research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three functionalized chalcones: 4′-di­methyl­amino-3-nitro­chalcone, 3-di­methyl­amino-3′-nitrochalcone and 3′-nitro­chalcone

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, England, and bDepartment of Chemistry & Biochemistry, Gonzaga University, 502 E Boone Ave, Spokane, WA 99258, USA
*Correspondence e-mail: simon.hall@bristol.ac.uk

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 9 July 2020; accepted 27 August 2020; online 4 September 2020)

The structure of three functionalized chalcones (1,3-di­aryl­prop-2-en-1-ones), containing combinations of nitro and di­methyl­amino functional groups, are presented, namely, 1-[4-(di­methyl­amino)­phen­yl]-3-(3-nitro­phen­yl)prop-2-en-1-one, C17H16N2O3, Gp8m, 3-[3-(di­methyl­amino)­phen­yl]-1-(3-nitro­phen­yl)prop-2-en-1-one, C17H16N2O3, Hm7m and 1-(3-nitro­phen­yl)-3-phenyl­prop-2-en-1-one, C15H11NO3, Hm1-. Each of the mol­ecules contains bonding motifs seen in previously solved crystal structures of functionalized chalcones, adding to the large dataset available for these small organic mol­ecules. The structures of all three of the title compounds contain similar bonding motifs, resulting in two-dimensional planes of mol­ecules formed via C—H⋯O hydrogen-bonding inter­actions involving the nitro- and ketone groups. The structure of Hm1- is very similar to the crystal structure of a previously solved isomer [Jing (2009[Jing, L.-H. (2009). Acta Cryst. E65, o2510.]). Acta Cryst. E65, o2510].

1. Chemical context

Chalcones, 1,3-di­aryl­prop-2-en-1-ones, are a group of organic mol­ecules containing two aromatic rings joined by an enone backbone. Chalcones are studied for a range of medicinal purposes, with many reviews published on their biological applicability (see, for example, Rammohan et al., 2020[Rammohan, A., Reddy, J. S., Sravya, G., Rao, C. N. & Zyryanov, G. V. (2020). Environ. Chem. Lett. 18, 433-458.]; Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]; Singh et al., 2014[Singh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758-777.]).

A range of chalcones, functionalized on either aromatic ring, can be readily synthesized via an aldol condensation reaction (Mandge et al., 2007[Mandge, S., Singh, H. P., Gupta, S. D. & Hari Narayana Moorthy, N. S. (2007). Trends Appl. Sci. Res. 2, 52-56.]). Altering the functional groups on the chalcone structure has been shown to yield a variety of useful properties, including changes in colour and fluorescent properties (Ibnaouf et al., 2018[Ibnaouf, H. K., Elzupir, A. O., AlSalhi, M. S. & Alaamer, A. S. (2018). Opt. Mater. 76, 216-221.]).

[Scheme 1]

In this work, the structures of three chalcones: 4′-di­methyl­amino-3-nitro­chalcone [Gp8m, R1 = N(CH3)2, R2 = H, R3 = NO2], 3′-nitro-3-di­methyl­amino­chalcone [Hm7m, R1 = NO2, R2 = N(CH3)2, R3 = H] and 3′-nitro­chalcone [Hm1-, R1 = NO2, R2 = H, R3 = H] are presented. The crystal structures of these mol­ecules add to the large dataset available for mol­ecules based on the chalcone backbone. In particular, these structures add to the small amount of data available for chalcones substituted with a nitro group on the 3-ring.

2. Structural commentary

The planarity of the chalcone mol­ecules is defined by the torsion angles Φ1 = C5—C4—C1—C2, Φ2 = C4—C1—C2—C3 and Φ3 = C2—C3—C10—C11. The torsion angle C1—C2—C3—C10 is planar to within 1° of 180° in all three structures. The torsion angles, along with the numbering of the mol­ecules, are highlighted in the scheme. The 1-ring of the mol­ecule is defined as the aromatic ring attached to C1 and the 3-ring is that attached to C3. The long axis of each mol­ecule is defined to be along the C2–C12 axis, and the short axis is defined to be along H2–C2. Table 1[link] presents a summary of the torsion and ring angles in the title structures.

Table 1
Torsion and ring angles (°) describing the planarity of mol­ecules in each crystal structure

Torsion angles calculated using the definitions: Φ1 = C5—C4—C1—C2, Φ2 = C4—C1—C2—C3 and Φ3 = C2—C3—C10—C11. Ring twist and fold angles were calculated using the mean planes of the 1- and 3-rings. All values were calculated using OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

  Gm8p Hm7m Hm1- (1) Hm1- (2)
Φ1 −173.15 (11) 172.9 (2) 177.4 (2) −164.6 (2)
Φ2 158.84 (12) 168.8 (2) 174.4 (2) 175.9 (2)
Φ3 −169.23 (13) −175.0 (2) −170.3 (3) −172.9 (9)
Ring twist angle 3.61 (4) 13.8 (8) 1.88 (8) 12.58 (8)
Ring fold angle 11.46 (4) 0.59 (8) 2.58 (8) 6.66 (8)

Gp8m (Fig. 1[link]a) crystallizes in space group P21/c with a single mol­ecule in the asymmetric unit. The mol­ecule deviates from planarity, with Φ2 = 158.84 (12)°, meaning that there is a fold angle of 11.46 (4)° between the planes of the 1- and 3- rings of the mol­ecule. The nitro group on the 3-ring is twisted out of the plane of the ring [C11—C12—N2—O2 = 10.09 (18)°].

[Figure 1]
Figure 1
Displacement ellipsoid plots showing the asymmetric units of the solved crystal structures (a) Gp8m, (b) Hm7m and (c) Hm1-. Displacement ellipsoids are shown at the 50% probability level. The stacking inter­action between the 1- and 3-rings of the mol­ecules in the asymmetric unit of Hm1- is highlighted.

Hm7m (Fig. 1[link]b) crystallizes in space group P21/n with a single mol­ecule in the asymmetric unit. The combination of torsion angles along the long-axis of the mol­ecule means that although the backbone remains relatively planar [C4—C10—C2 = 2.86 (6)°], the 1- and 3-rings are twisted with respect to each other, with a twist angle of 13.80 (8)° between the planes of the rings.

Hm1- crystallizes in space group P21/c and contains two mol­ecules in the asymmetric unit. One of the mol­ecules (1) is almost planar, with a twist angle of only 1.88 (8)° between the planes of the 1- and 3-rings of the mol­ecule. The second mol­ecule (2) is less planar with Φ1 = −164.6 (2) and Φ2 = −172 (9)°, leading to a twist angle of 12.85 (8)° between the planes of the 1- and 3-rings. There is a stacking inter­action between the aryl rings of the two mol­ecules in the asymmetric unit, with a centroid-to-centroid distance of 3.82782 (17) Å (Fig. 1[link]c).

In each of the mol­ecular structures, the functionalized group in the meta-position sits on the same side of the mol­ecule as the carbonyl oxygen group (1-ring: C6, 3-ring: C12). This is likely due to the optimization of hydrogen-bonding motifs in the crystal structures.

