research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{μ-2-[bis­­(2-hy­dr­oxy­eth­yl)amino]­ethano­lato}bis­­(μ-3,5-di­methyl­pyrazolato)tricopper(II) dibromide sesquihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bPoni Petru Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania, and cDepartment of Chemistry, Tajik National University, 17, Rudaki Avenue, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: sash65@mail.ru

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 3 August 2020; accepted 7 September 2020; online 11 September 2020)

In the title bicyclic trinuclear pyrazolate amino­alcohol complex, [Cu3(C5H7N2)2(C6H14NO3)2]Br2·1.5H2O, the central Cu atom lies on a center of symmetry and is involved in the formation of two five-membered rings. It has a coordination number of 4, is in a distorted tetra­hedral environment and is connected by the bridging oxygen atoms of the deprotonated OH groups of different amino­alcohol groups, and by the N atoms of deprotonated di­methyl­pyrazole ligands. The peripheral Cu atom is in a trigonal–bipyramidal coordination environment formed by the nitro­gen atom of the deprotonated bridging di­methyl­pyrazole unit, the bridging oxygen atom of the deprotonated OH group, two oxygen atoms of the protonated hy­droxy groups and the nitro­gen atom of tri­ethano­lamine. One of the C atoms and the Br anion were found to be disordered over two positions with occupancy factors of 0.808 (9):0.192 (9) and 0.922 (3):0.078 (3), respectively.

1. Chemical context

Coordination compounds of paramagnetic transition-metal complexes with polydentate and polynuclear ligands are of great inter­est because of their versatile magnetic properties, in particular, magnetic superexchange mediated by ligand-bridging functions (Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.], 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]; Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]) or spin-crossover behavior (Suleimanov et al., 2015[Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026-5032.]; Gural'skiy et al., 2012[Gural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946-9954.]). Amino alcohols can be used for the synthesis of similar complexes since they are versatile and effective polydentate ligands in coordination chemistry (Vynohradov et al., 2020[Vynohradov, O. S., Pavlenko, V. A., Safyanova, I. S., Znovjyak, K., Shova, S. & Safarmamadov, S. M. (2020). Acta Cryst. E76, 1503-1507.]). It is well known that polynuclear complexes of 3d metals with amino alcohols (acting both as neutral and acidic ligands) can indicate non-trivial magnetic properties and biological activity. Mono-, di-, and trinuclear complexes of copper(II) with tri­ethano­lamine are widely studied because of their inter­esting magnetic properties (Escovar et al., 2005[Escovar, R. M., Thurston, J. H., Ould-Ely, T., Kumar, A. & Whitmire, K. H. (2005). Z. Anorg. Allg. Chem. 631, 2867-2876.]). The magnetic properties of copper(II) complexes with tri­ethano­lamine range from ferromagnetic to anti­ferromagnetic, with minor changes in the structure of the complex affecting the nature of the exchange inter­actions that control the ultimate magnetization (Boulsourani et al., 2011[Boulsourani, Z., Tangoulis, V., Raptopoulou, C. P., Psycharis, V. & Dendrinou-Samara, C. (2011). Dalton Trans. 40, 7946-7956.]). In addition, copper(II) complexes with tri­ethano­lamine can bind to DNA (Sama et al., 2019[Sama, F., Raizada, M., Ashafaq, M., Ahamad, M. N., Mantasha, I., Iman, K., Shahid, M., Rahisuddin, A. R., Shah, N. A. & Saleh, H. A. M. (2019). J. Mol. Struct. 1176, 283-289.]) and show catecholase activity (Sama et al., 2017[Sama, F., Dhara, A. K., Akhtar, M. N., Chen, Y., Tong, M., Ansari, I. A., Raizada, M., Ahmad, M., Shahid, M. & Siddiqi, Z. A. (2017). Dalton Trans. 46, 9801-9823.]). Amino alcohol complexes of copper(II) and zinc show catalytic activity in the reactions of conversion of alkanes or cyclo­alkanes to carb­oxy­lic acids, which can help to increase the yield of products (Ansari et al., 2016[Ansari, I. A., Sama, F., Raizada, M., Shahid, M., Ahmad, M. & Siddiqi, Z. A. (2016). New J. Chem. 40, 9840-9852.]). Tri­ethano­lamine is a polyfunctional O,N-ligand that can bind metal ions in its neutral or deprotonated form leading to an alcoholate. Finally, atoms of the same or different metals can be linked by bridging oxygen atoms to form mono- and heterometallic polynuclear complexes (Dias et al., 2015[Dias, S. S. P., Kirillova, M. V., André, V., Kłak, J. & Kirillov, A. M. (2015). Inorg. Chem. Front. 2, 525-537.]; Kirillov et al., 2007[Kirillov, A. M., Haukka, M., Kopylovich, M. N. & Pombeiro, A. J. L. (2007). Acta Cryst. E63, m526-m528.]). As part of our continuing inter­est in multifunctional transition-metal complexes with polydentate and polynuclear ligands, we report herein the synthesis and crystal structure of a new trinuclear copper(II) mixed-ligand complex with tri­ethano­lamine and 3,5-di­methyl­pyrazole.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound (Fig. 1[link]) comprises trinuclear Cu3(dmpz-H)2(H2TEA)22+ cationic units linked via two bridging bromine anions. The central Cu2 atom lies on a center of symmetry and is involved in the formation of two five-membered rings. Each ring is formed by two copper atoms connected by the bridging oxygen atom of the monodeprotonated tri­ethano­lamine and the bridging deprotonated di­methyl­pyrazole. The five-membered bimetallic rings are not planar. The nitro­gen atoms of the di­methyl­pyrazole bridging ligand are practically in the same plane as the metal atoms, while the bridging oxygen atom is out of the plane by 0.450 (3) Å. The copper(II) atoms have different coordination environments. The peripheral Cu1 atom is in a trigonal–bipyramidal coordination environment formed by two N2 nitro­gen atoms of the deprotonated bridging di­methyl­pyrazole ligands, the bridging oxygen atom of the deprotonated OH group, two oxygen atoms of the protonated hy­droxy groups and the tri­ethano­lamine nitro­gen atom. The central Cu2 atom (coordination number 4) is in a distorted (flattened) tetra­hedral environment and is surrounded by the bridging oxygen atoms of the deprotonated OH groups of different amino alcohol mol­ecules, and by N3 and N3i symmetry code: (i) [{3\over 2}] − x, y, 1 − z] atoms of different deprotonated mol­ecules of dimethyl­pyrazole. The inter­atomic distances between the N3, O1 and N3i, O1i atoms are 2.726 (4) Å. The distances between the atoms O1, O1i and N3, N3i are similar at 2.915 (4) and 2.970 (5) Å, respectively. The inter­metallic separations are Cu1⋯Cu2 = 3.2829 (5) and Cu1⋯Cu1i = 6.4784 (10) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level [Symmetry code: (i) [{3\over 2}] − x, y, 1 − z].

The tri­ethano­lamine ligand is coordinated in a tetra­dentate manner by all donor atoms. As a result of such a coordination of tri­ethano­lamine from both sides of the complex mol­ecule, three similar five-membered cyclic Cu–O–C–C–N fragments are formed. Bridging oxygen atoms arise from the coordination of the amino alcohol to a metal atom with the deprotonation of only one OH group. The coordinated tri­ethano­lamine is monodeprotonated, and the other two hy­droxy groups are protonated and bonded by hydrogen bonds to the adjacent mol­ecules via bridging bromine anions. The distances between Cu1 and the oxygen atoms of the deprotonated [Cu1—O1 = 1.930 (2) Å] and protonated [Cu1—O2 = 2.308 (2), Cu1—O3 = 2.060 (3) Å] OH groups are different.

3. Supra­molecular features

In the crystal, the trinuclear cationic complexes inter­act via O—H⋯Br hydrogen bonding (Table 1[link]), forming one-dimensional supra­molecular networks. The distances between copper atoms within the supra­molecular chain are Cu1⋯Cu1(−[{1\over 2}] + x, 1 − y, z) = 7.3123 (4) Å, Cu2⋯Cu2(−[{1\over 2}] + x, 1 − y, z) = 7.2470 (4) Å, Cu1(−[{1\over 2}] + x, 1 − y, z)⋯Cu1([{3\over 2}] − x, y, 1 − z) = 8.9185 (12) Å, and Cu1⋯Cu1(1 − x, 1 − y, 1 − z) = 10.5517 (10) Å. The crystal structure is built up from the parallel packing of discrete pillars along the a axis (Fig. 2[link]). The co-crystallized water mol­ecules, which are fractionally disordered over several positions, fill the voids formed in the crystal and do not contribute significantly to extending the hydrogen-bonded network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Br1i 0.83 2.50 3.288 (3) 158
O3—H3B⋯Br1X 0.85 2.37 3.207 (8) 168
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the a- (left) and b-axis (right) directions.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the Cu(HO-CH2CH2)(O-CH2CH2)2N moiety revealed 171 hits. Most similar to the title compound are the trinuclear complexes with coordinated tri­ethano­lamine and other ligands [WISQOH, WISQUN (Sun et al., 2018[Sun, G., Xie, W., Xiao, H. & Xu, G. (2018). Acta Cryst. C74, 1540-1546.]); AWEQEZ, AWEQID, AWEQOJ, AWEQUP (Boulsourani et al., 2011[Boulsourani, Z., Tangoulis, V., Raptopoulou, C. P., Psycharis, V. & Dendrinou-Samara, C. (2011). Dalton Trans. 40, 7946-7956.]); DEGSOX (Ferguson et al., 1985[Ferguson, G., Langrick, C. R., Parker, D. & Matthes, K. (1985). J. Chem. Soc. Chem. Commun. pp. 1609-1610.]); FISJIB (Tudor et al., 2005[Tudor, V., Kravtsov, V. C., Julve, M., Lloret, F., Simonov, Y. A., Averkiev, B. B. & Andruh, M. (2005). Inorg. Chim. Acta, 358, 2066-2072.]); KUDYUF (Dias et al., 2015[Dias, S. S. P., Kirillova, M. V., André, V., Kłak, J. & Kirillov, A. M. (2015). Inorg. Chem. Front. 2, 525-537.]); MEDHUZ, MEDHUZ01, MEDJAH, MEDJEL, MEDJIP (Escovar et al., 2005[Escovar, R. M., Thurston, J. H., Ould-Ely, T., Kumar, A. & Whitmire, K. H. (2005). Z. Anorg. Allg. Chem. 631, 2867-2876.]); OYALEH02 (Ansari et al., 2016[Ansari, I. A., Sama, F., Raizada, M., Shahid, M., Ahmad, M. & Siddiqi, Z. A. (2016). New J. Chem. 40, 9840-9852.]); ZACTIJ01, ZAGYIS (Ozarowski et al., 2015[Ozarowski, A., Calzado, C. J., Sharma, R. P., Kumar, S., Jezierska, J., Angeli, C., Spizzo, F. & Ferretti, V. (2015). Inorg. Chem. 54, 11916-11934.])].

5. Synthesis and crystallization

Cu3(dmpz-H)2(H2TEA)2Br2 (dmpz-H = deprotonated 3,5-dimethyl-1H-pyrazole and H2TEA = monodeprotonated tri­ethano­lamine) was synthesized at room temperature by the addition of a copper powder (2.34 mmol, 0.15 g) and copper(II) bromide (2.34 mmol, 0.525 g) mixture to an aceto­nitrile solution of 3,5-dimethyl-1H-pyrazole (4.68 mmol, 0.45 g). Tri­ethano­lamine (2.34 mmol, 0.31 ml) was added immediately. The reaction mixture was stirred without heating for one h with free air access until dissolution of the copper powder, and a green precipitate of the product was obtained. The precipitate was filtered off, dissolved in methanol, and filtered off from the undissolved copper residues. Green crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent. The yield was 50%. The obtained dark-green crystals were studied by elemental analysis (calculated C 31.56%, H 5.05% and N 10.04%, found C 30.83%, H 5.73%, N 10.38%). The reaction scheme is shown in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme to obtain the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were included in geometrically calculated positions (O—H = 0.83–0.88 Å, C—H = 0.96–0.97 Å) with Uiso = 1.2UeqC) or Uiso = 1.5Ueq(O,C-meth­yl). Atom C6 and the Br anion were found to be disordered over two resolvable positions with occupancy factors of 0.808 (9):0.192 (9) and 0.922 (3):0.078 (3), respectively. Their positional parameters were refined using available tools (see the CIF in the supporting information).

Table 2
Experimental details

Crystal data
Chemical formula [Cu3(C5H7N2)2(C6H14NO3)2]Br2·1.5H2O
Mr 864.08
Crystal system, space group Monoclinic, I2/a
Temperature (K) 293
a, b, c (Å) 14.4930 (7), 8.8855 (3), 26.6017 (11)
β (°) 103.998 (5)
V3) 3324.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.35
Crystal size (mm) 0.25 × 0.15 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.514, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10477, 3946, 3296
Rint 0.024
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.09
No. of reflections 3946
No. of parameters 199
No. of restraints 11
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.52
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{µ-2-[bis(2-hydroxyethyl)amino]ethanolato}-1:2κ4O,O',\ O'':O;2:3κ4O:O,O',O''-\ bis(µ-3,5-dimethylpyrazolato)-1:2κ2N1:N2;\ 2:3N1:N2-tricopper(II) dibromide sesquihydrate top
Crystal data top
[Cu3(C5H7N2)2(C6H14NO3)2]Br2·1.5H2OF(000) = 1744
Mr = 864.08Dx = 1.727 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 14.4930 (7) ÅCell parameters from 4599 reflections
b = 8.8855 (3) Åθ = 1.6–27.9°
c = 26.6017 (11) ŵ = 4.35 mm1
β = 103.998 (5)°T = 293 K
V = 3324.0 (2) Å3Block, dark green
Z = 40.25 × 0.15 × 0.15 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
3946 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.0797 pixels mm-1θmax = 29.3°, θmin = 2.4°
ω scansh = 1618
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 911
Tmin = 0.514, Tmax = 1.000l = 3536
10477 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0485P)2 + 4.2091P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3946 reflectionsΔρmax = 0.61 e Å3
199 parametersΔρmin = 0.52 e Å3
11 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.84276 (3)0.55507 (4)0.62368 (2)0.03014 (12)
Cu20.7500000.49500 (6)0.5000000.03372 (15)
O10.79457 (19)0.6382 (3)0.55533 (8)0.0434 (6)
O20.75819 (19)0.6565 (3)0.67875 (10)0.0492 (6)
H20.7014010.6783020.6753900.074*
O30.9595 (2)0.4666 (3)0.67533 (11)0.0571 (7)
H3A0.9916860.3845100.6795230.086*0.808 (9)
H3B0.9868160.3874000.6680630.086*0.192 (9)
N10.91464 (19)0.7483 (3)0.64151 (10)0.0336 (6)
N20.77343 (19)0.3725 (3)0.60337 (9)0.0316 (5)
N30.72982 (19)0.3495 (3)0.55213 (9)0.0323 (6)
C10.8348 (3)0.7810 (4)0.54973 (13)0.0494 (10)
H1A0.7904510.8597270.5532580.059*
H1B0.8467510.7890210.5154810.059*
C20.9267 (3)0.8016 (4)0.59024 (13)0.0460 (8)
H2A0.9769890.7448290.5806050.055*
H2B0.9446040.9070480.5925080.055*
C30.8581 (3)0.8578 (4)0.66391 (15)0.0480 (9)
H3C0.8093720.9019710.6363410.058*
H3D0.8993320.9381010.6809960.058*
C40.8128 (3)0.7830 (5)0.70191 (16)0.0561 (10)
H4A0.8614660.7502890.7317250.067*
H4B0.7718180.8540940.7137550.067*
C51.0076 (3)0.7209 (5)0.67819 (16)0.0555 (10)
H5BC1.0561880.7262570.6587820.067*0.192 (9)
H5BD1.0192020.8031700.7028720.067*0.192 (9)
H5AA1.0541660.7908540.6710370.067*0.808 (9)
H5AB1.0018310.7389380.7132620.067*0.808 (9)
C70.7491 (2)0.2588 (4)0.63086 (12)0.0363 (7)
C80.6888 (3)0.1623 (4)0.59740 (14)0.0406 (8)
H80.6610230.0747390.6060270.049*
C90.6785 (2)0.2229 (4)0.54863 (13)0.0365 (7)
C100.7851 (3)0.2510 (5)0.68850 (13)0.0552 (10)
H10A0.8482810.2100800.6969480.083*
H10B0.7440020.1876780.7026490.083*
H10C0.7860950.3502700.7028770.083*
C110.6195 (3)0.1634 (5)0.49835 (16)0.0575 (11)
H11A0.5592900.2141640.4898940.086*
H11B0.6095140.0573680.5015200.086*
H11C0.6520470.1805360.4714210.086*
C61.0402 (3)0.5685 (5)0.6742 (3)0.0616 (16)0.808 (9)
H6A1.0939120.5463570.7029930.074*0.808 (9)
H6B1.0600150.5555000.6421870.074*0.808 (9)
C6B1.0213 (14)0.5817 (9)0.7073 (4)0.0616 (16)0.192 (9)
H6BA1.0041310.5948190.7400590.074*0.192 (9)
H6BB1.0874280.5508660.7142970.074*0.192 (9)
Br11.05467 (4)0.16214 (7)0.65764 (5)0.0663 (3)0.922 (3)
O1W1.0873 (10)0.3397 (16)0.5606 (5)0.070 (3)*0.25
H1WA1.0389940.3942500.5586140.106*0.25
H1WB1.0820240.2788400.5843440.106*0.25
Br1X1.0615 (5)0.1928 (9)0.6317 (5)0.0663 (3)0.078 (3)
O2W1.0549 (11)0.4390 (18)0.5497 (6)0.082 (4)*0.25
H2WA0.9967780.4700660.5361780.123*0.25
H2WB1.0439880.3732660.5715680.123*0.25
O3W0.9438 (11)0.5317 (17)0.5068 (6)0.081 (4)*0.25
H3WA0.9546280.6268180.5152730.122*0.25
H3WB1.0029380.5076480.5111030.122*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0351 (2)0.0281 (2)0.02443 (19)0.00146 (15)0.00192 (15)0.00083 (14)
Cu20.0532 (4)0.0248 (3)0.0211 (2)0.0000.0048 (2)0.000
O10.0705 (17)0.0284 (12)0.0251 (10)0.0126 (12)0.0006 (11)0.0021 (9)
O20.0461 (15)0.0502 (16)0.0552 (15)0.0009 (12)0.0198 (12)0.0090 (12)
O30.0548 (16)0.0369 (14)0.0650 (17)0.0088 (12)0.0140 (14)0.0003 (13)
N10.0327 (14)0.0316 (14)0.0333 (13)0.0008 (11)0.0017 (11)0.0030 (11)
N20.0372 (14)0.0304 (13)0.0255 (12)0.0024 (11)0.0043 (10)0.0038 (10)
N30.0405 (15)0.0288 (13)0.0249 (12)0.0033 (11)0.0027 (11)0.0005 (10)
C10.079 (3)0.0348 (19)0.0291 (16)0.0169 (19)0.0029 (17)0.0028 (14)
C20.056 (2)0.0382 (19)0.0451 (19)0.0124 (17)0.0148 (17)0.0001 (16)
C30.053 (2)0.041 (2)0.050 (2)0.0022 (17)0.0127 (18)0.0158 (17)
C40.058 (2)0.062 (3)0.051 (2)0.001 (2)0.0181 (19)0.019 (2)
C50.038 (2)0.056 (2)0.061 (2)0.0050 (18)0.0104 (18)0.007 (2)
C70.0411 (18)0.0321 (17)0.0385 (17)0.0058 (14)0.0150 (14)0.0088 (14)
C80.044 (2)0.0293 (17)0.052 (2)0.0003 (14)0.0186 (16)0.0068 (15)
C90.0369 (17)0.0279 (16)0.0434 (18)0.0016 (14)0.0069 (14)0.0009 (14)
C100.079 (3)0.051 (2)0.0374 (19)0.001 (2)0.0176 (19)0.0151 (17)
C110.058 (3)0.047 (2)0.060 (2)0.0145 (19)0.001 (2)0.0107 (19)
C60.042 (3)0.054 (3)0.078 (4)0.004 (2)0.007 (3)0.014 (3)
C6B0.042 (3)0.054 (3)0.078 (4)0.004 (2)0.007 (3)0.014 (3)
Br10.0543 (3)0.0459 (3)0.0959 (6)0.0023 (2)0.0127 (3)0.0174 (3)
Br1X0.0543 (3)0.0459 (3)0.0959 (6)0.0023 (2)0.0127 (3)0.0174 (3)
Geometric parameters (Å, º) top
Cu1—O11.930 (2)C4—H4A0.9700
Cu1—O22.308 (2)C4—H4B0.9700
Cu1—O32.060 (3)C5—H5BC0.9700
Cu1—N12.005 (3)C5—H5BD0.9700
Cu1—N21.916 (3)C5—H5AA0.9700
Cu2—O11.935 (2)C5—H5AB0.9700
Cu2—O1i1.935 (2)C5—C61.447 (6)
Cu2—N31.969 (2)C5—C6B1.447 (6)
Cu2—N3i1.969 (2)C7—C81.384 (5)
O1—C11.420 (4)C7—C101.497 (5)
O2—H20.8291C8—H80.9300
O2—C41.426 (5)C8—C91.379 (5)
O3—H3A0.8581C9—C111.499 (5)
O3—H3B0.8520C10—H10A0.9600
O3—C61.485 (5)C10—H10B0.9600
O3—C6B1.485 (6)C10—H10C0.9600
N1—C21.493 (4)C11—H11A0.9600
N1—C31.486 (4)C11—H11B0.9600
N1—C51.480 (4)C11—H11C0.9600
N2—N31.372 (3)C6—H6A0.9700
N2—C71.343 (4)C6—H6B0.9700
N3—C91.340 (4)C6B—H6BA0.9700
C1—H1A0.9700C6B—H6BB0.9700
C1—H1B0.9700O1W—H1WA0.8426
C1—C21.508 (5)O1W—H1WB0.8490
C2—H2A0.9700O2W—H2WA0.8768
C2—H2B0.9700O2W—H2WB0.8660
C3—H3C0.9700O3W—H3WA0.8786
C3—H3D0.9700O3W—H3WB0.8643
C3—C41.489 (6)O3W—H3WBii1.06 (3)
O1—Cu1—O2108.77 (11)C4—C3—H3C109.5
O1—Cu1—O3145.70 (12)C4—C3—H3D109.5
O1—Cu1—N186.79 (10)O2—C4—C3110.4 (3)
O3—Cu1—O2101.67 (11)O2—C4—H4A109.6
N1—Cu1—O280.85 (10)O2—C4—H4B109.6
N1—Cu1—O382.72 (11)C3—C4—H4A109.6
N2—Cu1—O190.73 (10)C3—C4—H4B109.6
N2—Cu1—O2100.76 (10)H4A—C4—H4B108.1
N2—Cu1—O398.91 (11)N1—C5—H5BC107.7
N2—Cu1—N1177.38 (10)N1—C5—H5BD107.7
O1—Cu2—O1i97.76 (13)N1—C5—H5AA109.3
O1—Cu2—N388.57 (10)N1—C5—H5AB109.3
O1—Cu2—N3i152.70 (11)H5BC—C5—H5BD107.1
O1i—Cu2—N3i88.57 (10)H5AA—C5—H5AB108.0
O1i—Cu2—N3152.70 (11)C6—C5—N1111.6 (4)
N3—Cu2—N3i97.91 (15)C6—C5—H5AA109.3
Cu1—O1—Cu2116.31 (11)C6—C5—H5AB109.3
C1—O1—Cu1112.13 (19)C6B—C5—N1118.6 (6)
C1—O1—Cu2125.31 (19)C6B—C5—H5BC107.7
Cu1—O2—H2133.5C6B—C5—H5BD107.7
C4—O2—Cu1104.9 (2)N2—C7—C8108.9 (3)
C4—O2—H2107.1N2—C7—C10121.4 (3)
Cu1—O3—H3A138.1C8—C7—C10129.7 (3)
Cu1—O3—H3B121.0C7—C8—H8127.1
C6—O3—Cu1106.1 (3)C9—C8—C7105.7 (3)
C6—O3—H3A96.6C9—C8—H8127.1
C6B—O3—Cu1113.8 (5)N3—C9—C8109.3 (3)
C6B—O3—H3B116.7N3—C9—C11123.0 (3)
C2—N1—Cu1102.98 (19)C8—C9—C11127.7 (3)
C3—N1—Cu1110.5 (2)C7—C10—H10A109.5
C3—N1—C2110.9 (3)C7—C10—H10B109.5
C5—N1—Cu1110.7 (2)C7—C10—H10C109.5
C5—N1—C2111.4 (3)H10A—C10—H10B109.5
C5—N1—C3110.2 (3)H10A—C10—H10C109.5
N3—N2—Cu1119.36 (19)H10B—C10—H10C109.5
C7—N2—Cu1132.2 (2)C9—C11—H11A109.5
C7—N2—N3108.1 (3)C9—C11—H11B109.5
N2—N3—Cu2119.40 (19)C9—C11—H11C109.5
C9—N3—Cu2132.6 (2)H11A—C11—H11B109.5
C9—N3—N2108.0 (2)H11A—C11—H11C109.5
O1—C1—H1A109.6H11B—C11—H11C109.5
O1—C1—H1B109.6O3—C6—H6A110.3
O1—C1—C2110.3 (3)O3—C6—H6B110.3
H1A—C1—H1B108.1C5—C6—O3107.2 (4)
C2—C1—H1A109.6C5—C6—H6A110.3
C2—C1—H1B109.6C5—C6—H6B110.3
N1—C2—C1109.6 (3)H6A—C6—H6B108.5
N1—C2—H2A109.7O3—C6B—H6BA110.3
N1—C2—H2B109.7O3—C6B—H6BB110.3
C1—C2—H2A109.7C5—C6B—O3107.3 (4)
C1—C2—H2B109.7C5—C6B—H6BA110.3
H2A—C2—H2B108.2C5—C6B—H6BB110.3
N1—C3—H3C109.5H6BA—C6B—H6BB108.5
N1—C3—H3D109.5H1WA—O1W—H1WB101.0
N1—C3—C4110.9 (3)H2WA—O2W—H2WB100.0
H3C—C3—H3D108.0H3WA—O3W—H3WB95.4
Cu1—O1—C1—C220.5 (4)N2—N3—C9—C80.4 (4)
Cu1—O2—C4—C335.7 (4)N2—N3—C9—C11178.9 (3)
Cu1—O3—C6—C547.4 (5)N2—C7—C8—C90.3 (4)
Cu1—O3—C6B—C525.7 (17)N3—N2—C7—C80.5 (4)
Cu1—N1—C2—C143.4 (3)N3—N2—C7—C10179.8 (3)
Cu1—N1—C3—C443.4 (4)C2—N1—C3—C4156.9 (3)
Cu1—N1—C5—C625.0 (5)C2—N1—C5—C688.9 (4)
Cu1—N1—C5—C6B18.7 (10)C2—N1—C5—C6B132.6 (10)
Cu1—N2—N3—Cu26.0 (3)C3—N1—C2—C174.8 (4)
Cu1—N2—N3—C9173.7 (2)C3—N1—C5—C6147.6 (4)
Cu1—N2—C7—C8172.7 (2)C3—N1—C5—C6B103.8 (10)
Cu1—N2—C7—C106.6 (5)C5—N1—C2—C1162.0 (3)
Cu2—O1—C1—C2130.5 (3)C5—N1—C3—C479.3 (4)
Cu2—N3—C9—C8180.0 (2)C7—N2—N3—Cu2179.7 (2)
Cu2—N3—C9—C110.7 (5)C7—N2—N3—C90.6 (3)
O1—C1—C2—N143.7 (4)C7—C8—C9—N30.0 (4)
N1—C3—C4—O254.2 (4)C7—C8—C9—C11179.2 (4)
N1—C5—C6—O348.3 (6)C10—C7—C8—C9179.5 (4)
N1—C5—C6B—O329.0 (18)
Symmetry codes: (i) x+3/2, y, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Br1iii0.832.503.288 (3)158
O3—H3B···Br1X0.852.373.207 (8)168
Symmetry code: (iii) x1/2, y+1, z.
 

Acknowledgements

The authors acknowledge Denys Petlovanyi and Dmytro Vyshniak for help in conducting research, financial support and for providing inter­esting ideas for further scientific work.

References

First citationAnsari, I. A., Sama, F., Raizada, M., Shahid, M., Ahmad, M. & Siddiqi, Z. A. (2016). New J. Chem. 40, 9840–9852.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoulsourani, Z., Tangoulis, V., Raptopoulou, C. P., Psycharis, V. & Dendrinou-Samara, C. (2011). Dalton Trans. 40, 7946–7956.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDias, S. S. P., Kirillova, M. V., André, V., Kłak, J. & Kirillov, A. M. (2015). Inorg. Chem. Front. 2, 525–537.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEscovar, R. M., Thurston, J. H., Ould-Ely, T., Kumar, A. & Whitmire, K. H. (2005). Z. Anorg. Allg. Chem. 631, 2867–2876.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, G., Langrick, C. R., Parker, D. & Matthes, K. (1985). J. Chem. Soc. Chem. Commun. pp. 1609–1610.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationGural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946–9954.  Web of Science CAS PubMed Google Scholar
First citationKirillov, A. M., Haukka, M., Kopylovich, M. N. & Pombeiro, A. J. L. (2007). Acta Cryst. E63, m526–m528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOzarowski, A., Calzado, C. J., Sharma, R. P., Kumar, S., Jezierska, J., Angeli, C., Spizzo, F. & Ferretti, V. (2015). Inorg. Chem. 54, 11916–11934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSama, F., Dhara, A. K., Akhtar, M. N., Chen, Y., Tong, M., Ansari, I. A., Raizada, M., Ahmad, M., Shahid, M. & Siddiqi, Z. A. (2017). Dalton Trans. 46, 9801–9823.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSama, F., Raizada, M., Ashafaq, M., Ahamad, M. N., Mantasha, I., Iman, K., Shahid, M., Rahisuddin, A. R., Shah, N. A. & Saleh, H. A. M. (2019). J. Mol. Struct. 1176, 283–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032.  Web of Science CrossRef CAS Google Scholar
First citationSun, G., Xie, W., Xiao, H. & Xu, G. (2018). Acta Cryst. C74, 1540–1546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTudor, V., Kravtsov, V. C., Julve, M., Lloret, F., Simonov, Y. A., Averkiev, B. B. & Andruh, M. (2005). Inorg. Chim. Acta, 358, 2066–2072.  Web of Science CSD CrossRef CAS Google Scholar
First citationVynohradov, O. S., Pavlenko, V. A., Safyanova, I. S., Znovjyak, K., Shova, S. & Safarmamadov, S. M. (2020). Acta Cryst. E76, 1503–1507.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds