research communications
μ-2-[bis(2-hydroxyethyl)amino]ethanolato}bis(μ-3,5-dimethylpyrazolato)tricopper(II) dibromide sesquihydrate
of bis{aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bPoni Petru Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania, and cDepartment of Chemistry, Tajik National University, 17, Rudaki Avenue, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: sash65@mail.ru
In the title bicyclic trinuclear pyrazolate aminoalcohol complex, [Cu3(C5H7N2)2(C6H14NO3)2]Br2·1.5H2O, the central Cu atom lies on a center of symmetry and is involved in the formation of two five-membered rings. It has a of 4, is in a distorted tetrahedral environment and is connected by the bridging oxygen atoms of the deprotonated OH groups of different aminoalcohol groups, and by the N atoms of deprotonated dimethylpyrazole ligands. The peripheral Cu atom is in a trigonal–bipyramidal coordination environment formed by the nitrogen atom of the deprotonated bridging dimethylpyrazole unit, the bridging oxygen atom of the deprotonated OH group, two oxygen atoms of the protonated hydroxy groups and the nitrogen atom of triethanolamine. One of the C atoms and the Br− anion were found to be disordered over two positions with occupancy factors of 0.808 (9):0.192 (9) and 0.922 (3):0.078 (3), respectively.
Keywords: copper; copper complexes; crystal structure; pyrazole; triethanolamine; X-ray crystallography; aminoalcohol ligand.
CCDC reference: 2030043
1. Chemical context
Coordination compounds of paramagnetic transition-metal complexes with polydentate and polynuclear ligands are of great interest because of their versatile magnetic properties, in particular, magnetic superexchange mediated by ligand-bridging functions (Pavlishchuk et al., 2010, 2011; Strotmeyer et al., 2003; Gumienna-Kontecka et al., 2007) or spin-crossover behavior (Suleimanov et al., 2015; Gural'skiy et al., 2012). Amino can be used for the synthesis of similar complexes since they are versatile and effective polydentate ligands in coordination chemistry (Vynohradov et al., 2020). It is well known that polynuclear complexes of 3d metals with amino (acting both as neutral and acidic ligands) can indicate non-trivial magnetic properties and biological activity. Mono-, di-, and trinuclear complexes of copper(II) with triethanolamine are widely studied because of their interesting magnetic properties (Escovar et al., 2005). The magnetic properties of copper(II) complexes with triethanolamine range from ferromagnetic to antiferromagnetic, with minor changes in the structure of the complex affecting the nature of the exchange interactions that control the ultimate magnetization (Boulsourani et al., 2011). In addition, copper(II) complexes with triethanolamine can bind to DNA (Sama et al., 2019) and show catecholase activity (Sama et al., 2017). Amino alcohol complexes of copper(II) and zinc show in the reactions of conversion of or cycloalkanes to carboxylic acids, which can help to increase the yield of products (Ansari et al., 2016). Triethanolamine is a polyfunctional O,N-ligand that can bind metal ions in its neutral or deprotonated form leading to an alcoholate. Finally, atoms of the same or different metals can be linked by bridging oxygen atoms to form mono- and heterometallic polynuclear complexes (Dias et al., 2015; Kirillov et al., 2007). As part of our continuing interest in multifunctional transition-metal complexes with polydentate and polynuclear ligands, we report herein the synthesis and of a new trinuclear copper(II) mixed-ligand complex with triethanolamine and 3,5-dimethylpyrazole.
2. Structural commentary
The ) comprises trinuclear Cu3(dmpz-H)2(H2TEA)22+ cationic units linked via two bridging bromine anions. The central Cu2 atom lies on a center of symmetry and is involved in the formation of two five-membered rings. Each ring is formed by two copper atoms connected by the bridging oxygen atom of the monodeprotonated triethanolamine and the bridging deprotonated dimethylpyrazole. The five-membered bimetallic rings are not planar. The nitrogen atoms of the dimethylpyrazole bridging ligand are practically in the same plane as the metal atoms, while the bridging oxygen atom is out of the plane by 0.450 (3) Å. The copper(II) atoms have different coordination environments. The peripheral Cu1 atom is in a trigonal–bipyramidal coordination environment formed by two N2 nitrogen atoms of the deprotonated bridging dimethylpyrazole ligands, the bridging oxygen atom of the deprotonated OH group, two oxygen atoms of the protonated hydroxy groups and the triethanolamine nitrogen atom. The central Cu2 atom (coordination number 4) is in a distorted (flattened) tetrahedral environment and is surrounded by the bridging oxygen atoms of the deprotonated OH groups of different amino alcohol molecules, and by N3 and N3i symmetry code: (i) − x, y, 1 − z] atoms of different deprotonated molecules of dimethylpyrazole. The interatomic distances between the N3, O1 and N3i, O1i atoms are 2.726 (4) Å. The distances between the atoms O1, O1i and N3, N3i are similar at 2.915 (4) and 2.970 (5) Å, respectively. The intermetallic separations are Cu1⋯Cu2 = 3.2829 (5) and Cu1⋯Cu1i = 6.4784 (10) Å.
of the title compound (Fig. 1The triethanolamine ligand is coordinated in a tetradentate manner by all donor atoms. As a result of such a coordination of triethanolamine from both sides of the complex molecule, three similar five-membered cyclic Cu–O–C–C–N fragments are formed. Bridging oxygen atoms arise from the coordination of the amino alcohol to a metal atom with the deprotonation of only one OH group. The coordinated triethanolamine is monodeprotonated, and the other two hydroxy groups are protonated and bonded by hydrogen bonds to the adjacent molecules via bridging bromine anions. The distances between Cu1 and the oxygen atoms of the deprotonated [Cu1—O1 = 1.930 (2) Å] and protonated [Cu1—O2 = 2.308 (2), Cu1—O3 = 2.060 (3) Å] OH groups are different.
3. Supramolecular features
In the crystal, the trinuclear cationic complexes interact via O—H⋯Br hydrogen bonding (Table 1), forming one-dimensional supramolecular networks. The distances between copper atoms within the supramolecular chain are Cu1⋯Cu1(− + x, 1 − y, z) = 7.3123 (4) Å, Cu2⋯Cu2(− + x, 1 − y, z) = 7.2470 (4) Å, Cu1(− + x, 1 − y, z)⋯Cu1( − x, y, 1 − z) = 8.9185 (12) Å, and Cu1⋯Cu1(1 − x, 1 − y, 1 − z) = 10.5517 (10) Å. The is built up from the parallel packing of discrete pillars along the a axis (Fig. 2). The co-crystallized water molecules, which are fractionally disordered over several positions, fill the voids formed in the crystal and do not contribute significantly to extending the hydrogen-bonded network.
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, update of August 2019; Groom et al., 2016) for the Cu(HO-CH2CH2)(O-CH2CH2)2N moiety revealed 171 hits. Most similar to the title compound are the trinuclear complexes with coordinated triethanolamine and other ligands [WISQOH, WISQUN (Sun et al., 2018); AWEQEZ, AWEQID, AWEQOJ, AWEQUP (Boulsourani et al., 2011); DEGSOX (Ferguson et al., 1985); FISJIB (Tudor et al., 2005); KUDYUF (Dias et al., 2015); MEDHUZ, MEDHUZ01, MEDJAH, MEDJEL, MEDJIP (Escovar et al., 2005); OYALEH02 (Ansari et al., 2016); ZACTIJ01, ZAGYIS (Ozarowski et al., 2015)].
5. Synthesis and crystallization
Cu3(dmpz-H)2(H2TEA)2Br2 (dmpz-H = deprotonated 3,5-dimethyl-1H-pyrazole and H2TEA = monodeprotonated triethanolamine) was synthesized at room temperature by the addition of a copper powder (2.34 mmol, 0.15 g) and copper(II) bromide (2.34 mmol, 0.525 g) mixture to an acetonitrile solution of 3,5-dimethyl-1H-pyrazole (4.68 mmol, 0.45 g). Triethanolamine (2.34 mmol, 0.31 ml) was added immediately. The reaction mixture was stirred without heating for one h with free air access until dissolution of the copper powder, and a green precipitate of the product was obtained. The precipitate was filtered off, dissolved in methanol, and filtered off from the undissolved copper residues. Green crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent. The yield was 50%. The obtained dark-green crystals were studied by elemental analysis (calculated C 31.56%, H 5.05% and N 10.04%, found C 30.83%, H 5.73%, N 10.38%). The reaction scheme is shown in Fig. 3.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included in geometrically calculated positions (O—H = 0.83–0.88 Å, C—H = 0.96–0.97 Å) with Uiso = 1.2UeqC) or Uiso = 1.5Ueq(O,C-methyl). Atom C6 and the Br− anion were found to be disordered over two resolvable positions with occupancy factors of 0.808 (9):0.192 (9) and 0.922 (3):0.078 (3), respectively. Their positional parameters were refined using available tools (see the in the supporting information).
details are summarized in Table 2Supporting information
CCDC reference: 2030043
https://doi.org/10.1107/S2056989020012323/dj2014sup1.cif
contains datablock I. DOI:here is the mol file of https://doi.org/10.1107/S2056989020012323/dj2014sup3.mol
of the title compound. DOI:here is the IR spectrum of the title compound. DOI: https://doi.org/10.1107/S2056989020012323/dj2014sup4.txt
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020012323/dj2014Isup5.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu3(C5H7N2)2(C6H14NO3)2]Br2·1.5H2O | F(000) = 1744 |
Mr = 864.08 | Dx = 1.727 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 14.4930 (7) Å | Cell parameters from 4599 reflections |
b = 8.8855 (3) Å | θ = 1.6–27.9° |
c = 26.6017 (11) Å | µ = 4.35 mm−1 |
β = 103.998 (5)° | T = 293 K |
V = 3324.0 (2) Å3 | Block, dark green |
Z = 4 | 0.25 × 0.15 × 0.15 mm |
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer | 3946 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3296 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.0797 pixels mm-1 | θmax = 29.3°, θmin = 2.4° |
ω scans | h = −16→18 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −9→11 |
Tmin = 0.514, Tmax = 1.000 | l = −35→36 |
10477 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0485P)2 + 4.2091P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3946 reflections | Δρmax = 0.61 e Å−3 |
199 parameters | Δρmin = −0.52 e Å−3 |
11 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.84276 (3) | 0.55507 (4) | 0.62368 (2) | 0.03014 (12) | |
Cu2 | 0.750000 | 0.49500 (6) | 0.500000 | 0.03372 (15) | |
O1 | 0.79457 (19) | 0.6382 (3) | 0.55533 (8) | 0.0434 (6) | |
O2 | 0.75819 (19) | 0.6565 (3) | 0.67875 (10) | 0.0492 (6) | |
H2 | 0.701401 | 0.678302 | 0.675390 | 0.074* | |
O3 | 0.9595 (2) | 0.4666 (3) | 0.67533 (11) | 0.0571 (7) | |
H3A | 0.991686 | 0.384510 | 0.679523 | 0.086* | 0.808 (9) |
H3B | 0.986816 | 0.387400 | 0.668063 | 0.086* | 0.192 (9) |
N1 | 0.91464 (19) | 0.7483 (3) | 0.64151 (10) | 0.0336 (6) | |
N2 | 0.77343 (19) | 0.3725 (3) | 0.60337 (9) | 0.0316 (5) | |
N3 | 0.72982 (19) | 0.3495 (3) | 0.55213 (9) | 0.0323 (6) | |
C1 | 0.8348 (3) | 0.7810 (4) | 0.54973 (13) | 0.0494 (10) | |
H1A | 0.790451 | 0.859727 | 0.553258 | 0.059* | |
H1B | 0.846751 | 0.789021 | 0.515481 | 0.059* | |
C2 | 0.9267 (3) | 0.8016 (4) | 0.59024 (13) | 0.0460 (8) | |
H2A | 0.976989 | 0.744829 | 0.580605 | 0.055* | |
H2B | 0.944604 | 0.907048 | 0.592508 | 0.055* | |
C3 | 0.8581 (3) | 0.8578 (4) | 0.66391 (15) | 0.0480 (9) | |
H3C | 0.809372 | 0.901971 | 0.636341 | 0.058* | |
H3D | 0.899332 | 0.938101 | 0.680996 | 0.058* | |
C4 | 0.8128 (3) | 0.7830 (5) | 0.70191 (16) | 0.0561 (10) | |
H4A | 0.861466 | 0.750289 | 0.731725 | 0.067* | |
H4B | 0.771818 | 0.854094 | 0.713755 | 0.067* | |
C5 | 1.0076 (3) | 0.7209 (5) | 0.67819 (16) | 0.0555 (10) | |
H5BC | 1.056188 | 0.726257 | 0.658782 | 0.067* | 0.192 (9) |
H5BD | 1.019202 | 0.803170 | 0.702872 | 0.067* | 0.192 (9) |
H5AA | 1.054166 | 0.790854 | 0.671037 | 0.067* | 0.808 (9) |
H5AB | 1.001831 | 0.738938 | 0.713262 | 0.067* | 0.808 (9) |
C7 | 0.7491 (2) | 0.2588 (4) | 0.63086 (12) | 0.0363 (7) | |
C8 | 0.6888 (3) | 0.1623 (4) | 0.59740 (14) | 0.0406 (8) | |
H8 | 0.661023 | 0.074739 | 0.606027 | 0.049* | |
C9 | 0.6785 (2) | 0.2229 (4) | 0.54863 (13) | 0.0365 (7) | |
C10 | 0.7851 (3) | 0.2510 (5) | 0.68850 (13) | 0.0552 (10) | |
H10A | 0.848281 | 0.210080 | 0.696948 | 0.083* | |
H10B | 0.744002 | 0.187678 | 0.702649 | 0.083* | |
H10C | 0.786095 | 0.350270 | 0.702877 | 0.083* | |
C11 | 0.6195 (3) | 0.1634 (5) | 0.49835 (16) | 0.0575 (11) | |
H11A | 0.559290 | 0.214164 | 0.489894 | 0.086* | |
H11B | 0.609514 | 0.057368 | 0.501520 | 0.086* | |
H11C | 0.652047 | 0.180536 | 0.471421 | 0.086* | |
C6 | 1.0402 (3) | 0.5685 (5) | 0.6742 (3) | 0.0616 (16) | 0.808 (9) |
H6A | 1.093912 | 0.546357 | 0.702993 | 0.074* | 0.808 (9) |
H6B | 1.060015 | 0.555500 | 0.642187 | 0.074* | 0.808 (9) |
C6B | 1.0213 (14) | 0.5817 (9) | 0.7073 (4) | 0.0616 (16) | 0.192 (9) |
H6BA | 1.004131 | 0.594819 | 0.740059 | 0.074* | 0.192 (9) |
H6BB | 1.087428 | 0.550866 | 0.714297 | 0.074* | 0.192 (9) |
Br1 | 1.05467 (4) | 0.16214 (7) | 0.65764 (5) | 0.0663 (3) | 0.922 (3) |
O1W | 1.0873 (10) | 0.3397 (16) | 0.5606 (5) | 0.070 (3)* | 0.25 |
H1WA | 1.038994 | 0.394250 | 0.558614 | 0.106* | 0.25 |
H1WB | 1.082024 | 0.278840 | 0.584344 | 0.106* | 0.25 |
Br1X | 1.0615 (5) | 0.1928 (9) | 0.6317 (5) | 0.0663 (3) | 0.078 (3) |
O2W | 1.0549 (11) | 0.4390 (18) | 0.5497 (6) | 0.082 (4)* | 0.25 |
H2WA | 0.996778 | 0.470066 | 0.536178 | 0.123* | 0.25 |
H2WB | 1.043988 | 0.373266 | 0.571568 | 0.123* | 0.25 |
O3W | 0.9438 (11) | 0.5317 (17) | 0.5068 (6) | 0.081 (4)* | 0.25 |
H3WA | 0.954628 | 0.626818 | 0.515273 | 0.122* | 0.25 |
H3WB | 1.002938 | 0.507648 | 0.511103 | 0.122* | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0351 (2) | 0.0281 (2) | 0.02443 (19) | −0.00146 (15) | 0.00192 (15) | 0.00083 (14) |
Cu2 | 0.0532 (4) | 0.0248 (3) | 0.0211 (2) | 0.000 | 0.0048 (2) | 0.000 |
O1 | 0.0705 (17) | 0.0284 (12) | 0.0251 (10) | −0.0126 (12) | −0.0006 (11) | 0.0021 (9) |
O2 | 0.0461 (15) | 0.0502 (16) | 0.0552 (15) | −0.0009 (12) | 0.0198 (12) | −0.0090 (12) |
O3 | 0.0548 (16) | 0.0369 (14) | 0.0650 (17) | 0.0088 (12) | −0.0140 (14) | −0.0003 (13) |
N1 | 0.0327 (14) | 0.0316 (14) | 0.0333 (13) | −0.0008 (11) | 0.0017 (11) | −0.0030 (11) |
N2 | 0.0372 (14) | 0.0304 (13) | 0.0255 (12) | −0.0024 (11) | 0.0043 (10) | 0.0038 (10) |
N3 | 0.0405 (15) | 0.0288 (13) | 0.0249 (12) | −0.0033 (11) | 0.0027 (11) | 0.0005 (10) |
C1 | 0.079 (3) | 0.0348 (19) | 0.0291 (16) | −0.0169 (19) | 0.0029 (17) | 0.0028 (14) |
C2 | 0.056 (2) | 0.0382 (19) | 0.0451 (19) | −0.0124 (17) | 0.0148 (17) | 0.0001 (16) |
C3 | 0.053 (2) | 0.041 (2) | 0.050 (2) | −0.0022 (17) | 0.0127 (18) | −0.0158 (17) |
C4 | 0.058 (2) | 0.062 (3) | 0.051 (2) | 0.001 (2) | 0.0181 (19) | −0.019 (2) |
C5 | 0.038 (2) | 0.056 (2) | 0.061 (2) | −0.0050 (18) | −0.0104 (18) | 0.007 (2) |
C7 | 0.0411 (18) | 0.0321 (17) | 0.0385 (17) | 0.0058 (14) | 0.0150 (14) | 0.0088 (14) |
C8 | 0.044 (2) | 0.0293 (17) | 0.052 (2) | −0.0003 (14) | 0.0186 (16) | 0.0068 (15) |
C9 | 0.0369 (17) | 0.0279 (16) | 0.0434 (18) | −0.0016 (14) | 0.0069 (14) | −0.0009 (14) |
C10 | 0.079 (3) | 0.051 (2) | 0.0374 (19) | 0.001 (2) | 0.0176 (19) | 0.0151 (17) |
C11 | 0.058 (3) | 0.047 (2) | 0.060 (2) | −0.0145 (19) | 0.001 (2) | −0.0107 (19) |
C6 | 0.042 (3) | 0.054 (3) | 0.078 (4) | 0.004 (2) | −0.007 (3) | −0.014 (3) |
C6B | 0.042 (3) | 0.054 (3) | 0.078 (4) | 0.004 (2) | −0.007 (3) | −0.014 (3) |
Br1 | 0.0543 (3) | 0.0459 (3) | 0.0959 (6) | −0.0023 (2) | 0.0127 (3) | −0.0174 (3) |
Br1X | 0.0543 (3) | 0.0459 (3) | 0.0959 (6) | −0.0023 (2) | 0.0127 (3) | −0.0174 (3) |
Cu1—O1 | 1.930 (2) | C4—H4A | 0.9700 |
Cu1—O2 | 2.308 (2) | C4—H4B | 0.9700 |
Cu1—O3 | 2.060 (3) | C5—H5BC | 0.9700 |
Cu1—N1 | 2.005 (3) | C5—H5BD | 0.9700 |
Cu1—N2 | 1.916 (3) | C5—H5AA | 0.9700 |
Cu2—O1 | 1.935 (2) | C5—H5AB | 0.9700 |
Cu2—O1i | 1.935 (2) | C5—C6 | 1.447 (6) |
Cu2—N3 | 1.969 (2) | C5—C6B | 1.447 (6) |
Cu2—N3i | 1.969 (2) | C7—C8 | 1.384 (5) |
O1—C1 | 1.420 (4) | C7—C10 | 1.497 (5) |
O2—H2 | 0.8291 | C8—H8 | 0.9300 |
O2—C4 | 1.426 (5) | C8—C9 | 1.379 (5) |
O3—H3A | 0.8581 | C9—C11 | 1.499 (5) |
O3—H3B | 0.8520 | C10—H10A | 0.9600 |
O3—C6 | 1.485 (5) | C10—H10B | 0.9600 |
O3—C6B | 1.485 (6) | C10—H10C | 0.9600 |
N1—C2 | 1.493 (4) | C11—H11A | 0.9600 |
N1—C3 | 1.486 (4) | C11—H11B | 0.9600 |
N1—C5 | 1.480 (4) | C11—H11C | 0.9600 |
N2—N3 | 1.372 (3) | C6—H6A | 0.9700 |
N2—C7 | 1.343 (4) | C6—H6B | 0.9700 |
N3—C9 | 1.340 (4) | C6B—H6BA | 0.9700 |
C1—H1A | 0.9700 | C6B—H6BB | 0.9700 |
C1—H1B | 0.9700 | O1W—H1WA | 0.8426 |
C1—C2 | 1.508 (5) | O1W—H1WB | 0.8490 |
C2—H2A | 0.9700 | O2W—H2WA | 0.8768 |
C2—H2B | 0.9700 | O2W—H2WB | 0.8660 |
C3—H3C | 0.9700 | O3W—H3WA | 0.8786 |
C3—H3D | 0.9700 | O3W—H3WB | 0.8643 |
C3—C4 | 1.489 (6) | O3W—H3WBii | 1.06 (3) |
O1—Cu1—O2 | 108.77 (11) | C4—C3—H3C | 109.5 |
O1—Cu1—O3 | 145.70 (12) | C4—C3—H3D | 109.5 |
O1—Cu1—N1 | 86.79 (10) | O2—C4—C3 | 110.4 (3) |
O3—Cu1—O2 | 101.67 (11) | O2—C4—H4A | 109.6 |
N1—Cu1—O2 | 80.85 (10) | O2—C4—H4B | 109.6 |
N1—Cu1—O3 | 82.72 (11) | C3—C4—H4A | 109.6 |
N2—Cu1—O1 | 90.73 (10) | C3—C4—H4B | 109.6 |
N2—Cu1—O2 | 100.76 (10) | H4A—C4—H4B | 108.1 |
N2—Cu1—O3 | 98.91 (11) | N1—C5—H5BC | 107.7 |
N2—Cu1—N1 | 177.38 (10) | N1—C5—H5BD | 107.7 |
O1—Cu2—O1i | 97.76 (13) | N1—C5—H5AA | 109.3 |
O1—Cu2—N3 | 88.57 (10) | N1—C5—H5AB | 109.3 |
O1—Cu2—N3i | 152.70 (11) | H5BC—C5—H5BD | 107.1 |
O1i—Cu2—N3i | 88.57 (10) | H5AA—C5—H5AB | 108.0 |
O1i—Cu2—N3 | 152.70 (11) | C6—C5—N1 | 111.6 (4) |
N3—Cu2—N3i | 97.91 (15) | C6—C5—H5AA | 109.3 |
Cu1—O1—Cu2 | 116.31 (11) | C6—C5—H5AB | 109.3 |
C1—O1—Cu1 | 112.13 (19) | C6B—C5—N1 | 118.6 (6) |
C1—O1—Cu2 | 125.31 (19) | C6B—C5—H5BC | 107.7 |
Cu1—O2—H2 | 133.5 | C6B—C5—H5BD | 107.7 |
C4—O2—Cu1 | 104.9 (2) | N2—C7—C8 | 108.9 (3) |
C4—O2—H2 | 107.1 | N2—C7—C10 | 121.4 (3) |
Cu1—O3—H3A | 138.1 | C8—C7—C10 | 129.7 (3) |
Cu1—O3—H3B | 121.0 | C7—C8—H8 | 127.1 |
C6—O3—Cu1 | 106.1 (3) | C9—C8—C7 | 105.7 (3) |
C6—O3—H3A | 96.6 | C9—C8—H8 | 127.1 |
C6B—O3—Cu1 | 113.8 (5) | N3—C9—C8 | 109.3 (3) |
C6B—O3—H3B | 116.7 | N3—C9—C11 | 123.0 (3) |
C2—N1—Cu1 | 102.98 (19) | C8—C9—C11 | 127.7 (3) |
C3—N1—Cu1 | 110.5 (2) | C7—C10—H10A | 109.5 |
C3—N1—C2 | 110.9 (3) | C7—C10—H10B | 109.5 |
C5—N1—Cu1 | 110.7 (2) | C7—C10—H10C | 109.5 |
C5—N1—C2 | 111.4 (3) | H10A—C10—H10B | 109.5 |
C5—N1—C3 | 110.2 (3) | H10A—C10—H10C | 109.5 |
N3—N2—Cu1 | 119.36 (19) | H10B—C10—H10C | 109.5 |
C7—N2—Cu1 | 132.2 (2) | C9—C11—H11A | 109.5 |
C7—N2—N3 | 108.1 (3) | C9—C11—H11B | 109.5 |
N2—N3—Cu2 | 119.40 (19) | C9—C11—H11C | 109.5 |
C9—N3—Cu2 | 132.6 (2) | H11A—C11—H11B | 109.5 |
C9—N3—N2 | 108.0 (2) | H11A—C11—H11C | 109.5 |
O1—C1—H1A | 109.6 | H11B—C11—H11C | 109.5 |
O1—C1—H1B | 109.6 | O3—C6—H6A | 110.3 |
O1—C1—C2 | 110.3 (3) | O3—C6—H6B | 110.3 |
H1A—C1—H1B | 108.1 | C5—C6—O3 | 107.2 (4) |
C2—C1—H1A | 109.6 | C5—C6—H6A | 110.3 |
C2—C1—H1B | 109.6 | C5—C6—H6B | 110.3 |
N1—C2—C1 | 109.6 (3) | H6A—C6—H6B | 108.5 |
N1—C2—H2A | 109.7 | O3—C6B—H6BA | 110.3 |
N1—C2—H2B | 109.7 | O3—C6B—H6BB | 110.3 |
C1—C2—H2A | 109.7 | C5—C6B—O3 | 107.3 (4) |
C1—C2—H2B | 109.7 | C5—C6B—H6BA | 110.3 |
H2A—C2—H2B | 108.2 | C5—C6B—H6BB | 110.3 |
N1—C3—H3C | 109.5 | H6BA—C6B—H6BB | 108.5 |
N1—C3—H3D | 109.5 | H1WA—O1W—H1WB | 101.0 |
N1—C3—C4 | 110.9 (3) | H2WA—O2W—H2WB | 100.0 |
H3C—C3—H3D | 108.0 | H3WA—O3W—H3WB | 95.4 |
Cu1—O1—C1—C2 | 20.5 (4) | N2—N3—C9—C8 | −0.4 (4) |
Cu1—O2—C4—C3 | 35.7 (4) | N2—N3—C9—C11 | 178.9 (3) |
Cu1—O3—C6—C5 | 47.4 (5) | N2—C7—C8—C9 | 0.3 (4) |
Cu1—O3—C6B—C5 | −25.7 (17) | N3—N2—C7—C8 | −0.5 (4) |
Cu1—N1—C2—C1 | 43.4 (3) | N3—N2—C7—C10 | −179.8 (3) |
Cu1—N1—C3—C4 | 43.4 (4) | C2—N1—C3—C4 | 156.9 (3) |
Cu1—N1—C5—C6 | 25.0 (5) | C2—N1—C5—C6 | −88.9 (4) |
Cu1—N1—C5—C6B | −18.7 (10) | C2—N1—C5—C6B | −132.6 (10) |
Cu1—N2—N3—Cu2 | 6.0 (3) | C3—N1—C2—C1 | −74.8 (4) |
Cu1—N2—N3—C9 | −173.7 (2) | C3—N1—C5—C6 | 147.6 (4) |
Cu1—N2—C7—C8 | 172.7 (2) | C3—N1—C5—C6B | 103.8 (10) |
Cu1—N2—C7—C10 | −6.6 (5) | C5—N1—C2—C1 | 162.0 (3) |
Cu2—O1—C1—C2 | −130.5 (3) | C5—N1—C3—C4 | −79.3 (4) |
Cu2—N3—C9—C8 | 180.0 (2) | C7—N2—N3—Cu2 | −179.7 (2) |
Cu2—N3—C9—C11 | −0.7 (5) | C7—N2—N3—C9 | 0.6 (3) |
O1—C1—C2—N1 | −43.7 (4) | C7—C8—C9—N3 | 0.0 (4) |
N1—C3—C4—O2 | −54.2 (4) | C7—C8—C9—C11 | −179.2 (4) |
N1—C5—C6—O3 | −48.3 (6) | C10—C7—C8—C9 | 179.5 (4) |
N1—C5—C6B—O3 | 29.0 (18) |
Symmetry codes: (i) −x+3/2, y, −z+1; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···Br1iii | 0.83 | 2.50 | 3.288 (3) | 158 |
O3—H3B···Br1X | 0.85 | 2.37 | 3.207 (8) | 168 |
Symmetry code: (iii) x−1/2, −y+1, z. |
Acknowledgements
The authors acknowledge Denys Petlovanyi and Dmytro Vyshniak for help in conducting research, financial support and for providing interesting ideas for further scientific work.
References
Ansari, I. A., Sama, F., Raizada, M., Shahid, M., Ahmad, M. & Siddiqi, Z. A. (2016). New J. Chem. 40, 9840–9852. Web of Science CSD CrossRef CAS Google Scholar
Boulsourani, Z., Tangoulis, V., Raptopoulou, C. P., Psycharis, V. & Dendrinou-Samara, C. (2011). Dalton Trans. 40, 7946–7956. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dias, S. S. P., Kirillova, M. V., André, V., Kłak, J. & Kirillov, A. M. (2015). Inorg. Chem. Front. 2, 525–537. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Escovar, R. M., Thurston, J. H., Ould-Ely, T., Kumar, A. & Whitmire, K. H. (2005). Z. Anorg. Allg. Chem. 631, 2867–2876. Web of Science CSD CrossRef CAS Google Scholar
Ferguson, G., Langrick, C. R., Parker, D. & Matthes, K. (1985). J. Chem. Soc. Chem. Commun. pp. 1609–1610. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805. Web of Science CSD CrossRef CAS Google Scholar
Gural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946–9954. Web of Science CAS PubMed Google Scholar
Kirillov, A. M., Haukka, M., Kopylovich, M. N. & Pombeiro, A. J. L. (2007). Acta Cryst. E63, m526–m528. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ozarowski, A., Calzado, C. J., Sharma, R. P., Kumar, S., Jezierska, J., Angeli, C., Spizzo, F. & Ferretti, V. (2015). Inorg. Chem. 54, 11916–11934. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836. Web of Science CSD CrossRef Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CSD CrossRef Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sama, F., Dhara, A. K., Akhtar, M. N., Chen, Y., Tong, M., Ansari, I. A., Raizada, M., Ahmad, M., Shahid, M. & Siddiqi, Z. A. (2017). Dalton Trans. 46, 9801–9823. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sama, F., Raizada, M., Ashafaq, M., Ahamad, M. N., Mantasha, I., Iman, K., Shahid, M., Rahisuddin, A. R., Shah, N. A. & Saleh, H. A. M. (2019). J. Mol. Struct. 1176, 283–289. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032. Web of Science CrossRef CAS Google Scholar
Sun, G., Xie, W., Xiao, H. & Xu, G. (2018). Acta Cryst. C74, 1540–1546. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tudor, V., Kravtsov, V. C., Julve, M., Lloret, F., Simonov, Y. A., Averkiev, B. B. & Andruh, M. (2005). Inorg. Chim. Acta, 358, 2066–2072. Web of Science CSD CrossRef CAS Google Scholar
Vynohradov, O. S., Pavlenko, V. A., Safyanova, I. S., Znovjyak, K., Shova, S. & Safarmamadov, S. M. (2020). Acta Cryst. E76, 1503–1507. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.