research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido-1κCl,2κCl-(μ2-3,5-di­methyl-1H-pyrazolato-1κN2:2κN1)(3,5-di­methyl-1H-pyrazole-2κN2){μ-2-[(2-hy­dr­oxy­eth­yl)amino-1κ2N,O]ethano­lato-1:2κ2O:O}dicopper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, b"Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania, and cDepartment of Chemistry, Tajik National University, 17, Rudaki Avenue, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: sash65@mail.ru

Edited by O. Blacque, University of Zürich, Switzerland (Received 5 August 2020; accepted 14 August 2020; online 25 August 2020)

The title compound, [Cu2(C5H7N2)(C4H10NO2)Cl2(C5H8N2)], is a pyrazolate amino­alcohol complex which contains two di­methyl­pyrazole mol­ecules in monodentate and bidentate-bridged coordination modes and a monodeproton­ated di­ethano­lamine mol­ecule. Both copper atoms are involved in the formation of non-planar five-membered chelate rings. One Cu atom is in a distorted tetra­hedral environment formed by the pyridine nitro­gen atom of the protonated di­methyl­pyrazole mol­ecule, the N atom of the deprotonated bridged di­methyl­pyrazole, the Cl atom and the bridged O atom of the monodeprotonated di­ethano­lamine. The second Cu atom has an inter­mediate environment between trigonal bipyramidal and square pyramidal, formed by the N atom of the deprotonated bridged di­methyl­pyrazole, the Cl atom and the N atom of the amino­alcohol, and two O atoms of the deprotonated and protonated OH groups. In the crystal, N—H⋯Cl hydrogen bonds link the molecules into anti­symmetric chains running along the a-axis direction. Adjacent chains are connected by O—H⋯O hydrogen bonds involving the hydroxyl group as donor.

1. Chemical context

Metal complexes of paramagnetic metal ions formed by polynucleative or polydentate ligands are of great inter­est as they often exhibit non-trivial magnetic behaviour (Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]; Suleimanov et al., 2015[Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026-5032.]; Gural'skiy et al., 2012[Gural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946-9954.]). Among polydentate and polynucleative ligands, those containing both nitro­gen and oxygen donor atoms are probably the most versatile and efficient chelators for the vast majority of metal ions (Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.], 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]). Amino alcohol ligands and their derivatives are one of the most widely used representatives of N,O-chelators and attract attention as strong polydentate ligands that can form coordination compounds with transition metals (Hughes et al., 1972[Hughes, M. N., Waldron, B. & Rutt, K. J. (1972). Inorg. Chim. Acta, 6, 619-622.]). Amino alcohols contain both amino and hydroxyl groups within the same mol­ecule, and therefore they are good chelating and bridging ligands. Polynuclear complexes of 3d metals with amino alcohols or their deprotonated forms can show non-trivial properties as catalysts, materials with different magnetic properties or biologically active compounds (Reiter et al., 2006[Reiter, L. G., Potaskalov, V. A., Andriiko, A. A., Kublanovsky, V. S., Pirskiy, Yu. K., Chmilenko, M. A., Lisin, V. I. & Chmilenko, S. M. (2006). New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, edited by I. V. Barsukov, C. S. Johnson, J. E. Doninger & V. Z. Barsukov pp. 333-344. Dordrecht: Springer.]). Amino alcohol ligands are used to prepare copper(II) amino alcoholates that can self-assemble to form both mono- and multinuclear complexes. In bionuclear copper complexes, the metal atoms can be connected by bridged oxygen atoms (alk­oxy) from two different di­ethano­lamine mol­ecules (Tudor et al., 2003[Tudor, V., Marin, G., Kravtsov, V., Simonov, Yu. A., Lipkowski, J., Brezeanu, M. & Andruh, M. (2003). Inorg. Chim. Acta, 353, 35-42.]; Marin et al., 2005[Marin, G., Tudor, V., Kravtsov, V. Ch., Schmidtmann, M., Simonov, Yu. A., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 279-282.]), or combined by a single oxygen atom from an amino alcohol and a bridged ligand mol­ecule (Ashurov et al., 2015[Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441-446.]). There are several typical binding modes of tridentate amino alcohol ligands to copper(II) ions and other metals such as lanthanides, yttrium, and alkaline-earth metals (Breeze & Wang, 1994[Breeze, S. R. & Wang, S. (1994). Inorg. Chem. 33, 5113-5121.]; Chen et al., 1995[Chen, L., Breeze, S. R., Rousseau, R. J., Wang, S. & Thompson, L. K. (1995). Inorg. Chem. 34, 454-465.]; Wang et al., 1995[Wang, S., Pang, Z., Smith, K. D. L., Hua, Y., Deslippe, C. & Wagner, M. J. (1995). Inorg. Chem. 34, 908-917.]). It is a well-known fact that copper coordination compounds can be modified with amino alcohols. For example, copper complexes with theophylline show promising potential anti­tumor action and can be modified with di­ethano­lamine by similar coord­in­ation of amino alcohols to the copper atom (Madarász et al., 2000[Madarász, J., Bombicz, P., Czugler, M. & Pokol, G. (2000). Polyhedron, 19, 4, 457-463.]). Studies of both tridentate- and bidentate-coordinated amino alcohol ligands to the copper atom have been carried out (Wang, 1995[Wang, S. (1995). J. Clust Sci. 6, 463-484.]). Complexes of 3d metals with a tricoordinated di­ethano­lamine are inter­esting objects for synthesis and further studies (Buvaylo et al., 2009[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 2429-2434.]). Considering the above, we understand the importance of accumulating a theoretical information base on such coordination compounds, and therefore in this article we report the synthesis and crystal structure of a new binuclear mixed-ligand copper(II) complex containing 3,5-di­methyl­pyrazole and di­ethano­lamine (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