3. Supra­molecular features

Although being in a different space group, the crystal structure of Gp8m is very similar to that of a previously reported chalcone 3′-nitro,4-di­methyl­amino­chalcone (Rosli et al., 2007[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.]). This may be expected, as the only difference between these mol­ecules is that the functional groups are on opposite rings. Within the crystal structure, chains of mol­ecules form down the long axis of the mol­ecule via short contacts between the di­methyl­amino and nitro groups (Fig. 2[link]a; C17—H17B⋯O3iii). These mol­ecules form stacks parallel to the b axis, with alternate mol­ecules the opposite way around such that the nitro group sits above the 1-ring of the adjacent mol­ecule. The final 3D structure is completed by a linking of the stacks via C—H⋯O cyclic hydrogen bonding (C3—H3⋯O1i, C5—H5⋯O2i, C11—H11⋯O1i) and hydrogen bonds involving the carbonyl group (Fig. 2[link]b; C15—H15⋯O1ii). Numerical details of the hydrogen-bond geometry and symmetry codes are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °) for Gp8m[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.47 3.3124 (16) 148
C5—H5⋯O2i 0.95 2.67 3.3067 (17) 125
C11—H11⋯O1i 0.95 2.88 3.5773 (16) 131
C15—H15⋯O1ii 0.95 2.68 3.5435 (16) 152
C17—H17B⋯O3iii 0.98 2.68 3.5755 (17) 152
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z.
[Figure 2]
Figure 2
Bonding motifs present in the crystal structure of Gp8m. (a) Inter­actions in the plane of the rings of the mol­ecules. (b) Hydrogen bonds offset along the short axis of the mol­ecule. Cyclic hydrogen bonds highlighted in (a) are shown in green and an additional hydrogen-bonding motif is shown in blue. Stacking inter­actions are highlighted in red. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) x,-y + [{3\over 2}], z + [{1\over 2}]; (iii) x − 1, y, z; (iv) −x + 1, y + [{1\over 2}], −z − [{1\over 2}]; (v) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (vi) x, −y + [{3\over 2}], z − [{1\over 2}].]

Within the crystal structure of Hm7m, sheets are formed in the plane of the aromatic rings of the mol­ecule. Within the plane, pairs of inverted mol­ecules form via cyclic hydrogen bonding between the di­methyl­amino and nitro groups, offset in the short axis of the mol­ecule (C16—H16B⋯O2ii). The pairs of mol­ecules then form sheets via a trifurcated hydrogen-bonding inter­action involving the nitro group (C15—H15⋯O3i, C15—H2⋯O3i, C15—H9⋯O3i). These sheets make up the 3D structure via a stacking inter­action, where the nitro group of one mol­ecule sits over the 1- ring of another (Fig. 3[link]). Numerical details of the hydrogen-bond geometry and symmetry codes are given in Table 3[link].

Table 3
Hydrogen-bond geometry (Å, °) for Hm7m[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.95 2.50 3.442 (2) 174
C16—H16B⋯O2ii 0.98 2.58 3.520 (2) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
Bonding motifs present in the crystal structure of Hm7m. Two sheets of mol­ecules are highlighted, coloured in black and light blue for contrast. [Symmetry codes: (i) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z + 1.]

The crystal structure of Hm1- contains two mol­ecules in the asymmetric unit cell, which differ slightly in their planarity. Sheets of mol­ecules form via the same inter­actions as in Hm7m; however, the pairs of mol­ecules form between different independent mol­ecules, meaning they are not directly related by an inversion centre. Furthermore, the absence of the di­methyl­amino group means that the mol­ecules are shifted relatively along the long axis of the mol­ecule, forming hydrogen bonds that utilize the carbonyl oxygen (Fig. 4[link]a). The stacking inter­actions that make up the 3D structure of Hm1- are more complex than those in Hm7m, and are highlighted in Fig. 4[link]b. Mol­ecule 1 forms a direct stack with a symmetrically equivalent mol­ecule, with an inversion centre relating the mol­ecules. There is a half stack that forms between the 1-ring of mol­ecule 1 and the 3-ring of mol­ecule 2, which sit at approximately 90° to each other. Finally, mol­ecule 2 forms a half stack with a symmetrically equivalent mol­ecule, where the 1-ring of each mol­ecule sits on top of the other. Numerical details of the hydrogen-bond geometry are given in Table 4[link].

Table 4
Hydrogen-bond geometry (Å, °) for Hm1-[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 2.51 3.456 (3) 174
C3—H3⋯O4ii 0.95 2.50 3.328 (3) 146
C9—H9⋯O3i 0.95 2.58 3.527 (3) 175
C15—H15⋯O3i 0.95 2.47 3.399 (3) 166
C17—H17⋯O6iii 0.95 2.57 3.491 (3) 164
C18—H18⋯O1iv 0.95 2.46 3.300 (3) 147
C30—H30⋯O6iii 0.95 2.58 3.456 (3) 154
C26—H26⋯O1iv 0.95 2.54 3.328 (3) 140
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Bonding motifs present in the crystal structure of Hm1-. (a) Hydrogen-bonding inter­actions forming two-dimensional planes of mol­ecules. (b) Stacking inter­actions present in the crystal structure. Mol­ecules are coloured according to their symmetry equivalence as green (1) and blue (2). [Symmetry codes: (i) −x, y − [{1\over 2}], −z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]; (v) −x, y + [{1\over 2}], −z + [{1\over 2}]; (vi) −x + 1, −y + 1, −z + 2; (vii) −x + 1, −y, −z + 2; (viii) −x, −y, −z + 1; (ix) −x + 1, −y + 1, −z + 1.]

4. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.41, last update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 38 structures of chalcones functionalized with either nitro or di­methyl­amino-groups in either the meta or para positions of the 1- or 3-ring. None of the structures contain chalcones with a di­methyl­amino group on the 1- ring, as in Gp8m. However, there are 14 structures of chalcones substituted with a di­methyl­amino group on the 3-ring, likely owing to their fluorescent properties (Jiang et al., 1994[Jiang, Y., Wang, X. & Lin, L. (1994). J. Phys. Chem. 98, 12367-12372.]; Tomasch et al., 2012[Tomasch, M., Schwed, J. S., Weizel, L. & Stark, H. (2012). Frontiers in Systems Neurosceince, 6, 14.]).

17 of the 29 structures that contain nitro ring substitutions contain the bonding motif between the nitro group and the region between H15, H2 and H9, as observed in Hm7m and Hm1-. This is likely caused by the optimization of electrostatic inter­actions, as highlighted by the electrostatic potentials in Fig. 5[link]. The layered motif in Hm7m is the same as that present in the structure of 3′-nitro-3,5-di­meth­oxy­chalcone (Qiu & Yang, 2006[Qiu, X.-Y. & Yang, S.-L. (2006). Acta Cryst. E62, o5939-o5940.]). The planes of mol­ecules seen in Hm1- are similar to those seen in the structure of 4′-nitro­chalcone (BUDXOO; Jing, 2009[Jing, L.-H. (2009). Acta Cryst. E65, o2510.]).

[Figure 5]
Figure 5
Electrostatic potential maps for optimized configurations of Gp8m, Hm7m and Hm1- mol­ecules. Optimizations were carried out using Gaussian09 [B3LYP/6–31 G(d); Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]]. The electrostatic potential is mapped onto the 0.0004 SCF electron density surface.

5. Synthesis and crystallization

Each of the functionalized chalcones was synthesized via an aldol condensation reaction between a suitably functionalized benzaldehyde and aceto­phenone. While syntheses were not specifically reported for Gp8m and Hm7m, the first reports for Hm1- appeared in 1929 and 1935 (Dilthey et al., 1929[Dilthey, W., Neuhaus, L. & Schommer, W. (1929). J. Prakt. Chem. 123, 235-240.]; Weygand et al., 1935[Weygand, C. & Schächer, F. (1935). Ber. Dtsch. Chem. Ges. A/B, 68, 227-234.]).

Ethanol (1.5 mL, 95%) and a stir bar were added to two separate vessels; one contained the benzaldehyde (3 mmol) and the other contained the aceto­phenone (3 mmol). Each vessel was gently heated over a hot plate until complete dissolution and then cooled to room temperature; depending on the solubility of the starting materials, solids precipitated upon cooling. Once cooled, NaOH (aq) (0.4 mL, 50% by wgt) was added to the vessel containing the aceto­phenone and vigorously stirred. The benzaldehyde mixture was added to the aceto­phenone and NaOH mixture. The resulting reaction mixture was vigorously mixed until a slurry or paste formed. Water was added to the vessel and the contents were agitated with a micro spatula. The solids were collected by vacuum filtration and purified by recrystallization with ethanol. 1H NMR (400 MHz, CDCl3, referenced to TMS): δ (ppm) for Gp8m are 8.51 (1H, s), 8.22 (1H, d, J = 8.0 Hz), 8.02 (2H, d, J = 8.9 Hz), 7.90 (1H, d, J = 7.5 Hz), 7.79 (1H, d, J = 15.6 Hz), 7.70 (1H, d, J = 15.6 Hz), 7.59 (1H, t, J = 8.0 Hz), 6.72 (2H, d, J = 8.9 Hz), 3.11 (6H, s); for Hm1- are 8.83 (1H, t, J = 1.9 Hz), 8.44 (1H, ddd, J = 8.2, 2.2, 1.0 Hz), 8.35 (1H, ddd, J = 7.8, 1.4, 1.4 Hz), 7.89 (1H, d, J = 15.6 Hz), 7.72 (1H, t, J = 8.0 Hz), 7.67 (2H, m), 7.54 (1H, d, J = 15.6 Hz), 7.45 (3H, m); and for Hm7m are 8.82 (1H, t, J = 1.9 Hz), 8.42 (1H, ddd, J = 8.2, 2.2, 1.0 Hz), 8.34 (1H, ddd, J = 7.7, 1.2, 1.2 Hz), 7.85 (1H, d, J = 15.6 Hz), 7.71 (1H, t, J = 8.0 Hz), 7.48 (1H, d, J = 15.6 Hz), 7.30 (1H, t, J = 7.9 Hz), 7.06 (1H, d, J = 7.6 Hz), 6.92 (1H, dd, J = 2.1, 1.6 Hz), 6.82 (1H, dd, J = 8.2, 2.5 Hz). 13C NMR (100 MHz, CDCl3, referenced to solvent, 77.16 ppm): δ (ppm) for Gp8m are 186.86, 153.82, 148.83, 139.52, 137.49, 134.45, 131.16, 130.03, 125.51, 125.05, 124.21, 122.14, 111.02, 40.21; for Hm7m are 188.41, 150.97, 148.49, 148.27, 139.79, 135.06, 134.23, 129.96, 129.79, 127.02, 123.39, 120.42, 116.63, 115.42, 112.82, 40.60; and for Hm1- are 188.09, 148.50, 146.87, 139.58, 134.40, 134.22, 131.33, 130.04, 129.21, 128.86, 127.18, 123.37, 120.72.

Crystals of Hm7m suitable for structural solution via single crystal X-ray diffraction were produced via evaporation of a 10 mg mL−1 acetone solution. Crystals of three separate colours were observed (yellow needles, orange needles and red block-like crystals); however, only crystals of a red block-like morphology were suitable for structure solution. Hm7m appeared to go through a phase transition between 100 K and 200 K which caused the crystal to crack. For this reason, single crystal X-ray diffraction was carried out at 200 K.

Crystals of Hm1- and Gp8m suitable for structural solution via single crystal X-ray diffraction were produced via evaporation of an ethanol solution of concentration 10 mg mL−1. Crystals of Gp8m appeared as fine yellow needles and Hm1- as colourless block-like crystals. Each single crystal was mounted onto a glass capillary using paraffin oil.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All hydrogen atoms were located geometrically (aromatic C—H = 0.95 Å, methyl C—H = 0.99 Å) and refined using a riding model [Uiso(H) = 1.2Ueq(C-aromatic) or 1.5Ueq(C-meth­yl)].

Table 5
Experimental details

  Hm1- Gp8m Hm7m
Crystal data
Chemical formula C15H11NO3 C17H16N2O3 C17H16N2O3
Mr 253.25 296.32 296.32
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 100 100 200
a, b, c (Å) 14.7856 (8), 15.9841 (9), 10.3188 (6) 17.3171 (7), 7.0708 (3), 11.3487 (4) 7.7552 (4), 15.6998 (7), 12.0525 (7)
β (°) 99.210 (4) 90.761 (3) 100.668 (3)
V3) 2407.3 (2) 1389.48 (10) 1442.09 (13)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.10 0.10
Crystal size (mm) 0.61 × 0.35 × 0.25 0.39 × 0.35 × 0.19 0.39 × 0.33 × 0.25
 
Data collection
Diffractometer Bruker APEXII Kappa CCD area detector Bruker APEXII Kappa CCD area detector Bruker APEXII Kappa CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker. (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker. (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker. (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.610, 0.746 0.666, 0.746 0.629, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25080, 4408, 2657 12270, 3320, 2561 11497, 3056, 1882
Rint 0.085 0.034 0.058
(sin θ/λ)max−1) 0.602 0.659 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 0.99 0.043, 0.123, 1.04 0.049, 0.133, 1.02
No. of reflections 4408 3320 3056
No. of parameters 343 212 201
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.25 0.31, −0.28 0.19, −0.24
Computer programs: APEX2 (Bruker, 2016[Bruker. (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker. (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-[4-(Dimethylamino)phenyl]-3-(3-nitrophenyl)prop-2-en-1-one (Gp8m) top
Crystal data top
C17H16N2O3F(000) = 624
Mr = 296.32Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.3171 (7) ÅCell parameters from 2510 reflections
b = 7.0708 (3) Åθ = 2.4–27.7°
c = 11.3487 (4) ŵ = 0.10 mm1
β = 90.761 (3)°T = 100 K
V = 1389.48 (10) Å3Plate, clear yellow
Z = 40.39 × 0.35 × 0.19 mm
Data collection top
Bruker APEXII Kappa CCD area detector
diffractometer
3320 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2222
Tmin = 0.666, Tmax = 0.746k = 99
12270 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.1379P]
where P = (Fo2 + 2Fc2)/3
3320 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40268 (5)0.64764 (14)0.01669 (8)0.0193 (2)
N10.07275 (6)0.53937 (17)0.25056 (10)0.0205 (3)
C10.38550 (7)0.64612 (17)0.12161 (11)0.0145 (3)
O20.81017 (6)0.60742 (15)0.17555 (9)0.0254 (3)
N20.79887 (6)0.59843 (16)0.28197 (10)0.0189 (3)
C20.44638 (7)0.65714 (18)0.21487 (12)0.0162 (3)
H20.4326870.6954540.2920620.019*
O30.85104 (6)0.57987 (16)0.35600 (9)0.0292 (3)
C30.51981 (7)0.61451 (17)0.19275 (12)0.0156 (3)
H30.5320110.5781680.1145870.019*
C40.30435 (7)0.62866 (17)0.15869 (11)0.0141 (3)
C50.24711 (7)0.59749 (18)0.07252 (11)0.0154 (3)
H50.2613070.5956410.0080480.019*
C60.17102 (8)0.56948 (18)0.10089 (12)0.0168 (3)
H60.1337720.5486270.0400590.020*
C70.14770 (7)0.57146 (18)0.22001 (11)0.0155 (3)
C80.20495 (7)0.60892 (18)0.30661 (12)0.0172 (3)
H80.1908430.6159610.3870960.021*
C90.28085 (7)0.63541 (18)0.27630 (12)0.0163 (3)
H90.3182380.6588310.3365570.020*
C100.58321 (7)0.61938 (17)0.27977 (11)0.0149 (3)
C110.65932 (7)0.60289 (18)0.24156 (11)0.0154 (3)
H110.6699210.5861050.1603160.018*
C120.71904 (7)0.61135 (17)0.32371 (12)0.0159 (3)
C130.70704 (8)0.62847 (18)0.44304 (12)0.0176 (3)
H130.7491510.6327120.4974890.021*
C140.63139 (8)0.63927 (18)0.48083 (12)0.0187 (3)
H140.6213310.6477570.5627450.022*
C150.57042 (8)0.63789 (18)0.40118 (12)0.0174 (3)
H150.5191100.6496240.4288830.021*
C160.01685 (9)0.4836 (2)0.16067 (14)0.0246 (3)
C170.05477 (8)0.5002 (2)0.37305 (12)0.0235 (3)
H17A0.0836370.3885530.3996920.035*
H17B0.0007280.4764100.3801110.035*
H17C0.0692920.6092230.4218310.035*
H16A0.0117 (10)0.580 (2)0.0989 (16)0.033 (5)*
H16B0.0326 (10)0.362 (2)0.1247 (15)0.035 (5)*
H16C0.0330 (12)0.467 (3)0.1955 (17)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0175 (5)0.0265 (5)0.0139 (5)0.0000 (4)0.0017 (4)0.0010 (4)
N10.0131 (6)0.0338 (7)0.0144 (6)0.0006 (5)0.0011 (4)0.0003 (5)
C10.0165 (7)0.0124 (6)0.0147 (6)0.0013 (5)0.0006 (5)0.0002 (5)
O20.0188 (5)0.0376 (6)0.0199 (5)0.0004 (4)0.0024 (4)0.0025 (4)
N20.0158 (6)0.0198 (6)0.0210 (6)0.0003 (4)0.0025 (5)0.0024 (5)
C20.0175 (7)0.0163 (6)0.0148 (6)0.0001 (5)0.0003 (5)0.0010 (5)
O30.0167 (5)0.0425 (7)0.0281 (6)0.0048 (4)0.0078 (4)0.0017 (5)
C30.0174 (7)0.0157 (6)0.0136 (6)0.0008 (5)0.0001 (5)0.0003 (5)
C40.0154 (6)0.0121 (6)0.0147 (7)0.0008 (5)0.0005 (5)0.0002 (5)
C50.0182 (6)0.0164 (6)0.0117 (6)0.0021 (5)0.0010 (5)0.0005 (5)
C60.0156 (6)0.0202 (7)0.0143 (6)0.0005 (5)0.0037 (5)0.0008 (5)
C70.0151 (6)0.0160 (6)0.0154 (6)0.0016 (5)0.0002 (5)0.0006 (5)
C80.0187 (7)0.0220 (7)0.0111 (6)0.0019 (5)0.0010 (5)0.0001 (5)
C90.0168 (7)0.0181 (7)0.0140 (6)0.0007 (5)0.0027 (5)0.0009 (5)
C100.0163 (6)0.0127 (6)0.0157 (7)0.0001 (5)0.0006 (5)0.0005 (5)
C110.0169 (7)0.0149 (6)0.0143 (6)0.0006 (5)0.0005 (5)0.0003 (5)
C120.0152 (6)0.0145 (6)0.0181 (7)0.0018 (5)0.0006 (5)0.0000 (5)
C130.0188 (7)0.0163 (7)0.0176 (7)0.0005 (5)0.0054 (5)0.0004 (5)
C140.0254 (7)0.0185 (7)0.0122 (6)0.0001 (5)0.0003 (5)0.0007 (5)
C150.0164 (7)0.0175 (7)0.0183 (7)0.0003 (5)0.0017 (5)0.0009 (5)
C160.0148 (7)0.0382 (9)0.0207 (8)0.0023 (6)0.0002 (6)0.0016 (7)
C170.0168 (7)0.0359 (8)0.0181 (7)0.0008 (6)0.0046 (5)0.0051 (6)
Geometric parameters (Å, º) top
O1—C11.2312 (15)C8—H80.9500
N1—C71.3668 (16)C8—C91.3759 (18)
N1—C161.4516 (18)C9—H90.9500
N1—C171.4552 (17)C10—C111.3979 (18)
C1—C21.4860 (18)C10—C151.4045 (18)
C1—C41.4775 (17)C11—H110.9500
O2—N21.2277 (15)C11—C121.3845 (18)
N2—O31.2326 (14)C12—C131.3781 (18)
N2—C121.4700 (17)C13—H130.9500
C2—H20.9500C13—C141.3861 (19)
C2—C31.3339 (18)C14—H140.9500
C3—H30.9500C14—C151.3808 (19)
C3—C101.4672 (18)C15—H150.9500
C4—C51.4005 (17)C16—H16A0.983 (18)
C4—C91.4013 (18)C16—H16B0.989 (17)
C5—H50.9500C16—H16C0.96 (2)
C5—C61.3749 (18)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C6—C71.4161 (18)C17—H17C0.9800
C7—C81.4117 (18)
C7—N1—C16119.57 (11)C8—C9—H9119.2
C7—N1—C17119.33 (11)C11—C10—C3119.30 (12)
C16—N1—C17118.06 (12)C11—C10—C15118.27 (12)
O1—C1—C2120.67 (11)C15—C10—C3122.42 (12)
O1—C1—C4121.28 (12)C10—C11—H11120.4
C4—C1—C2118.04 (11)C12—C11—C10119.11 (12)
O2—N2—O3123.44 (11)C12—C11—H11120.4
O2—N2—C12118.47 (11)C11—C12—N2118.52 (12)
O3—N2—C12118.09 (11)C13—C12—N2118.48 (12)
C1—C2—H2119.2C13—C12—C11122.99 (12)
C3—C2—C1121.55 (12)C12—C13—H13121.2
C3—C2—H2119.2C12—C13—C14117.67 (12)
C2—C3—H3117.5C14—C13—H13121.2
C2—C3—C10125.07 (12)C13—C14—H14119.5
C10—C3—H3117.5C15—C14—C13120.98 (13)
C5—C4—C1118.77 (11)C15—C14—H14119.5
C5—C4—C9117.30 (12)C10—C15—H15119.5
C9—C4—C1123.90 (12)C14—C15—C10120.91 (12)
C4—C5—H5119.0C14—C15—H15119.5
C6—C5—C4122.05 (12)N1—C16—H16A111.4 (10)
C6—C5—H5119.0N1—C16—H16B109.9 (10)
C5—C6—H6119.7N1—C16—H16C109.8 (11)
C5—C6—C7120.56 (12)H16A—C16—H16B109.4 (14)
C7—C6—H6119.7H16A—C16—H16C107.8 (15)
N1—C7—C6121.62 (12)H16B—C16—H16C108.4 (14)
N1—C7—C8121.00 (12)N1—C17—H17A109.5
C8—C7—C6117.38 (12)N1—C17—H17B109.5
C7—C8—H8119.5N1—C17—H17C109.5
C9—C8—C7121.06 (12)H17A—C17—H17B109.5
C9—C8—H8119.5H17A—C17—H17C109.5
C4—C9—H9119.2H17B—C17—H17C109.5
C8—C9—C4121.59 (12)
O1—C1—C2—C319.7 (2)C4—C5—C6—C70.1 (2)
O1—C1—C4—C55.38 (18)C5—C4—C9—C81.23 (19)
O1—C1—C4—C9176.74 (12)C5—C6—C7—N1178.37 (12)
N1—C7—C8—C9177.95 (12)C5—C6—C7—C81.93 (19)
C1—C2—C3—C10179.22 (11)C6—C7—C8—C92.35 (19)
C1—C4—C5—C6176.37 (12)C7—C8—C9—C40.8 (2)
C1—C4—C9—C8176.68 (12)C9—C4—C5—C61.66 (19)
O2—N2—C12—C1110.09 (18)C10—C11—C12—N2178.54 (11)
O2—N2—C12—C13170.87 (11)C10—C11—C12—C132.5 (2)
N2—C12—C13—C14179.61 (11)C11—C10—C15—C140.17 (19)
C2—C1—C4—C5173.15 (11)C11—C12—C13—C140.61 (19)
C2—C1—C4—C94.74 (18)C12—C13—C14—C151.66 (19)
C2—C3—C10—C11169.23 (13)C13—C14—C15—C102.1 (2)
C2—C3—C10—C1511.5 (2)C15—C10—C11—C122.01 (18)
O3—N2—C12—C11170.20 (12)C16—N1—C7—C66.14 (19)
O3—N2—C12—C138.84 (18)C16—N1—C7—C8174.17 (13)
C3—C10—C11—C12178.72 (12)C17—N1—C7—C6166.08 (12)
C3—C10—C15—C14179.07 (12)C17—N1—C7—C814.22 (19)
C4—C1—C2—C3158.84 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.473.3124 (16)148
C5—H5···O2i0.952.673.3067 (17)125
C11—H11···O1i0.952.883.5773 (16)131
C15—H15···O1ii0.952.683.5435 (16)152
C17—H17B···O3iii0.982.683.5755 (17)152
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x1, y, z.
3-[3-(Dimethylamino)phenyl]-1-(3-nitrophenyl)prop-2-en-1-one (Hm7m) top
Crystal data top
C17H16N2O3F(000) = 624
Mr = 296.32Dx = 1.365 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7552 (4) ÅCell parameters from 1681 reflections
b = 15.6998 (7) Åθ = 2.6–24.0°
c = 12.0525 (7) ŵ = 0.10 mm1
β = 100.668 (3)°T = 200 K
V = 1442.09 (13) Å3Block, clear orange
Z = 40.39 × 0.33 × 0.25 mm
Data collection top
Bruker APEXII Kappa CCD area detector
diffractometer
3056 independent reflections
Radiation source: fine-focus sealed tube1882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 26.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 79
Tmin = 0.629, Tmax = 0.746k = 1919
11497 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.0748P]
where P = (Fo2 + 2Fc2)/3
3056 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3894 (3)0.47781 (12)0.36738 (19)0.0361 (5)
N10.7377 (2)0.69758 (11)0.21902 (15)0.0364 (4)
O10.2877 (2)0.53451 (9)0.38190 (16)0.0554 (5)
C20.3564 (3)0.38878 (12)0.39197 (18)0.0356 (5)
H20.4270060.3455350.3679750.043*
N20.1631 (2)0.18000 (10)0.60898 (17)0.0411 (5)
O20.62970 (19)0.74937 (9)0.23772 (14)0.0445 (4)
C30.2296 (3)0.36699 (12)0.44729 (18)0.0343 (5)
H30.1625250.4122950.4698350.041*
O30.8619 (2)0.71586 (10)0.17312 (14)0.0518 (5)
C40.5534 (3)0.50134 (12)0.32408 (18)0.0316 (5)
C50.5701 (3)0.58465 (12)0.28981 (17)0.0315 (5)
H50.4788210.6247120.2914780.038*
C60.7212 (3)0.60857 (12)0.25325 (18)0.0320 (5)
C70.8569 (3)0.55285 (13)0.24965 (19)0.0388 (6)
H70.9602160.5710740.2248100.047*
C80.8390 (3)0.47026 (13)0.2829 (2)0.0431 (6)
H80.9308660.4306480.2804790.052*
C90.6885 (3)0.44375 (13)0.32009 (19)0.0386 (5)
H90.6778760.3863320.3427710.046*
C100.1823 (3)0.28126 (12)0.47704 (18)0.0311 (5)
C110.0358 (2)0.27097 (12)0.52753 (17)0.0315 (5)
H110.0281450.3198450.5427760.038*
C120.0194 (3)0.19012 (12)0.55642 (18)0.0326 (5)
C130.0783 (3)0.12007 (13)0.5326 (2)0.0406 (6)
H130.0441510.0643510.5504030.049*
C140.2239 (3)0.13081 (13)0.4835 (2)0.0441 (6)
H140.2891360.0821830.4689760.053*
C150.2770 (3)0.21003 (13)0.4552 (2)0.0395 (6)
H150.3772630.2160770.4210120.047*
C160.2649 (3)0.25448 (14)0.6266 (2)0.0482 (6)
H16A0.1877830.2970630.6698400.072*
H16B0.3566540.2382390.6686150.072*
H16C0.3191240.2785260.5534470.072*
C170.2612 (3)0.10108 (14)0.5915 (2)0.0464 (6)
H17A0.3046600.0927860.5105180.070*
H17B0.3606750.1036380.6310310.070*
H17C0.1846280.0534440.6209600.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (12)0.0342 (12)0.0402 (14)0.0013 (9)0.0131 (11)0.0013 (9)
N10.0346 (10)0.0413 (10)0.0350 (12)0.0075 (8)0.0110 (9)0.0033 (8)
O10.0486 (10)0.0365 (9)0.0918 (15)0.0039 (7)0.0405 (10)0.0111 (8)
C20.0374 (12)0.0329 (11)0.0389 (14)0.0031 (9)0.0133 (11)0.0015 (9)
N20.0430 (11)0.0332 (10)0.0531 (13)0.0082 (8)0.0248 (10)0.0013 (9)
O20.0434 (9)0.0373 (9)0.0564 (12)0.0024 (7)0.0188 (8)0.0063 (7)
C30.0348 (11)0.0319 (11)0.0382 (14)0.0029 (8)0.0115 (10)0.0020 (9)
O30.0476 (10)0.0526 (10)0.0637 (13)0.0116 (7)0.0324 (9)0.0073 (8)
C40.0325 (11)0.0301 (11)0.0340 (13)0.0026 (8)0.0111 (10)0.0020 (9)
C50.0298 (11)0.0327 (11)0.0338 (13)0.0015 (8)0.0108 (10)0.0014 (9)
C60.0330 (11)0.0335 (11)0.0310 (12)0.0053 (9)0.0096 (10)0.0002 (9)
C70.0328 (11)0.0441 (13)0.0434 (15)0.0037 (9)0.0175 (11)0.0006 (10)
C80.0353 (12)0.0400 (13)0.0578 (17)0.0046 (9)0.0189 (12)0.0017 (11)
C90.0411 (12)0.0322 (12)0.0455 (15)0.0002 (9)0.0159 (11)0.0003 (10)
C100.0306 (10)0.0314 (11)0.0322 (13)0.0052 (8)0.0077 (10)0.0016 (9)
C110.0319 (11)0.0306 (11)0.0330 (13)0.0008 (8)0.0090 (10)0.0029 (9)
C120.0351 (11)0.0329 (11)0.0308 (13)0.0049 (9)0.0084 (10)0.0017 (9)
C130.0452 (13)0.0274 (11)0.0513 (16)0.0060 (9)0.0145 (12)0.0011 (10)
C140.0441 (13)0.0310 (11)0.0615 (17)0.0015 (9)0.0211 (13)0.0060 (11)
C150.0371 (12)0.0376 (12)0.0481 (15)0.0031 (9)0.0191 (11)0.0037 (10)
C160.0449 (13)0.0449 (14)0.0622 (18)0.0052 (10)0.0292 (13)0.0033 (11)
C170.0441 (13)0.0441 (13)0.0537 (17)0.0120 (10)0.0160 (12)0.0068 (11)
Geometric parameters (Å, º) top
C1—O11.223 (2)C8—H80.9500
C1—C21.461 (3)C8—C91.389 (3)
C1—C41.507 (3)C9—H90.9500
N1—O21.218 (2)C10—C111.394 (2)
N1—O31.2303 (19)C10—C151.389 (3)
N1—C61.469 (3)C11—H110.9500
C2—H20.9500C11—C121.404 (3)
C2—C31.331 (3)C12—C131.395 (3)
N2—C121.389 (2)C13—H130.9500
N2—C161.448 (3)C13—C141.378 (3)
N2—C171.449 (3)C14—H140.9500
C3—H30.9500C14—C151.373 (3)
C3—C101.457 (3)C15—H150.9500
C4—C51.385 (3)C16—H16A0.9800
C4—C91.392 (3)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C5—C61.378 (2)C17—H17A0.9800
C6—C71.376 (3)C17—H17B0.9800
C7—H70.9500C17—H17C0.9800
C7—C81.372 (3)
O1—C1—C2121.68 (18)C8—C9—H9120.0
O1—C1—C4118.63 (18)C11—C10—C3118.49 (16)
C2—C1—C4119.69 (17)C15—C10—C3122.07 (17)
O2—N1—O3123.37 (17)C15—C10—C11119.43 (17)
O2—N1—C6118.95 (15)C10—C11—H11119.2
O3—N1—C6117.68 (16)C10—C11—C12121.59 (17)
C1—C2—H2119.3C12—C11—H11119.2
C3—C2—C1121.38 (18)N2—C12—C11121.59 (17)
C3—C2—H2119.3N2—C12—C13121.05 (17)
C12—N2—C16118.67 (16)C13—C12—C11117.34 (18)
C12—N2—C17118.37 (16)C12—C13—H13119.6
C16—N2—C17115.23 (17)C14—C13—C12120.73 (18)
C2—C3—H3116.4C14—C13—H13119.6
C2—C3—C10127.12 (18)C13—C14—H14119.2
C10—C3—H3116.4C15—C14—C13121.64 (18)
C5—C4—C1117.81 (16)C15—C14—H14119.2
C5—C4—C9119.36 (17)C10—C15—H15120.4
C9—C4—C1122.81 (18)C14—C15—C10119.26 (18)
C4—C5—H5120.5C14—C15—H15120.4
C6—C5—C4119.01 (17)N2—C16—H16A109.5
C6—C5—H5120.5N2—C16—H16B109.5
C5—C6—N1118.21 (17)N2—C16—H16C109.5
C7—C6—N1119.26 (17)H16A—C16—H16B109.5
C7—C6—C5122.52 (19)H16A—C16—H16C109.5
C6—C7—H7120.9H16B—C16—H16C109.5
C8—C7—C6118.21 (17)N2—C17—H17A109.5
C8—C7—H7120.9N2—C17—H17B109.5
C7—C8—H8119.5N2—C17—H17C109.5
C7—C8—C9120.91 (18)H17A—C17—H17B109.5
C9—C8—H8119.5H17A—C17—H17C109.5
C4—C9—H9120.0H17B—C17—H17C109.5
C8—C9—C4119.98 (19)
C1—C2—C3—C10179.8 (2)C4—C5—C6—N1179.00 (19)
C1—C4—C5—C6177.95 (19)C4—C5—C6—C70.2 (3)
C1—C4—C9—C8177.7 (2)C5—C4—C9—C80.6 (3)
N1—C6—C7—C8179.5 (2)C5—C6—C7—C80.6 (3)
O1—C1—C2—C310.6 (4)C6—C7—C8—C90.5 (4)
O1—C1—C4—C57.7 (3)C7—C8—C9—C40.1 (4)
O1—C1—C4—C9170.6 (2)C9—C4—C5—C60.4 (3)
C2—C1—C4—C5172.9 (2)C10—C11—C12—N2178.6 (2)
C2—C1—C4—C98.8 (3)C10—C11—C12—C130.0 (3)
C2—C3—C10—C11175.0 (2)C11—C10—C15—C140.2 (3)
C2—C3—C10—C154.1 (4)C11—C12—C13—C140.5 (3)
N2—C12—C13—C14178.0 (2)C12—C13—C14—C150.8 (4)
O2—N1—C6—C59.5 (3)C13—C14—C15—C100.4 (4)
O2—N1—C6—C7169.4 (2)C15—C10—C11—C120.4 (3)
C3—C10—C11—C12178.7 (2)C16—N2—C12—C114.5 (3)
C3—C10—C15—C14178.9 (2)C16—N2—C12—C13177.0 (2)
O3—N1—C6—C5170.91 (19)C17—N2—C12—C11152.4 (2)
O3—N1—C6—C710.2 (3)C17—N2—C12—C1329.1 (3)
C4—C1—C2—C3168.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.503.442 (2)174
C16—H16B···O2ii0.982.583.520 (2)160
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y+1, z+1.
1-(3-Nitrophenyl)-3-phenylprop-2-en-1-one (Hm1-) top
Crystal data top
C15H11NO3F(000) = 1056
Mr = 253.25Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7856 (8) ÅCell parameters from 2603 reflections
b = 15.9841 (9) Åθ = 2.4–24.0°
c = 10.3188 (6) ŵ = 0.10 mm1
β = 99.210 (4)°T = 100 K
V = 2407.3 (2) Å3Block, clear colourless
Z = 80.61 × 0.35 × 0.25 mm
Data collection top
Bruker APEXII Kappa CCD area detector
diffractometer
4408 independent reflections
Radiation source: fine-focus sealed tube2657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
φ and ω scansθmax = 25.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1717
Tmin = 0.610, Tmax = 0.746k = 1819
25080 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0721P)2]
where P = (Fo2 + 2Fc2)/3
4408 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15404 (12)0.16690 (10)0.61388 (17)0.0359 (5)
O20.01454 (14)0.38743 (11)0.34410 (18)0.0473 (6)
O30.05654 (12)0.36438 (11)0.14763 (17)0.0383 (5)
N10.01292 (15)0.34002 (13)0.2521 (2)0.0323 (5)
C10.12448 (16)0.11250 (15)0.5350 (2)0.0254 (6)
C20.14090 (16)0.02299 (14)0.5655 (2)0.0255 (6)
H20.1128810.0186320.5066960.031*
C30.19525 (16)0.00085 (14)0.6761 (2)0.0253 (6)
H30.2205840.0452440.7315020.030*
C40.07058 (15)0.13797 (14)0.4054 (2)0.0231 (6)
C50.05461 (16)0.22346 (14)0.3858 (2)0.0248 (6)
H50.0771790.2625470.4525660.030*
C60.00593 (16)0.25020 (14)0.2690 (2)0.0252 (6)
C70.02844 (17)0.19594 (15)0.1684 (2)0.0279 (6)
H70.0621160.2162290.0884570.033*
C80.01236 (16)0.11190 (15)0.1879 (2)0.0271 (6)
H80.0346510.0734090.1200880.032*
C90.03611 (16)0.08256 (15)0.3055 (2)0.0258 (6)
H90.0458640.0241620.3178410.031*
C100.22033 (16)0.08377 (14)0.7218 (2)0.0238 (6)
C110.26673 (16)0.09467 (15)0.8493 (2)0.0266 (6)
H110.2822660.0470210.9032930.032*
C120.29063 (17)0.17356 (15)0.8988 (2)0.0301 (6)
H120.3219960.1797890.9860890.036*
C130.26862 (17)0.24322 (16)0.8206 (3)0.0325 (6)
H130.2842750.2975400.8543050.039*
C140.22364 (17)0.23354 (15)0.6929 (3)0.0302 (6)
H140.2090760.2814200.6390240.036*
C150.19979 (17)0.15487 (15)0.6432 (2)0.0282 (6)
H150.1693290.1489930.5553490.034*
O40.35937 (12)0.39992 (10)0.37652 (16)0.0314 (4)
O50.44124 (12)0.62138 (10)0.68540 (17)0.0357 (5)
O60.52132 (14)0.59755 (11)0.87609 (17)0.0447 (5)
N20.48438 (15)0.57425 (13)0.7669 (2)0.0317 (5)
C160.38593 (16)0.34642 (15)0.4587 (2)0.0261 (6)
C170.36217 (17)0.25751 (15)0.4363 (2)0.0273 (6)
H170.3857930.2168600.4999590.033*
C180.30757 (16)0.23402 (15)0.3268 (2)0.0254 (6)
H180.2850450.2776080.2677560.031*
C190.44235 (15)0.37308 (14)0.5864 (2)0.0231 (5)
C200.44373 (15)0.45800 (14)0.6154 (2)0.0236 (6)
H200.4131230.4968730.5537990.028*
C210.48994 (17)0.48510 (15)0.7343 (2)0.0262 (6)
C220.53737 (16)0.43117 (16)0.8256 (2)0.0294 (6)
H220.5688800.4513880.9070750.035*
C230.53761 (16)0.34715 (16)0.7950 (2)0.0283 (6)
H230.5705860.3090040.8556040.034*
C240.49037 (16)0.31779 (15)0.6772 (2)0.0266 (6)
H240.4906200.2596820.6578800.032*
C250.27816 (15)0.14936 (15)0.2866 (2)0.0243 (6)
C300.29847 (16)0.07941 (15)0.3671 (3)0.0286 (6)
H300.3316110.0860220.4532840.034*
C290.27051 (17)0.00044 (15)0.3220 (3)0.0323 (6)
H290.2840690.0467130.3777190.039*
C280.22299 (18)0.01024 (16)0.1962 (3)0.0357 (7)
H280.2049390.0647050.1655100.043*
C270.20172 (17)0.05826 (16)0.1152 (3)0.0329 (6)
H270.1687030.0511010.0290690.039*
C260.22886 (16)0.13736 (15)0.1605 (2)0.0270 (6)
H260.2137180.1843480.1048430.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0504 (12)0.0234 (10)0.0272 (10)0.0002 (8)0.0146 (9)0.0021 (8)
O20.0765 (15)0.0291 (11)0.0296 (11)0.0078 (10)0.0120 (10)0.0019 (9)
O30.0471 (12)0.0345 (11)0.0276 (11)0.0066 (9)0.0113 (9)0.0096 (8)
N10.0386 (13)0.0309 (12)0.0249 (13)0.0054 (10)0.0025 (11)0.0036 (10)
C10.0241 (13)0.0262 (13)0.0239 (14)0.0004 (10)0.0020 (11)0.0002 (11)
C20.0295 (14)0.0218 (13)0.0237 (14)0.0008 (10)0.0008 (11)0.0023 (10)
C30.0298 (14)0.0219 (13)0.0230 (14)0.0028 (10)0.0008 (11)0.0005 (10)
C40.0228 (13)0.0245 (13)0.0213 (13)0.0006 (10)0.0011 (11)0.0032 (11)
C50.0289 (14)0.0236 (14)0.0207 (13)0.0008 (10)0.0005 (11)0.0001 (10)
C60.0301 (14)0.0241 (13)0.0205 (13)0.0053 (11)0.0015 (11)0.0022 (11)
C70.0290 (14)0.0349 (15)0.0185 (13)0.0012 (11)0.0001 (11)0.0041 (11)
C80.0290 (14)0.0294 (14)0.0215 (14)0.0017 (11)0.0003 (11)0.0023 (11)
C90.0275 (13)0.0259 (14)0.0230 (14)0.0001 (10)0.0010 (11)0.0013 (11)
C100.0245 (13)0.0245 (13)0.0213 (13)0.0012 (10)0.0003 (11)0.0017 (10)
C110.0291 (14)0.0261 (13)0.0233 (14)0.0003 (11)0.0007 (11)0.0007 (11)
C120.0287 (14)0.0348 (15)0.0248 (14)0.0021 (11)0.0024 (12)0.0061 (12)
C130.0365 (15)0.0248 (14)0.0358 (16)0.0039 (11)0.0047 (13)0.0062 (12)
C140.0348 (15)0.0255 (14)0.0299 (15)0.0010 (11)0.0042 (12)0.0016 (11)
C150.0324 (14)0.0275 (14)0.0236 (14)0.0006 (11)0.0015 (12)0.0021 (11)
O40.0389 (10)0.0259 (9)0.0255 (10)0.0009 (8)0.0074 (8)0.0028 (8)
O50.0439 (11)0.0262 (10)0.0331 (11)0.0037 (8)0.0057 (9)0.0007 (8)
O60.0665 (14)0.0374 (11)0.0248 (11)0.0098 (10)0.0090 (10)0.0076 (9)
N20.0390 (13)0.0318 (12)0.0227 (13)0.0049 (10)0.0002 (11)0.0043 (10)
C160.0252 (13)0.0274 (14)0.0256 (14)0.0022 (11)0.0034 (11)0.0016 (11)
C170.0335 (14)0.0224 (13)0.0243 (14)0.0002 (11)0.0003 (12)0.0021 (11)
C180.0275 (14)0.0247 (13)0.0234 (14)0.0020 (10)0.0016 (11)0.0009 (10)
C190.0245 (13)0.0246 (14)0.0199 (13)0.0026 (10)0.0027 (11)0.0005 (10)
C200.0258 (13)0.0236 (13)0.0207 (13)0.0022 (10)0.0014 (11)0.0014 (10)
C210.0294 (14)0.0252 (13)0.0241 (14)0.0010 (11)0.0044 (11)0.0006 (11)
C220.0296 (14)0.0366 (15)0.0206 (14)0.0043 (11)0.0002 (11)0.0002 (11)
C230.0249 (13)0.0316 (15)0.0269 (15)0.0014 (11)0.0009 (11)0.0070 (11)
C240.0291 (14)0.0258 (14)0.0238 (14)0.0005 (10)0.0007 (11)0.0008 (11)
C250.0195 (12)0.0272 (14)0.0262 (14)0.0006 (10)0.0036 (11)0.0035 (11)
C300.0272 (13)0.0274 (14)0.0300 (15)0.0014 (11)0.0004 (11)0.0005 (11)
C290.0334 (15)0.0239 (14)0.0399 (17)0.0009 (11)0.0071 (13)0.0014 (12)
C280.0363 (16)0.0263 (15)0.0450 (18)0.0023 (12)0.0079 (14)0.0093 (13)
C270.0278 (14)0.0366 (16)0.0333 (16)0.0029 (11)0.0022 (12)0.0095 (12)
C260.0270 (13)0.0271 (14)0.0266 (14)0.0006 (11)0.0034 (11)0.0018 (11)
Geometric parameters (Å, º) top
O1—C11.223 (3)O4—C161.224 (3)
O2—N11.232 (3)O5—N21.229 (3)
O3—N11.227 (2)O6—N21.229 (3)
N1—C61.468 (3)N2—C211.469 (3)
C1—C21.477 (3)C16—C171.473 (3)
C1—C41.499 (3)C16—C191.504 (3)
C2—H20.9500C17—H170.9500
C2—C31.334 (3)C17—C181.333 (3)
C3—H30.9500C18—H180.9500
C3—C101.460 (3)C18—C251.461 (3)
C4—C51.396 (3)C19—C201.389 (3)
C4—C91.393 (3)C19—C241.396 (3)
C5—H50.9500C20—H200.9500
C5—C61.370 (3)C20—C211.375 (3)
C6—C71.385 (3)C21—C221.383 (3)
C7—H70.9500C22—H220.9500
C7—C81.373 (3)C22—C231.380 (3)
C8—H80.9500C23—H230.9500
C8—C91.388 (3)C23—C241.384 (3)
C9—H90.9500C24—H240.9500
C10—C111.394 (3)C25—C301.397 (3)
C10—C151.401 (3)C25—C261.399 (3)
C11—H110.9500C30—H300.9500
C11—C121.385 (3)C30—C291.386 (3)
C12—H120.9500C29—H290.9500
C12—C131.383 (4)C29—C281.384 (4)
C13—H130.9500C28—H280.9500
C13—C141.387 (4)C28—C271.383 (4)
C14—H140.9500C27—H270.9500
C14—C151.382 (3)C27—C261.385 (3)
C15—H150.9500C26—H260.9500
O2—N1—C6118.5 (2)O5—N2—O6123.2 (2)
O3—N1—O2122.9 (2)O5—N2—C21118.7 (2)
O3—N1—C6118.5 (2)O6—N2—C21118.1 (2)
O1—C1—C2121.2 (2)O4—C16—C17121.5 (2)
O1—C1—C4118.9 (2)O4—C16—C19118.7 (2)
C2—C1—C4119.9 (2)C17—C16—C19119.7 (2)
C1—C2—H2120.1C16—C17—H17119.9
C3—C2—C1119.7 (2)C18—C17—C16120.1 (2)
C3—C2—H2120.1C18—C17—H17119.9
C2—C3—H3116.2C17—C18—H18116.1
C2—C3—C10127.5 (2)C17—C18—C25127.9 (2)
C10—C3—H3116.2C25—C18—H18116.1
C5—C4—C1116.7 (2)C20—C19—C16116.9 (2)
C9—C4—C1124.5 (2)C20—C19—C24119.1 (2)
C9—C4—C5118.8 (2)C24—C19—C16124.0 (2)
C4—C5—H5120.5C19—C20—H20120.4
C6—C5—C4119.1 (2)C21—C20—C19119.2 (2)
C6—C5—H5120.5C21—C20—H20120.4
C5—C6—N1118.2 (2)C20—C21—N2118.1 (2)
C5—C6—C7122.8 (2)C20—C21—C22122.5 (2)
C7—C6—N1118.9 (2)C22—C21—N2119.3 (2)
C6—C7—H7121.0C21—C22—H22121.0
C8—C7—C6118.0 (2)C23—C22—C21118.1 (2)
C8—C7—H7121.0C23—C22—H22121.0
C7—C8—H8119.6C22—C23—H23119.6
C7—C8—C9120.7 (2)C22—C23—C24120.8 (2)
C9—C8—H8119.6C24—C23—H23119.6
C4—C9—H9119.7C19—C24—H24119.8
C8—C9—C4120.6 (2)C23—C24—C19120.4 (2)
C8—C9—H9119.7C23—C24—H24119.8
C11—C10—C3118.8 (2)C30—C25—C18123.1 (2)
C11—C10—C15118.2 (2)C30—C25—C26118.3 (2)
C15—C10—C3123.0 (2)C26—C25—C18118.6 (2)
C10—C11—H11119.3C25—C30—H30119.8
C12—C11—C10121.3 (2)C29—C30—C25120.3 (2)
C12—C11—H11119.3C29—C30—H30119.8
C11—C12—H12120.2C30—C29—H29119.8
C13—C12—C11119.7 (2)C28—C29—C30120.5 (2)
C13—C12—H12120.2C28—C29—H29119.8
C12—C13—H13120.1C29—C28—H28120.0
C12—C13—C14119.8 (2)C27—C28—C29120.1 (2)
C14—C13—H13120.1C27—C28—H28120.0
C13—C14—H14119.7C28—C27—H27120.2
C15—C14—C13120.6 (2)C28—C27—C26119.6 (2)
C15—C14—H14119.7C26—C27—H27120.2
C10—C15—H15119.8C25—C26—H26119.4
C14—C15—C10120.3 (2)C27—C26—C25121.2 (2)
C14—C15—H15119.8C27—C26—H26119.4
O1—C1—C2—C35.7 (4)O4—C16—C17—C182.7 (4)
O1—C1—C4—C52.5 (3)O4—C16—C19—C2014.0 (3)
O1—C1—C4—C9177.5 (2)O4—C16—C19—C24167.8 (2)
O2—N1—C6—C51.1 (3)O5—N2—C21—C202.2 (3)
O2—N1—C6—C7176.9 (2)O5—N2—C21—C22179.3 (2)
O3—N1—C6—C5180.0 (2)O6—N2—C21—C20175.9 (2)
O3—N1—C6—C72.0 (3)O6—N2—C21—C221.1 (3)
N1—C6—C7—C8178.0 (2)N2—C21—C22—C23176.8 (2)
C1—C2—C3—C10179.1 (2)C16—C17—C18—C25178.7 (2)
C1—C4—C5—C6179.8 (2)C16—C19—C20—C21176.3 (2)
C1—C4—C9—C8179.3 (2)C16—C19—C24—C23177.3 (2)
C2—C1—C4—C5177.4 (2)C17—C16—C19—C20164.6 (2)
C2—C1—C4—C92.6 (4)C17—C16—C19—C2413.6 (4)
C2—C3—C10—C11170.3 (2)C17—C18—C25—C305.8 (4)
C2—C3—C10—C159.6 (4)C17—C18—C25—C26172.9 (2)
C3—C10—C11—C12178.7 (2)C18—C25—C30—C29178.4 (2)
C3—C10—C15—C14178.6 (2)C18—C25—C26—C27177.9 (2)
C4—C1—C2—C3174.4 (2)C19—C16—C17—C18175.9 (2)
C4—C5—C6—N1177.9 (2)C19—C20—C21—N2175.3 (2)
C4—C5—C6—C70.0 (4)C19—C20—C21—C221.7 (4)
C5—C4—C9—C80.7 (4)C20—C19—C24—C230.9 (4)
C5—C6—C7—C80.2 (4)C20—C21—C22—C230.1 (4)
C6—C7—C8—C90.7 (4)C21—C22—C23—C241.1 (4)
C7—C8—C9—C40.9 (4)C22—C23—C24—C190.7 (4)
C9—C4—C5—C60.2 (4)C24—C19—C20—C212.0 (3)
C10—C11—C12—C130.3 (4)C25—C30—C29—C280.6 (4)
C11—C10—C15—C141.3 (4)C30—C25—C26—C270.9 (4)
C11—C12—C13—C140.6 (4)C30—C29—C28—C271.0 (4)
C12—C13—C14—C150.6 (4)C29—C28—C27—C260.5 (4)
C13—C14—C15—C100.4 (4)C28—C27—C26—C250.5 (4)
C15—C10—C11—C121.2 (4)C26—C25—C30—C290.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.513.456 (3)174
C3—H3···O4ii0.952.503.328 (3)146
C9—H9···O3i0.952.583.527 (3)175
C15—H15···O3i0.952.473.399 (3)166
C17—H17···O6iii0.952.573.491 (3)164
C18—H18···O1iv0.952.463.300 (3)147
C30—H30···O6iii0.952.583.456 (3)154
C26—H26···O1iv0.952.543.328 (3)140
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+1/2, z1/2.
Torsion and ring angles (°) describing the planarity of molecules in each crystal structure top
Torsion angles calculated using the definitions: Φ1 = C5—C4—C1—C2, Φ2 = C4—C1—C2—C3 and Φ3 = C2—C3—C10—C11. Ring twist and fold angles were calculated using the mean planes of the 1- and 3-rings. All values were calculated using OLEX2 (Dolomanov et al., 2009).
Gm8pHm7mHm1- (1)Hm1- (2)
Φ1-173.15 (11)172.9 (2)177.4 (2)-164.6 (2)
Φ2158.84 (12)168.8 (2)174.4 (2)175.9 (2)
Φ3-169.23 (13)-175.0 (2)-170.3 (3)-172.9 (9)
Ring twist angle3.61 (4)13.8 (8)1.88 (8)12.58 (8)
Ring fold angle11.46 (4)0.59 (8)2.58 (8)6.66 (8)
 

Acknowledgements

The GU co-authors thank J. Hazen, S. Economu and B. Hendricks for their assistance, as well as the Howard Hughes Medical Institute for supporting equipment acquisition through its Undergraduate Science Education Program.

Funding information

Funding for this research was provided by: EPSRC (grant No. EP/L015544/1 to C. L. Hall; grant No. EP/L016648/1 to V. Hamilton); European Union's Horizon 2020 Research and Innovation Programme (grant No. 736899).

References

First citationBruker. (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDilthey, W., Neuhaus, L. & Schommer, W. (1929). J. Prakt. Chem. 123, 235–240.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbnaouf, H. K., Elzupir, A. O., AlSalhi, M. S. & Alaamer, A. S. (2018). Opt. Mater. 76, 216–221.  Web of Science CrossRef CAS Google Scholar
First citationJiang, Y., Wang, X. & Lin, L. (1994). J. Phys. Chem. 98, 12367–12372.  CrossRef CAS Web of Science Google Scholar
First citationJing, L.-H. (2009). Acta Cryst. E65, o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandge, S., Singh, H. P., Gupta, S. D. & Hari Narayana Moorthy, N. S. (2007). Trends Appl. Sci. Res. 2, 52–56.  CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQiu, X.-Y. & Yang, S.-L. (2006). Acta Cryst. E62, o5939–o5940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Reddy, J. S., Sravya, G., Rao, C. N. & Zyryanov, G. V. (2020). Environ. Chem. Lett. 18, 433–458.  Web of Science CrossRef CAS Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTomasch, M., Schwed, J. S., Weizel, L. & Stark, H. (2012). Frontiers in Systems Neurosceince, 6, 14.  Google Scholar
First citationWeygand, C. & Schächer, F. (1935). Ber. Dtsch. Chem. Ges. A/B, 68, 227–234.  CrossRef Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds