (16) |
H11A—C11—H11B | 108.3 | C12—N5—Cu2 | 105.06 (12) |
C12—C11—H11A | 109.9 | C12—N5—H5 | 111.3 (17) |
C12—C11—H11B | 109.9 | C13—N5—Cu2 | 111.35 (13) |
O1—C11—H11A | 109.9 | C13—N5—H5 | 106.2 (16) |
O1—C11—H11B | 109.9 | Cu2—N5—H5 | 107.3 (16) |
O1—C11—C12 | 108.86 (16) | C11—O1—Cu1 | 122.25 (12) |
C11—C12—H12A | 109.9 | C11—O1—Cu2 | 111.54 (11) |
C11—C12—H12B | 109.9 | Cu1—O1—Cu2 | 110.88 (6) |
H12A—C12—H12B | 108.3 | C14—O2—Cu2 | 104.53 (12) |
N5—C12—C11 | 108.97 (17) | C14—O2—H2A | 108.4 (13) |
N5—C12—H12A | 109.9 | Cu2—O2—H2A | 131.5 (13) |
C1—C2—C3—C5 | −177.8 (3) | C9—C6—C7—C8 | 179.7 (2) |
C1—C2—C3—N2 | 0.1 (3) | C9—C6—N3—Cu1 | −0.9 (3) |
C1—N1—N2—C3 | 0.9 (2) | C9—C6—N3—N4 | 179.7 (2) |
C1—N1—N2—Cu1 | −178.30 (15) | C10—C8—N4—Cu2 | 2.8 (3) |
C2—C1—N1—N2 | −0.8 (3) | C10—C8—N4—N3 | 177.58 (18) |
C2—C3—N2—Cu1 | 178.58 (16) | C11—C12—N5—C13 | −76.2 (2) |
C2—C3—N2—N1 | −0.5 (3) | C11—C12—N5—Cu2 | 46.87 (17) |
C4—C1—C2—C3 | 178.4 (2) | C12—C11—O1—Cu1 | −111.63 (16) |
C4—C1—N1—N2 | −179.0 (2) | C12—C11—O1—Cu2 | 22.96 (19) |
C5—C3—N2—Cu1 | −3.4 (3) | C13—C14—O2—Cu2 | 41.26 (17) |
C5—C3—N2—N1 | 177.5 (2) | C14—C13—N5—C12 | 161.80 (17) |
C6—C7—C8—C10 | −177.5 (2) | C14—C13—N5—Cu2 | 42.16 (19) |
C6—C7—C8—N4 | 1.0 (2) | Cu1—N3—N4—C8 | −178.77 (13) |
C6—N3—N4—C8 | 0.7 (2) | Cu1—N3—N4—Cu2 | −3.11 (18) |
C6—N3—N4—Cu2 | 176.41 (13) | N1—C1—C2—C3 | 0.5 (3) |
C7—C6—N3—Cu1 | 179.33 (14) | N3—C6—C7—C8 | −0.6 (2) |
C7—C6—N3—N4 | −0.1 (2) | N5—C13—C14—O2 | −56.9 (2) |
C7—C8—N4—Cu2 | −175.87 (14) | O1—C11—C12—N5 | −46.9 (2) |
C7—C8—N4—N3 | −1.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2i | 0.87 (2) | 2.33 (2) | 3.1201 (18) | 152 (2) |
N5—H5···Cl1ii | 0.80 (2) | 2.84 (2) | 3.5593 (18) | 150 (2) |
O2—H2A···O1iii | 0.85 (1) | 1.88 (1) | 2.7264 (19) | 174 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x, −y, −z+1. |
References
Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441–446. Web of Science CSD CrossRef CAS Google Scholar
Breeze, S. R. & Wang, S. (1994). Inorg. Chem. 33, 5113–5121. CSD CrossRef CAS Web of Science Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 2429–2434. CSD CrossRef CAS Google Scholar
Chen, L., Breeze, S. R., Rousseau, R. J., Wang, S. & Thompson, L. K. (1995). Inorg. Chem. 34, 454–465. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805. Web of Science CSD CrossRef CAS Google Scholar
Gural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946–9954. CAS PubMed Google Scholar
Hughes, M. N., Waldron, B. & Rutt, K. J. (1972). Inorg. Chim. Acta, 6, 619–622. CrossRef CAS Google Scholar
Madarász, J., Bombicz, P., Czugler, M. & Pokol, G. (2000). Polyhedron, 19, 4, 457–463. Google Scholar
Marin, G., Tudor, V., Kravtsov, V. Ch., Schmidtmann, M., Simonov, Yu. A., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 279–282. CSD CrossRef CAS Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836. Web of Science CSD CrossRef Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CSD CrossRef Google Scholar
Reiter, L. G., Potaskalov, V. A., Andriiko, A. A., Kublanovsky, V. S., Pirskiy, Yu. K., Chmilenko, M. A., Lisin, V. I. & Chmilenko, S. M. (2006). New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, edited by I. V. Barsukov, C. S. Johnson, J. E. Doninger & V. Z. Barsukov pp. 333–344. Dordrecht: Springer. Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032. CrossRef CAS Google Scholar
Tudor, V., Marin, G., Kravtsov, V., Simonov, Yu. A., Lipkowski, J., Brezeanu, M. & Andruh, M. (2003). Inorg. Chim. Acta, 353, 35–42. CSD CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. University of Western Australia. Google Scholar
Wang, S. (1995). J. Clust Sci. 6, 463–484. CrossRef CAS Google Scholar
Wang, S., Pang, Z., Smith, K. D. L., Hua, Y., Deslippe, C. & Wagner, M. J. (1995). Inorg. Chem. 34, 908–917. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.