The crystal structure of the title compound (Fig. 2[link]) consists of dinuclear Cu2(Hdmpz)(dmpz-H)(HDEA)Cl2 (Hdmpz = 3,5-dimethyl-1H-pyrazole, dmpz-H = deprotonated 3,5-dimethyl-pyrazole, and HDEA = monodeprotonated di­ethano­lamine) units enclosed in two anti­symmetrically oriented rows along the a axis. The unit cell consists of two unrelated structural fragments from both rows (Fig. 2[link]). Along the a axis within one row, each mol­ecule is bonded to the preceding and subsequent ones by hydrogen bonds of the same length. Along the b axis, the formation of mol­ecules into dimers is due to hydrogen bonds of equal length between the bridged oxygen atom and the non-deprotonated hy­droxy group of the adjacent mol­ecule. The title dinuclear pyrazolate amino-alcohol compound forms a cyclic structure. Two copper atoms bridged by an oxygen atom of a deprotonated di­ethano­lamine and by a mol­ecule of deprotonated di­methyl­pyrazole form a five-membered bimetallic ring. The five-membered metallocycle has a non-planar structure. The N atoms of the bridging mol­ecule of di­methyl­pyrazole are in the plane of the metallocycle while the bridging O atom is out of this plane by 0.802 (1) Å. The angle between the Cu1/O1/Cu2 and Cu1/Cu2/N3/N4 planes is 45.85 (8)°. The geometrical environment of Cu1 with a coordination number of 4 is different from that of Cu2, which exhibits a coordination number of 5. The Cu1 atom is in a distorted tetra­hedral environment formed by the pyridine N atom of the non-deprotonated di­methyl­pyrazole mol­ecule, the N atom of the deprotonated bridging di­methyl­pyrazole, the Cl atom and the bridging O atom of the monodeprotonated di­ethano­lamine. The environment of the Cu2 metal center is inter­mediate between trigonal bipyramidal and square pyramidal, formed by the N atom of the deprotonated bridged di­methyl­pyrazole, the Cl atom and the amino­alcohol N atom, and two O atoms of the deprotonated and non-deprotonated OH groups. The inter­metallic distance between Cu1 and Cu2 is 3.2439 (4) Å. The di­ethano­lamine fragment is coordinated by all donor atoms to copper in a tri­dentate mode (with atom O1 bridging the two metal centers Cu1 and Cu2) and forms two similar non-planar five-membered metallocycles. It is worth mentioning that the Cu1—O1 distance of 1.9388 (13) Å (Table 1[link]) differs significantly from the Cu2—O2 distance of 2.2441 (14) Å.

Table 1
Selected bond lengths (Å)

Cu1—Cl1 2.2403 (6) Cu2—N4 1.9268 (17)
Cu1—N2 1.9635 (16) Cu2—N5 1.9916 (17)
Cu1—N3 1.9770 (17) Cu2—O1 2.0001 (13)
Cu1—O1 1.9388 (13) Cu2—O2 2.2441 (14)
Cu2—Cl2 2.2937 (6)    
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a-axis direction.

3. Supra­molecular features

In the crystal, hydrogen bonds (Table 2[link]) are observed between the N and Cl atoms (N1—H1⋯Cl2 and N5–H5⋯Cl1) leading to the formation of anti­symmetric chains running along the a-axis direction (Fig. 3[link]). Adjacent chains are connected by hydrogen bonds between the hydroxyl group as donor and the O1 atom of the adjacent mol­ecule as acceptor. There are different fragments that are potential H-atom donors or acceptors and further analysis of the structure indicates the presence of multiple non-covalent inter­molecular inter­actions. The crystal structure (Fig. 4[link]) consists of discrete parallel-packed one-dimensional supramolecular formations, which are assembled by connecting two infinite chains (formed by N—H⋯Cl hydrogen bonds) via O—H⋯O hydrogen-bonding inter­actions.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.87 (2) 2.33 (2) 3.1201 (18) 152 (2)
N5—H5⋯Cl1ii 0.80 (2) 2.84 (2) 3.5593 (18) 150 (2)
O2—H2A⋯O1iii 0.85 (1) 1.88 (1) 2.7264 (19) 174 (2)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x, -y, -z+1.
[Figure 3]
Figure 3
The hydrogen bonds (dotted lines) in the crystal structure of the title compound.
[Figure 4]
Figure 4
Partial view of the one-dimensional architecture in the crystal structure of the title compound. Non-relevant H atoms are omitted for clarity.

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 software (Turner et al., 2018[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. University of Western Australia.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.6711 (red) to 1.7846 (blue) a.u. The pale-red spots in Fig. 5[link] represent short contacts and negative dnorm values on the surface corresponding to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 6[link]a. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are given in Fig. 6[link]b. At 64.1%, the largest contribution to the overall crystal packing comes from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 8.2%, and H⋯N/N⋯H contacts contribute 2.4% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯O/O⋯H contacts make a 2.7% contribution, forming the inner sharp tips of the Hirshfeld surface, while H⋯Cl/Cl⋯H contacts contribute 19.1% and form the outer sharp tips in the fingerprint plot.

[Figure 5]
Figure 5
Two projections of Hirshfeld surfaces mapped over dnorm showing the inter­molecular inter­actions within the mol­ecule. Red areas represent contacts shorter than the sum of the van der Waals radii, while blue areas represent regions where contacts are longer than the sum of van der Waals radii, and white areas are zones close to the sum of van der Waals radii.
[Figure 6]
Figure 6
(a) The overall two-dimensional fingerprint plot and those delineated into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

4. Database survey

A search of the Cambridge Structural database (CSD version 5.41; November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the CuNH(CCO)2 moiety (di­ethano­lamine is coordinated to the copper atom) gave 168 hits. Most similar to the title compound are the dinuclear complexes with coordinated di­ethano­lamine mol­ecules, and copper atoms connected by a bridging oxygen atom and some other ligands, see: refcodes ELESAP (Tudor et al., 2003[Tudor, V., Marin, G., Kravtsov, V., Simonov, Yu. A., Lipkowski, J., Brezeanu, M. & Andruh, M. (2003). Inorg. Chim. Acta, 353, 35-42.]), FARKAL (Marin et al., 2005[Marin, G., Tudor, V., Kravtsov, V. Ch., Schmidtmann, M., Simonov, Yu. A., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 279-282.]) and WITBAC (Madarász et al., 2000[Madarász, J., Bombicz, P., Czugler, M. & Pokol, G. (2000). Polyhedron, 19, 4, 457-463.]).

5. Synthesis and crystallization

A 1.76 mmol di­ethano­lamine solution was added dropwise to a 1.15 mmol aceto­nitrile solution of complex Cu4(μ2-Cl)6(μ4-O)(C5H8N2)4 under stirring. The mixture was stirred for a further 2 h with oxygen access and without heating. Amino alcohol was added to the brown solution and the colour of the mixture changed to green. Dark-green crystals of the title compound suitable for a single crystal X-ray analysis were obtained in 55% yield by slow gas diffusion in an aceto­nitrile/hexane isolated system. Elemental analysis of C14H25Cl2Cu2N5O2: found C 33.96, H 5.267 and N 14.13% (calculated C 34.08, H 5.1, N 14.19%). The starting compound Cu4(μ2-Cl)6(μ4-O)(C5H8N2)4 is a polymorphic modification of the already known tetra­nuclear copper pyrazole-containing cluster Cu4OCl6(C5H8N2)4 and was obtained from the Cu–CuCl2·2H2O–Hdmpz system.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The O2—H2A distance was restrained to 0.85±0.01 Å. The N and O atoms were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C5H7N2)(C4H10NO2)Cl2(C5H8N2)]
Mr 493.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 9.0732 (5), 10.7460 (6), 11.5578 (6)
α, β, γ (°) 92.373 (4), 102.383 (5), 112.703 (5)
V3) 1005.70 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.40
Crystal size (mm) 0.4 × 0.3 × 0.3
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.553, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8833, 4681, 4108
Rint 0.018
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.05
No. of reflections 4681
No. of parameters 239
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichlorido-1κCl,2κCl-(µ2-3,5-dimethyl-1H-pyrazolato-1κN2:2κN1)(3,5-dimethyl-1H-pyrazole-2κN2){µ-2-[(2-hydroxyethyl)amino-1κ2N,O]ethanolato-1:2κ2O:O}dicopper(II) top
Crystal data top
[Cu2(C5H7N2)(C4H10NO2)Cl2(C5H8N2)]Z = 2
Mr = 493.37F(000) = 504
Triclinic, P1Dx = 1.629 Mg m3
a = 9.0732 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7460 (6) ÅCell parameters from 4259 reflections
c = 11.5578 (6) Åθ = 1.8–29.2°
α = 92.373 (4)°µ = 2.40 mm1
β = 102.383 (5)°T = 180 K
γ = 112.703 (5)°Prism, clear intense green
V = 1005.70 (10) Å30.4 × 0.3 × 0.3 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
4681 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.1593 pixels mm-1θmax = 29.5°, θmin = 1.8°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1313
Tmin = 0.553, Tmax = 1.000l = 1515
8833 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0223P)2 + 0.5005P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4681 reflectionsΔρmax = 0.36 e Å3
239 parametersΔρmin = 0.43 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8325 (3)0.5970 (2)0.87558 (18)0.0213 (4)
C20.7173 (3)0.6360 (2)0.9068 (2)0.0303 (5)
H20.7372590.7058620.9660300.036*
C30.5648 (3)0.5504 (2)0.8325 (2)0.0249 (5)
C41.0153 (3)0.6516 (2)0.9206 (2)0.0299 (5)
H4A1.0532230.5835410.9004230.045*
H4B1.0451180.6752131.0059250.045*
H4C1.0653490.7310790.8845360.045*
C50.3987 (3)0.5503 (3)0.8250 (3)0.0427 (7)
H5A0.3608930.5774200.7501460.064*
H5B0.4056160.6129590.8896100.064*
H5C0.3226640.4603890.8302950.064*
C60.3858 (3)0.1471 (2)0.84323 (18)0.0222 (5)
C70.2607 (3)0.0678 (2)0.89308 (19)0.0237 (5)
H70.2711580.0216510.9585740.028*
C80.1163 (3)0.0714 (2)0.82511 (17)0.0189 (4)
C90.5663 (3)0.1797 (3)0.8802 (2)0.0411 (7)
H9A0.6045400.1681470.8108550.062*
H9B0.5854410.1195400.9349170.062*
H9C0.6247990.2721880.9184190.062*
C100.0560 (3)0.0091 (2)0.8396 (2)0.0265 (5)
H10A0.0730350.0713650.8917990.040*
H10B0.0729230.0739480.8733560.040*
H10C0.1327100.0100570.7629320.040*
C110.1643 (3)0.2883 (2)0.41712 (17)0.0192 (4)
H11A0.1131250.2138560.3515860.023*
H11B0.2650070.3533150.4019220.023*
C120.0478 (3)0.3565 (2)0.42571 (19)0.0209 (4)
H12A0.1072480.4432310.4770420.025*
H12B0.0020000.3731940.3470200.025*
C130.2144 (2)0.1487 (2)0.39115 (18)0.0210 (4)
H13A0.1638700.1084720.3435810.025*
H13B0.2894460.1774920.3375170.025*
C140.3067 (3)0.0466 (2)0.4624 (2)0.0234 (5)
H14A0.3633950.0850520.5055810.028*
H14B0.3884950.0338630.4093210.028*
Cl10.57083 (6)0.33924 (5)0.50253 (4)0.02235 (12)
Cl20.05593 (7)0.31818 (6)0.74647 (5)0.02968 (14)
Cu10.41923 (3)0.31469 (2)0.63633 (2)0.01473 (7)
Cu20.02665 (3)0.20789 (2)0.61602 (2)0.01395 (7)
N10.7493 (2)0.49360 (18)0.78604 (15)0.0175 (4)
H10.788 (3)0.446 (2)0.749 (2)0.021*
N20.5853 (2)0.46264 (17)0.75898 (15)0.0182 (4)
N30.3203 (2)0.19520 (17)0.74924 (14)0.0172 (4)
N40.1545 (2)0.14748 (17)0.73807 (14)0.0166 (3)
N50.0860 (2)0.26688 (17)0.47523 (15)0.0156 (3)
H50.133 (3)0.308 (2)0.499 (2)0.019*
O10.20146 (16)0.23756 (13)0.52738 (11)0.0144 (3)
O20.19285 (18)0.01036 (14)0.54515 (13)0.0228 (3)
H2A0.200 (2)0.0673 (12)0.5176 (19)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0227 (11)0.0187 (11)0.0162 (10)0.0030 (8)0.0029 (8)0.0002 (8)
C20.0311 (13)0.0258 (12)0.0283 (12)0.0063 (10)0.0088 (10)0.0104 (10)
C30.0250 (12)0.0215 (11)0.0293 (12)0.0088 (9)0.0111 (9)0.0017 (9)
C40.0221 (12)0.0329 (13)0.0233 (12)0.0027 (10)0.0004 (9)0.0024 (10)
C50.0312 (15)0.0431 (16)0.0576 (18)0.0179 (12)0.0162 (13)0.0080 (14)
C60.0232 (11)0.0251 (12)0.0208 (11)0.0128 (9)0.0044 (8)0.0053 (9)
C70.0303 (12)0.0264 (12)0.0174 (10)0.0135 (10)0.0071 (9)0.0093 (9)
C80.0247 (11)0.0188 (10)0.0149 (10)0.0090 (9)0.0076 (8)0.0027 (8)
C90.0271 (14)0.0578 (19)0.0427 (15)0.0214 (13)0.0059 (11)0.0249 (13)
C100.0276 (12)0.0299 (12)0.0251 (11)0.0108 (10)0.0132 (9)0.0106 (9)
C110.0163 (10)0.0270 (11)0.0155 (10)0.0085 (9)0.0058 (8)0.0080 (8)
C120.0192 (11)0.0214 (11)0.0231 (11)0.0078 (8)0.0067 (8)0.0115 (9)
C130.0162 (10)0.0233 (11)0.0206 (10)0.0076 (8)0.0003 (8)0.0015 (9)
C140.0148 (10)0.0187 (11)0.0344 (12)0.0053 (8)0.0054 (9)0.0027 (9)
Cl10.0171 (3)0.0277 (3)0.0228 (3)0.0076 (2)0.00912 (19)0.0017 (2)
Cl20.0361 (3)0.0433 (3)0.0217 (3)0.0284 (3)0.0089 (2)0.0001 (2)
Cu10.01202 (13)0.01529 (13)0.01474 (12)0.00332 (9)0.00345 (9)0.00108 (9)
Cu20.01386 (13)0.01565 (13)0.01402 (12)0.00676 (10)0.00508 (9)0.00341 (9)
N10.0144 (9)0.0178 (9)0.0193 (9)0.0061 (7)0.0034 (7)0.0003 (7)
N20.0153 (9)0.0193 (9)0.0192 (9)0.0059 (7)0.0052 (7)0.0006 (7)
N30.0149 (9)0.0198 (9)0.0177 (8)0.0073 (7)0.0047 (7)0.0048 (7)
N40.0160 (9)0.0173 (9)0.0175 (8)0.0063 (7)0.0069 (7)0.0041 (7)
N50.0144 (9)0.0148 (9)0.0192 (9)0.0068 (7)0.0060 (7)0.0014 (7)
O10.0129 (7)0.0162 (7)0.0143 (7)0.0053 (5)0.0046 (5)0.0047 (5)
O20.0245 (8)0.0128 (7)0.0268 (8)0.0043 (6)0.0040 (6)0.0010 (6)
Geometric parameters (Å, º) top
C1—C21.372 (3)C11—H11B0.9700
C1—C41.490 (3)C11—C121.517 (3)
C1—N11.341 (3)C11—O11.432 (2)
C2—H20.9300C12—H12A0.9700
C2—C31.393 (3)C12—H12B0.9700
C3—C51.490 (3)C12—N51.473 (3)
C3—N21.335 (3)C13—H13A0.9700
C4—H4A0.9600C13—H13B0.9700
C4—H4B0.9600C13—C141.499 (3)
C4—H4C0.9600C13—N51.478 (2)
C5—H5A0.9600C14—H14A0.9700
C5—H5B0.9600C14—H14B0.9700
C5—H5C0.9600C14—O21.432 (3)
C6—C71.386 (3)Cu1—Cl12.2403 (6)
C6—C91.494 (3)Cu1—N21.9635 (16)
C6—N31.344 (3)Cu1—N31.9770 (17)
C7—H70.9300Cu1—O11.9388 (13)
C7—C81.391 (3)Cu2—Cl22.2937 (6)
C8—C101.494 (3)Cu2—N41.9268 (17)
C8—N41.341 (3)Cu2—N51.9916 (17)
C9—H9A0.9600Cu2—O12.0001 (13)
C9—H9B0.9600Cu2—O22.2441 (14)
C9—H9C0.9600N1—H10.87 (2)
C10—H10A0.9600N1—N21.353 (2)
C10—H10B0.9600N3—N41.363 (2)
C10—H10C0.9600N5—H50.80 (2)
C11—H11A0.9700O2—H2A0.853 (9)
C2—C1—C4131.7 (2)N5—C12—H12B109.9
N1—C1—C2106.26 (19)H13A—C13—H13B108.4
N1—C1—C4122.0 (2)C14—C13—H13A110.0
C1—C2—H2126.7C14—C13—H13B110.0
C1—C2—C3106.60 (19)N5—C13—H13A110.0
C3—C2—H2126.7N5—C13—H13B110.0
C2—C3—C5129.4 (2)N5—C13—C14108.28 (16)
N2—C3—C2109.4 (2)C13—C14—H14A109.8
N2—C3—C5121.1 (2)C13—C14—H14B109.8
C1—C4—H4A109.5H14A—C14—H14B108.3
C1—C4—H4B109.5O2—C14—C13109.25 (16)
C1—C4—H4C109.5O2—C14—H14A109.8
H4A—C4—H4B109.5O2—C14—H14B109.8
H4A—C4—H4C109.5N2—Cu1—Cl196.92 (5)
H4B—C4—H4C109.5N2—Cu1—N396.00 (7)
C3—C5—H5A109.5N3—Cu1—Cl1144.30 (5)
C3—C5—H5B109.5O1—Cu1—Cl198.89 (4)
C3—C5—H5C109.5O1—Cu1—N2148.51 (7)
H5A—C5—H5B109.5O1—Cu1—N386.76 (6)
H5A—C5—H5C109.5N4—Cu2—Cl295.29 (5)
H5B—C5—H5C109.5N4—Cu2—N5171.92 (7)
C7—C6—C9129.3 (2)N4—Cu2—O187.45 (6)
N3—C6—C7108.86 (19)N4—Cu2—O299.70 (6)
N3—C6—C9121.9 (2)N5—Cu2—Cl292.21 (5)
C6—C7—H7127.0N5—Cu2—O184.77 (6)
C6—C7—C8105.95 (19)N5—Cu2—O281.29 (6)
C8—C7—H7127.0O1—Cu2—Cl2142.41 (4)
C7—C8—C10130.0 (2)O1—Cu2—O2112.12 (5)
N4—C8—C7108.08 (19)O2—Cu2—Cl2104.35 (4)
N4—C8—C10121.88 (19)C1—N1—H1127.8 (15)
C6—C9—H9A109.5C1—N1—N2111.74 (17)
C6—C9—H9B109.5N2—N1—H1120.4 (15)
C6—C9—H9C109.5C3—N2—Cu1129.29 (15)
H9A—C9—H9B109.5C3—N2—N1105.97 (16)
H9A—C9—H9C109.5N1—N2—Cu1124.74 (13)
H9B—C9—H9C109.5C6—N3—Cu1132.39 (15)
C8—C10—H10A109.5C6—N3—N4107.94 (17)
C8—C10—H10B109.5N4—N3—Cu1119.66 (13)
C8—C10—H10C109.5C8—N4—Cu2132.78 (14)
H10A—C10—H10B109.5C8—N4—N3109.16 (16)
H10A—C10—H10C109.5N3—N4—Cu2117.88 (13)
H10B—C10—H10C109.5C12—N5—C13115.41 (16)
H11A—C11—H11B108.3C12—N5—Cu2105.06 (12)
C12—C11—H11A109.9C12—N5—H5111.3 (17)
C12—C11—H11B109.9C13—N5—Cu2111.35 (13)
O1—C11—H11A109.9C13—N5—H5106.2 (16)
O1—C11—H11B109.9Cu2—N5—H5107.3 (16)
O1—C11—C12108.86 (16)C11—O1—Cu1122.25 (12)
C11—C12—H12A109.9C11—O1—Cu2111.54 (11)
C11—C12—H12B109.9Cu1—O1—Cu2110.88 (6)
H12A—C12—H12B108.3C14—O2—Cu2104.53 (12)
N5—C12—C11108.97 (17)C14—O2—H2A108.4 (13)
N5—C12—H12A109.9Cu2—O2—H2A131.5 (13)
C1—C2—C3—C5177.8 (3)C9—C6—C7—C8179.7 (2)
C1—C2—C3—N20.1 (3)C9—C6—N3—Cu10.9 (3)
C1—N1—N2—C30.9 (2)C9—C6—N3—N4179.7 (2)
C1—N1—N2—Cu1178.30 (15)C10—C8—N4—Cu22.8 (3)
C2—C1—N1—N20.8 (3)C10—C8—N4—N3177.58 (18)
C2—C3—N2—Cu1178.58 (16)C11—C12—N5—C1376.2 (2)
C2—C3—N2—N10.5 (3)C11—C12—N5—Cu246.87 (17)
C4—C1—C2—C3178.4 (2)C12—C11—O1—Cu1111.63 (16)
C4—C1—N1—N2179.0 (2)C12—C11—O1—Cu222.96 (19)
C5—C3—N2—Cu13.4 (3)C13—C14—O2—Cu241.26 (17)
C5—C3—N2—N1177.5 (2)C14—C13—N5—C12161.80 (17)
C6—C7—C8—C10177.5 (2)C14—C13—N5—Cu242.16 (19)
C6—C7—C8—N41.0 (2)Cu1—N3—N4—C8178.77 (13)
C6—N3—N4—C80.7 (2)Cu1—N3—N4—Cu23.11 (18)
C6—N3—N4—Cu2176.41 (13)N1—C1—C2—C30.5 (3)
C7—C6—N3—Cu1179.33 (14)N3—C6—C7—C80.6 (2)
C7—C6—N3—N40.1 (2)N5—C13—C14—O256.9 (2)
C7—C8—N4—Cu2175.87 (14)O1—C11—C12—N546.9 (2)
C7—C8—N4—N31.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.87 (2)2.33 (2)3.1201 (18)152 (2)
N5—H5···Cl1ii0.80 (2)2.84 (2)3.5593 (18)150 (2)
O2—H2A···O1iii0.85 (1)1.88 (1)2.7264 (19)174 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z+1.
 

References

First citationAshurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2015). Polyhedron, 102, 441–446.  Web of Science CSD CrossRef CAS Google Scholar
First citationBreeze, S. R. & Wang, S. (1994). Inorg. Chem. 33, 5113–5121.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W. & Jezierska, J. (2009). Inorg. Chim. Acta, 362, 2429–2434.  CSD CrossRef CAS Google Scholar
First citationChen, L., Breeze, S. R., Rousseau, R. J., Wang, S. & Thompson, L. K. (1995). Inorg. Chem. 34, 454–465.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationGural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946–9954.  CAS PubMed Google Scholar
First citationHughes, M. N., Waldron, B. & Rutt, K. J. (1972). Inorg. Chim. Acta, 6, 619–622.  CrossRef CAS Google Scholar
First citationMadarász, J., Bombicz, P., Czugler, M. & Pokol, G. (2000). Polyhedron, 19, 4, 457–463.  Google Scholar
First citationMarin, G., Tudor, V., Kravtsov, V. Ch., Schmidtmann, M., Simonov, Yu. A., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 279–282.  CSD CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationReiter, L. G., Potaskalov, V. A., Andriiko, A. A., Kublanovsky, V. S., Pirskiy, Yu. K., Chmilenko, M. A., Lisin, V. I. & Chmilenko, S. M. (2006). New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, edited by I. V. Barsukov, C. S. Johnson, J. E. Doninger & V. Z. Barsukov pp. 333–344. Dordrecht: Springer.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032.  CrossRef CAS Google Scholar
First citationTudor, V., Marin, G., Kravtsov, V., Simonov, Yu. A., Lipkowski, J., Brezeanu, M. & Andruh, M. (2003). Inorg. Chim. Acta, 353, 35–42.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. University of Western Australia.  Google Scholar
First citationWang, S. (1995). J. Clust Sci. 6, 463–484.  CrossRef CAS Google Scholar
First citationWang, S., Pang, Z., Smith, K. D. L., Hua, Y., Deslippe, C. & Wagner, M. J. (1995). Inorg. Chem. 34, 908–917.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds