research communications
Structures of dipotassium rubidium citrate monohydrate, K2RbC6H5O7(H2O), and potassium dirubidium citrate monohydrate, KRb2C6H5O7(H2O), from laboratory X-ray powder diffraction data and DFT calculations
aDepartment of Chemistry, North Central College, 131 S. Loomis, St., Naperville IL, 60540, USA
*Correspondence e-mail: kaduk@polycrystallography.com
The crystal structures of the isostructural compounds dipotassium rubidium citrate monohydrate, K2RbC6H5O7(H2O), and potassium dirubidium citrate monohydrate, KRb2C6H5O7(H2O), have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The compounds are isostructural to K3C6H5O7(H2O) and Rb3C6H5O7(H2O), but exhibit different degrees of ordering of the K and Rb cations over the three metal-ion sites. The K and Rb site occupancies correlate well to both the bond-valence sums and the DFT energies of ordered cation systems. The MO6 and MO7 coordination polyhedra share edges to form a three-dimensional framework. The water molecule acts as a donor in two strong charge-assisted O—H⋯O hydrogen bonds to carboxylate groups. The hydroxyl group of the citrate anion forms an intramolecular hydrogen bond to one of the central carboxylate oxygen atoms.
Keywords: powder diffraction; citrate; potassium; rubidium; density functional theory; crystal structure.
1. Chemical context
A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018). The study was extended to lithium metal hydrogen citrates in Cigler & Kaduk (2018), to sodium metal hydrogen citrates in Cigler & Kaduk (2019a), to sodium dirubidium citrates in Cigler & Kaduk (2019b), to dilithium potassium citrate (Cigler & Kaduk, 2019c), to lithium dipotassium citrate monohydrate in Cigler & Kaduk (2020), and to potassium rubidium hydrogen citrate in Gonzalez et al. (2020). These compounds represent further extensions to potassium rubidium citrates. The of K3C6H5O7(H2O), Cambridge Structural Database refcode ZZZHVI* has been reported multiple times (Burns & Iball, 1954; Carrell et al., 1987), and the structure of Rb3C6H5O7(H2O) has been reported by Rammohan & Kaduk (2017).
2. Structural commentary
The crystal structures of dipotassium rubidium citrate monohydrate K2RbC6H5O7(H2O), (I), and potassium dirubidium citrate monohydrate KRb2C6H5O7(H2O), (II), have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two compounds are isostructural (Fig. 1). The powder patterns (Fig. 2) and the unit cells show that these compounds are isostructural to K3C6H5O7(H2O) and Rb3C6H5O7(H2O). In each compound, the K and Rb cations are disordered over the three cation sites: in (I), the K/Rb site occupancies are 0.93/0.07, 0.64/0.36, and 0.53/0.47 for the K19/Rb20, K21/Rb22 and K23/Rb24 sites, respectively and in (II) the refined K/Rb occupancies are 0.62/0.38, 0.39/0.61 and 0.36/0.64 for the same metal sites. The refined site occupancies correlate well to the bond-valence sums calculated for K and Rb at each cation site (Fig. 3). DFT calculations on ordered cation systems show that in (I) occupation of site 19 by Rb is disfavored by 0.19 kcal mol−1, while in (II) occupation of this site by K is favored by 0.28 kcal mol−1. These trends are consistent with the refined occupancies, but the energy differences are within the expected errors for such calculations.
For (I), the root-mean-square Cartesian displacement of the non-H atoms of the citrate anion in the disordered refined structure and the ordered DFT-optimized structures is 0.114, 0.080, and 0.079 Å for Rb at site 19, 20, and 21 (Fig. 4). The average absolute difference in the cation positions is 0.085 (29) Å, and the average absolute difference in the position of the water oxygen atom is 0.26 (11) Å. For (II), the similar r.m.s. citrate-atom displacements are 0.077, 0.104, and 0.101 Å (Fig. 5). The average absolute difference in the cation positions is 0.084 (54) Å, and the average absolute difference in the position of the water molecule oxygen atom is 0.28 (14) Å. The good agreement between the disordered refined structures and the ordered DFT-optimized structures provides confidence that the experimental structures are correct (van de Streek & Neumann, 2014).
Most of the citrate anion bond distances, bond angles and torsion angles in the experimental structures fall within the normal range indicated by a Mercury Mogul Geometry Check (Macrae et al., 2020). Only the O12—C1—C2 [113.9 (5) and 114.7 (5)°; average = 124 (3)°, Z-score = 3.6 and 3.3] and the O13—C5—C4 angles [114.4 (5) and 115.1 (5)°; average = 124 (5)°, Z-score = 5.1 and 4.8] are flagged as unusual. The citrate anion occurs in the trans, trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018) and is typical for citrate salts of the larger Group 1 cations. The central carboxylate group and the hydroxyl group exhibit small twist angles [O17—C3—C6—O16 torsion angle = −6 (2) and 0.5 (2)°] from the normal planar arrangement. The Mulliken overlap populations indicate that the K—O and Rb—O bonds are ionic. M19/20 is six-coordinate, and M21/22 and M23/24 are seven-coordinate. The water molecule coordinates to M19/20 and M21/22.
There is extensive M19/20 and M23/24. The hydroxyl O17 and terminal carboxylate O11 and O13 chelate to M21/22 and M23/24.
of the citrate anion to the metal ions. The carboxylate groups O11/O12 and O15/O16 chelate to separate metal cations 21/22. The terminal carboxylate O12 and central carboxylate O15 and O16 oxygen atoms chelate to M23/24 and M19/20. The terminal carboxylate O14 and the central carboxylate O15 and O16 chelate toThe Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) method suggests that we might expect blocky morphology for these two compounds. No model was necessary in the refinement.
3. Supramolecular features
The MO6 and MO7 coordination polyhedra in both structures share edges to form a three-dimensional framework (Fig. 6). The hydrophobic methylene group sides of the citrate anions occupy channels in the framework. The hydrogen bonds in the six ordered systems used for the DFT calculations differ slightly but the general pattern is similar: Tables 1–3 list the geometrical data for (I) with the Rb atom placed at the M19, M21 and M23 sites, respectively and the K atoms occupying the other two sites. Tables 4–6 present data for (II) with the K atom occupying the M19, M21 and M23 sites, respectively and the Rb atoms occupying the other two sites. The water molecule O25/H26/H27 forms strong charge-assisted hydrogen bonds to the central carboxylate oxygen atom O15 and the terminal carboxylate O13. The energies of the O—H⋯O hydrogen bonds were calculated using the correlation of Rammohan & Kaduk (2018). The hydroxyl group O17 forms an intramolecular hydrogen bond to the central carboxylate O16. In some of the ordered models, the hydroxyl group also forms an intermolecular hydrogen bond to the terminal carboxylate O13.
|
|
|
|
|
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018). The powder pattern of K2RbC6H5O7(H2O) was indexed on a primitive monoclinic having a = 7.2676, b = 11.8499, c = 13.1006 A, β = 98.234°, V = 1116.61 Å3 using DICVOL14 (Louër & Boultif, 2014). A similar cell was obtained using N-TREOR (Altomare et al., 2013). Analysis of the using EXPO2014 (Altomare et al., 2013) suggested the of P21/n. The pattern of KRb2C6H5O7(H2O) was indexed on a similar using N-TREOR, so the compounds were assumed to be isostructural. searches in the Cambridge Structural Database (Groom et al., 2016) yielded ten10 hits, including four for K3C6H5O7(H2O), ZZZHVI* (Burns & Iball, 1954; Carrell et al., 1987; Rammohan & Kaduk, 2018).
5. Synthesis and crystallization
Dipotassium rubidium citrate monohydrate, (I), was synthesized by adding stoichiometric quantities of 1.382 g K2CO3 (Sigma–Aldrich) and 1.154 g Rb2CO3 (Sigma–Aldrich) to a solution of 2.03 g citric acid monohydrate (10.0 mmol, Sigma–Aldrich) in 10 ml of water. After the fizzing subsided, the clear solution was dried in a 403 K oven to yield a white solid. Potassium dirubidium citrate monohydrate, (II), was synthesized in the same way starting from 0.691 g of K2CO3 and 2.309 g of Rb2CO3.
6. Refinement
Crystal data, data collection and structure are summarized in Table 7 (Fig. 7). To minimize Rb fluorescence, the pulse height discriminator lower level of the X'Celerator detector was raised from the default 39.0% to 51.0%. The structure was solved with FOX (Favre-Nicolin & Černý, 2002), using 2 K atoms, 1 Rb atom and a citrate anion as fragments. A Le Bail fit yielded Rwp = 3.73%. Initial did not include the water molecule, and yielded an acceptable fit (Rwp = 4.8%), but the Uiso values of the C atoms in the central part of the molecule were relatively large (∼0.10 Å2). The bond-valence sums of the cations were, however, far too low, showing that the water molecule was indeed present. It was inserted in the position from the known monohydrate structures.
details for (I)The structure was refined by the GSAS-II (Toby & Von Dreele, 2013). The hydrogen atoms were included in fixed positions, which were recalculated during the course of the using Materials Studio (Dassault Systems, 2019). All C—C and C—O bond distances and all bond angles were restrained based on previous citrate structures: C1—C2 = C4—C5 = 1.51 (1) Å, C2—C3 = C3—C4 = 1.54 (1) Å, C3—C6 = 1.55 (1) Å, C3—O17 = 1.42 (3) Å, C(carboxyl)—O(carboxyl) = 1.27 (3) Å, C1—C2—C3 = C3—C4—C5 = 115 (3)°, all angles about C3 = 109 (3)°, carboxyl C—C—O = 115 (3)°, and carboxyl O—C—O = 130 (3)°. Each of the three cation sites was modeled as a mixture of K and Rb; the sums of the site occupancies were constrained to be unity, but the total K and Rb contents were not constrained/restrained, to provide an internal consistency check. The Uiso of the atoms in the central and outer portions of the citrate anion were constrained to be equal, and the Uiso of the hydrogen atoms were constrained to be 1.3× those of the atoms to which they are attached. The Uiso of the cations were constrained to be equal. A capillary absorption model (fixed μ.R = 0.84, calculated using the tool on the 11-BM web site) was included into the A Chebyschev polynomial function with four coefficients, along with a peak at 13.11° to model the scattering of the glass capillary, was used to model the background.
usingBecause DFT techniques cannot accommodate disordered systems, three density functional geometry optimizations (with Rb at each of the three cations sites, and K at the other two) were carried out using CRYSTAL14 (Dovesi et al., 2014). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994), and the basis sets for K and Rb were those of Peintinger et al. (2013). The calculations were run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, using 8 k-points and the B3LYP functional.
Crystal data, data collection and structure are summarized in Table 7 (Fig. 8). The same solution and strategy as for (I) was followed. Three density functional geometry optimizations (with K at each of the three cations sites, and Rb at the other two) were carried out using CRYSTAL17 (Dovesi et al., 2018) with atom basis sets and computer hardware as described in the previous paragraph.
details for (II)Supporting information
https://doi.org/10.1107/S2056989020011846/hb7917sup1.cif
contains datablocks I, I_19_DFT, I_20_DFT, I_21_DFT, II, II_19_DFT, II_20_DFT, II_21_DFT. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989020011846/hb7917Isup2.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020011846/hb7917IIsup3.cml
Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for (I). Program(s) used to refine structure: GSAS-II (Toby & Von Dreele, 2013) for (I), (II). Molecular graphics: Mercury (Macrae et al., 2020), Materials Studio (Dassault Systems, 2019), DIAMOND (Crystal Impact, 2015) for (I), (II). Software used to prepare material for publication: publCIF (Westrip, 2010) for (I), (II).
2K+·Rb+·C6H5O73−·H2O | V = 1105.56 (9) Å3 |
Mr = 365.78 | Z = 4 |
Monoclinic, P21/n | Dx = 2.198 Mg m−3 |
Hall symbol: -P 2yn | Kα1,2 radiation, λ = 0.70932, 0.71361 Å |
a = 7.2407 (10) Å | T = 300 K |
b = 11.8145 (3) Å | white |
c = 13.062 (2) Å | cylinder, 12 × 0.5 mm |
β = 98.334 (7)° | Specimen preparation: Prepared at 403 K |
PANalytical Empyrean diffractometer | Data collection mode: transmission |
Radiation source: sealed X-ray tube | Scan method: step |
Specimen mounting: Glass capillary | 2θmin = 1.021°, 2θmax = 49.985°, 2θstep = 0.017° |
Least-squares matrix: full | 29 restraints |
Rp = 0.026 | 15 constraints |
Rwp = 0.033 | Only H-atom displacement parameters refined |
Rexp = 0.018 | Weighting scheme based on measured s.u.'s |
R(F2) = 0.04795 | (Δ/σ)max = 0.205 |
2931 data points | Background function: Background function: "chebyschev-1" function with 4 terms: 2307(6), -280(6), 22(5), -43(4), Background peak parameters: pos, int, sig, gam: 10.29(6), 1.13(5)e5, 2.80(23)e4, 0.100, |
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 19.949, 12.795, 0.000, 2.075, 0.000, 0.032, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 21847.124, 158.305, 5787.320, 10788.591, 22832.702, -379.772, 23098.342, 3225.801, 2172.138, 1.000, | Preferred orientation correction: Spherical Harmonics correction. Order = 2 Model: cylindrical Orientation angles: omega = 0.00; chi = 0.00; phi = 0.00; Coefficients: 0::C(2,0,-2) = -0.0803; 0::C(2,0,0) = 0.1239; 0::C(2,0,2) = 0.2546; Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = 0.0000; 0:0:C(2,0) = 0.0000; 0:0:C(2,2) = 0.0000 |
70 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.385 (2) | 0.3957 (7) | 0.1274 (12) | 0.033 (4)* | |
C2 | 0.3114 (18) | 0.2874 (6) | 0.1675 (13) | 0.016 (6)* | |
C3 | 0.4195 (10) | 0.1791 (7) | 0.1480 (7) | 0.016* | |
C4 | 0.3077 (19) | 0.0749 (7) | 0.1745 (12) | 0.016* | |
C5 | 0.358 (2) | −0.0357 (7) | 0.1277 (11) | 0.033* | |
C6 | 0.6126 (11) | 0.1800 (17) | 0.2170 (9) | 0.033* | |
H7 | 0.31533 | 0.29370 | 0.25488 | 0.021* | |
H8 | 0.15997 | 0.27640 | 0.13043 | 0.021* | |
H9 | 0.32956 | 0.06167 | 0.26187 | 0.021* | |
H10 | 0.15318 | 0.09193 | 0.14804 | 0.021* | |
O11 | 0.267 (3) | 0.4511 (11) | 0.0657 (13) | 0.033* | |
O12 | 0.535 (2) | 0.4299 (12) | 0.1794 (12) | 0.033* | |
O13 | 0.236 (3) | −0.0732 (15) | 0.0569 (13) | 0.033* | |
O14 | 0.489 (2) | −0.0890 (10) | 0.1815 (12) | 0.033* | |
O15 | 0.6078 (18) | 0.186 (2) | 0.3140 (9) | 0.033* | |
O16 | 0.7512 (13) | 0.1662 (17) | 0.1688 (11) | 0.033* | |
O17 | 0.4449 (16) | 0.1744 (11) | 0.0424 (8) | 0.033* | |
H18 | 0.51930 | 0.13650 | 0.01110 | 0.043* | |
K19 | −0.1246 (11) | 0.4396 (6) | 0.1156 (8) | 0.0280 (14)* | 0.928 |
Rb20 | −0.1246 | 0.4396 | 0.1156 | 0.0280* | 0.072 |
K21 | 0.9916 (7) | 0.1613 (4) | 0.3832 (5) | 0.0280* | 0.645 |
Rb22 | 0.9916 | 0.1613 | 0.3832 | 0.0280* | 0.355 |
K23 | 0.8338 (8) | −0.0689 (4) | 0.1125 (4) | 0.0280* | 0.534 |
Rb24 | 0.8338 | −0.0689 | 0.1125 | 0.0280* | 0.466 |
O25 | 0.374 (3) | 0.2108 (17) | 0.4690 (15) | 0.080 (11)* | |
H26 | 0.34120 | 0.28290 | 0.45890 | 0.104* | |
H27 | 0.44720 | 0.20590 | 0.41980 | 0.104* |
C1—C2 | 1.5094 (19) | K19—O11 | 3.00 (2) |
C1—O11 | 1.269 (5) | K19—O11i | 2.763 (16) |
C1—O12 | 1.263 (6) | K19—O12iv | 2.714 (19) |
C2—C1 | 1.5094 (19) | K19—O14ix | 2.711 (18) |
C2—C3 | 1.5398 (19) | K19—O15ix | 3.05 (3) |
C3—C2 | 1.5398 (19) | Rb20—O11 | 3.00 (2) |
C3—C4 | 1.5398 (19) | Rb20—O11i | 2.763 (13) |
C3—C6 | 1.5501 (19) | Rb20—O12iv | 2.714 (17) |
C3—O17 | 1.419 (5) | Rb20—O14ix | 2.711 (15) |
C4—C3 | 1.5398 (19) | Rb20—O15ix | 3.05 (2) |
C4—C5 | 1.5100 (19) | Rb20—O25viii | 2.61 (2) |
C5—C4 | 1.5100 (19) | K21—O11vii | 3.055 (16) |
C5—O13 | 1.263 (5) | K21—O12vii | 2.852 (15) |
C5—O14 | 1.261 (5) | K21—O14ii | 3.077 (14) |
C6—C3 | 1.5501 (19) | K21—O15 | 2.809 (14) |
C6—O15 | 1.273 (5) | K21—O16 | 3.076 (16) |
C6—O16 | 1.271 (5) | K21—O17x | 2.899 (12) |
O11—C1 | 1.269 (5) | K21—O25iii | 2.89 (2) |
O11—K19 | 3.00 (2) | Rb22—O11vii | 3.055 (15) |
O11—K19i | 2.763 (16) | Rb22—O12vii | 2.852 (14) |
O11—K21ii | 3.055 (16) | Rb22—O14ii | 3.077 (13) |
O12—C1 | 1.263 (6) | Rb22—O15 | 2.809 (13) |
O12—K19iii | 2.714 (19) | Rb22—O16 | 3.076 (13) |
O12—K21ii | 2.852 (15) | Rb22—O17x | 2.899 (11) |
O12—K23ii | 2.746 (15) | Rb22—O25iii | 2.89 (2) |
O13—C5 | 1.263 (5) | K23—O12vii | 2.746 (15) |
O13—K23iv | 3.11 (2) | K23—O13iii | 3.11 (2) |
O13—K23v | 2.766 (19) | K23—O13v | 2.766 (19) |
O14—C5 | 1.261 (5) | K23—O14 | 2.784 (16) |
O14—K19vi | 2.711 (18) | K23—O15vii | 3.07 (2) |
O14—K21vii | 3.077 (14) | K23—O16 | 2.96 (2) |
O14—K23 | 2.784 (16) | K23—O17v | 2.922 (14) |
O15—C6 | 1.273 (5) | Rb24—O12vii | 2.746 (15) |
O15—K19vi | 3.05 (3) | Rb24—O13iii | 3.11 (2) |
O15—K21 | 2.809 (14) | Rb24—O13v | 2.766 (19) |
O15—K23ii | 3.07 (2) | Rb24—O14 | 2.784 (16) |
O16—C6 | 1.271 (5) | Rb24—O15vii | 3.07 (2) |
O16—K21 | 3.076 (16) | Rb24—O16 | 2.957 (18) |
O16—K23 | 2.96 (2) | Rb24—O17v | 2.922 (13) |
O17—C3 | 1.419 (5) | O25—K19x | 2.61 (2) |
O17—K21viii | 2.899 (12) | O25—K21iv | 2.89 (2) |
O17—K23v | 2.922 (14) | ||
C2—C1—O11 | 114.7 (5) | O11i—K19—O25viii | 74.2 (5) |
C2—C1—O12 | 113.9 (5) | O12iv—K19—O25viii | 106.8 (6) |
O11—C1—O12 | 128.8 (5) | O14ix—K19—O25viii | 126.5 (6) |
C1—C2—C3 | 115.7 (5) | K19i—K19—O25viii | 69.1 (5) |
C2—C3—C4 | 109.32 (17) | K21ix—K19—O25viii | 123.5 (5) |
C2—C3—C6 | 109.59 (17) | K21xi—K19—O25viii | 46.3 (4) |
C4—C3—C6 | 109.52 (17) | O11i—Rb20—O12iv | 92.3 (4) |
C2—C3—O17 | 109.46 (17) | O11i—Rb20—O14ix | 159.0 (4) |
C4—C3—O17 | 109.51 (17) | O12iv—Rb20—O14ix | 84.9 (5) |
C6—C3—O17 | 109.43 (17) | O11i—Rb20—O25viii | 74.2 (5) |
C3—C4—C5 | 115.7 (5) | O12iv—Rb20—O25viii | 106.8 (6) |
C4—C5—O13 | 114.5 (5) | O14ix—Rb20—O25viii | 126.5 (5) |
C4—C5—O14 | 114.4 (5) | O12vii—Rb22—O15 | 89.0 (6) |
O13—C5—O14 | 128.3 (5) | O12vii—Rb22—O17x | 146.8 (4) |
C3—C6—O15 | 115.3 (4) | O15—Rb22—O17x | 87.1 (4) |
C3—C6—O16 | 114.9 (4) | O12vii—Rb22—O25iii | 109.1 (5) |
O15—C6—O16 | 129.5 (5) | O15—Rb22—O25iii | 162.0 (6) |
C1—O11—K19i | 156.8 (15) | O17x—Rb22—O25iii | 78.0 (4) |
C1—O12—K19iii | 126.7 (14) | O12vii—K23—O13v | 142.4 (5) |
C1—O12—K23ii | 132.9 (11) | O12vii—Rb24—O13v | 142.4 (4) |
K19iii—O12—K23ii | 96.1 (6) | O12vii—Rb24—O14 | 82.9 (5) |
C5—O13—K23v | 113.6 (12) | O13v—Rb24—O14 | 104.0 (4) |
C5—O14—K19vi | 128.2 (8) | O12vii—Rb24—O17v | 142.0 (4) |
O11i—K19—O12iv | 92.3 (5) | O13v—Rb24—O17v | 71.1 (4) |
O11i—K19—O14ix | 159.0 (6) | O14—Rb24—O17v | 68.0 (4) |
O12iv—K19—O14ix | 84.9 (6) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) x−1, y, z; (v) −x+1, −y, −z; (vi) −x+1/2, y−1/2, −z+1/2; (vii) −x+3/2, y−1/2, −z+1/2; (viii) x+1/2, −y+3/2, z+1/2; (ix) −x+1/2, y+1/2, −z+1/2; (x) x+3/2, −y+3/2, z+3/2; (xi) x−1/2, −y+3/2, z+1/2. |
C6H7K2O8Rb | b = 11.8185 Å |
Mr = 370.73 | c = 13.0617 Å |
Monoclinic, P21/n | β = 98.3340° |
Hall symbol: -P 2yn | V = 1105.95 Å3 |
a = 7.24070 Å | Z = 4 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.387602 | 0.396247 | 0.134453 | 0.03300* | |
C2 | 0.300752 | 0.285078 | 0.161529 | 0.01600* | |
C3 | 0.414116 | 0.177979 | 0.149608 | 0.01600* | |
C4 | 0.291736 | 0.078893 | 0.178301 | 0.01600* | |
C5 | 0.334003 | −0.034533 | 0.132030 | 0.03300* | |
C6 | 0.607979 | 0.177590 | 0.217853 | 0.03300* | |
H7 | 0.270788 | 0.289262 | 0.240834 | 0.02100* | |
H8 | 0.169692 | 0.273835 | 0.110202 | 0.02100* | |
H9 | 0.306865 | 0.072548 | 0.262250 | 0.02100* | |
H10 | 0.146495 | 0.099677 | 0.150816 | 0.02100* | |
O11 | 0.304860 | 0.450602 | 0.058045 | 0.03300* | |
O12 | 0.533995 | 0.429648 | 0.191070 | 0.03300* | |
O13 | 0.215316 | −0.069216 | 0.056951 | 0.03300* | |
O14 | 0.478172 | −0.088049 | 0.169573 | 0.03300* | |
O15 | 0.612096 | 0.186020 | 0.315093 | 0.03300* | |
O16 | 0.748786 | 0.165708 | 0.173006 | 0.03300* | |
O17 | 0.441499 | 0.169428 | 0.042803 | 0.03300* | |
H18 | 0.572418 | 0.148527 | 0.042548 | 0.04300* | |
Rb19 | −0.115564 | 0.432699 | 0.114377 | 0.02800* | |
K20 | −0.016156 | 0.159711 | 0.384860 | 0.02800* | |
K21 | 0.829410 | −0.070765 | 0.109841 | 0.02800* | |
O25 | 0.354682 | 0.211581 | 0.439575 | 0.08000* | |
H26 | 0.328247 | 0.293138 | 0.446004 | 0.10400* | |
H27 | 0.445803 | 0.203599 | 0.390877 | 0.10400* |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O16 | 0.98 | 1.99 | 2.598 | 118 |
O17—H18···O13i | 0.98 | 2.35 | 3.196 | 145 |
O25—H26···O13ii | 0.99 | 1.66 | 2.641 | 174 |
O25—H27···O15 | 0.99 | 1.68 | 2.662 | 176 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, y+1/2, −z+1/2. |
C6H7K2O8Rb | b = 11.81851 Å |
Mr = 370.73 | c = 13.06177 Å |
Monoclinic, P21/n | β = 98.3340° |
Hall symbol: -P 2yn | V = 1105.95 Å3 |
a = 7.24070 Å | Z = 4 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.381013 | 0.394055 | 0.130708 | 0.03300* | |
C2 | 0.293184 | 0.285132 | 0.162434 | 0.01600* | |
C3 | 0.402898 | 0.176581 | 0.151416 | 0.01600* | |
C4 | 0.280001 | 0.078045 | 0.180294 | 0.01600* | |
C5 | 0.331506 | −0.034836 | 0.136729 | 0.03300* | |
C6 | 0.595245 | 0.173140 | 0.220658 | 0.03300* | |
H7 | 0.271064 | 0.293099 | 0.242888 | 0.02100* | |
H8 | 0.157764 | 0.275194 | 0.114842 | 0.02100* | |
H9 | 0.292673 | 0.072933 | 0.264274 | 0.02100* | |
H10 | 0.135438 | 0.097397 | 0.149747 | 0.02100* | |
O11 | 0.281987 | 0.455743 | 0.064950 | 0.03300* | |
O12 | 0.544521 | 0.418712 | 0.173263 | 0.03300* | |
O13 | 0.223087 | −0.071101 | 0.058155 | 0.03300* | |
O14 | 0.475237 | −0.085389 | 0.180008 | 0.03300* | |
O15 | 0.598209 | 0.186110 | 0.317414 | 0.03300* | |
O16 | 0.735216 | 0.152795 | 0.177058 | 0.03300* | |
O17 | 0.432382 | 0.165351 | 0.045123 | 0.03300* | |
H18 | 0.563594 | 0.143536 | 0.047223 | 0.04300* | |
K19 | −0.115017 | 0.445349 | 0.113268 | 0.02800* | |
Rb20 | −0.002640 | 0.165932 | 0.384727 | 0.02800* | |
K21 | 0.828073 | −0.069128 | 0.116190 | 0.02800* | |
O25 | 0.395879 | 0.216870 | 0.472957 | 0.08000* | |
H26 | 0.348848 | 0.295195 | 0.468149 | 0.10400* | |
H27 | 0.464202 | 0.205158 | 0.414130 | 0.10400* |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O16 | 0.98 | 1.96 | 2.598 | 118 |
O17—H18···O13i | 0.98 | 2.37 | 3.203 | 142 |
O25—H26···O13ii | 0.99 | 1.68 | 2.662 | 171 |
O25—H27···O15 | 0.98 | 1.72 | 2.696 | 176 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, y+1/2, −z+1/2. |
C6H7K2O8Rb | b = 11.81851 Å |
Mr = 370.73 | c = 13.06177 Å |
Monoclinic, P21/n | β = 98.3340° |
Hall symbol: -P 2yn | V = 1105.95 Å3 |
a = 7.24070 Å | Z = 4 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.382779 | 0.395000 | 0.126384 | 0.03300* | |
C2 | 0.303121 | 0.285782 | 0.163456 | 0.01600* | |
C3 | 0.416131 | 0.178071 | 0.152587 | 0.01600* | |
C4 | 0.292970 | 0.079198 | 0.180960 | 0.01600* | |
C5 | 0.340745 | −0.036619 | 0.141034 | 0.03300* | |
C6 | 0.608466 | 0.175258 | 0.222408 | 0.03300* | |
H7 | 0.283206 | 0.295370 | 0.244113 | 0.02100* | |
H8 | 0.166028 | 0.272600 | 0.118520 | 0.02100* | |
H9 | 0.302026 | 0.076170 | 0.264923 | 0.02100* | |
H10 | 0.149042 | 0.098595 | 0.149226 | 0.02100* | |
O11 | 0.276815 | 0.453687 | 0.061403 | 0.03300* | |
O12 | 0.547206 | 0.422937 | 0.164156 | 0.03300* | |
O13 | 0.230533 | −0.074038 | 0.063533 | 0.03300* | |
O14 | 0.479179 | −0.089554 | 0.186680 | 0.03300* | |
O15 | 0.609842 | 0.181247 | 0.319718 | 0.03300* | |
O16 | 0.750451 | 0.162898 | 0.178807 | 0.03300* | |
O17 | 0.446845 | 0.169433 | 0.046354 | 0.03300* | |
H18 | 0.579348 | 0.151603 | 0.047775 | 0.04300* | |
K19 | −0.112854 | 0.436953 | 0.108689 | 0.02800* | |
K20 | −0.012954 | 0.157061 | 0.389284 | 0.02800* | |
Rb21 | 0.837466 | −0.072521 | 0.114962 | 0.02800* | |
O25 | 0.361121 | 0.209555 | 0.452481 | 0.08000* | |
H26 | 0.324995 | 0.290235 | 0.450230 | 0.10400* | |
H27 | 0.446472 | 0.197835 | 0.401325 | 0.10400* |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O16 | 0.98 | 1.97 | 2.594 | 120 |
O17—H18···O13i | 0.98 | 2.33 | 3.124 | 138 |
O25—H26···O13ii | 0.99 | 1.66 | 2.643 | 175 |
O25—H27···O15 | 0.98 | 1.71 | 2.696 | 175 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, y+1/2, −z+1/2. |
K+·2Rb+·C6H5O73−·H2O | V = 1140.37 (6) Å3 |
Mr = 399.97 | Z = 4 |
Monoclinic, P21/n | Dx = 2.330 Mg m−3 |
Hall symbol: -P 2yn | Kα1,2 radiation, λ = 0.70932, 0.71361 Å |
a = 7.3507 (5) Å | T = 300 K |
b = 11.8468 (4) Å | white |
c = 13.2275 (12) Å | cylinder, 12 × 0.5 mm |
β = 98.109 (4)° | Specimen preparation: Prepared at 403 K |
PANalytical Empyrean diffractometer | Data collection mode: transmission |
Radiation source: sealed X-ray tube | Scan method: step |
Specimen mounting: glass capillary | 2θmin = 1.021°, 2θmax = 49.985°, 2θstep = 0.017° |
Least-squares matrix: full | 29 restraints |
Rp = 0.024 | 15 constraints |
Rwp = 0.032 | Only H-atom displacement parameters refined |
Rexp = 0.018 | Weighting scheme based on measured s.u.'s |
R(F2) = 0.06949 | (Δ/σ)max = 0.722 |
2931 data points | Background function: Background function: "chebyschev-1" function with 4 terms: 2587(5), -233(6), 10(4), -28(4), Background peak parameters: pos, int, sig, gam: 10.54(5), 1.39(5)e5, 3.08(20)e4, 0.100, |
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 19.949, 12.795, 0.000, 2.075, 0.000, 0.032, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 629.894, 666.269, 773.433, -118.805, -89.875, -165.278, 167.735, 57.322, 73.783, 1.000, | Preferred orientation correction: Spherical Harmonics correction. Order = 2 Model: cylindrical Orientation angles: omega = 0.00; chi = 0.00; phi = 0.00; Coefficients: 0::C(2,0,-2) = -0.0045; 0::C(2,0,0) = 0.1825; 0::C(2,0,2) = 0.1091; March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
70 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.395 (3) | 0.3900 (9) | 0.1268 (15) | 0.035 (5)* | |
C2 | 0.317 (2) | 0.2852 (8) | 0.1695 (15) | 0.022 (8)* | |
C3 | 0.4170 (10) | 0.1747 (9) | 0.1508 (8) | 0.022* | |
C4 | 0.303 (2) | 0.0734 (8) | 0.1788 (14) | 0.022* | |
C5 | 0.348 (2) | −0.0379 (9) | 0.1324 (16) | 0.035* | |
C6 | 0.6080 (12) | 0.173 (2) | 0.2178 (11) | 0.035* | |
H7 | 0.32318 | 0.29412 | 0.25575 | 0.028* | |
H8 | 0.16642 | 0.27663 | 0.13442 | 0.028* | |
H9 | 0.32518 | 0.06108 | 0.26513 | 0.028* | |
H10 | 0.15106 | 0.09267 | 0.15353 | 0.028* | |
O11 | 0.280 (3) | 0.4464 (15) | 0.0661 (16) | 0.035* | |
O12 | 0.552 (3) | 0.4191 (15) | 0.1714 (16) | 0.035* | |
O13 | 0.229 (3) | −0.0728 (16) | 0.0599 (16) | 0.035* | |
O14 | 0.489 (3) | −0.0872 (13) | 0.1775 (16) | 0.035* | |
O15 | 0.606 (2) | 0.188 (3) | 0.3132 (11) | 0.035* | |
O16 | 0.7441 (14) | 0.167 (2) | 0.1683 (15) | 0.035* | |
O17 | 0.4399 (19) | 0.1676 (15) | 0.0464 (9) | 0.035* | |
H18 | 0.51790 | 0.14150 | 0.01080 | 0.046* | |
K19 | −0.1195 (9) | 0.4371 (6) | 0.1136 (6) | 0.0293 (13)* | 0.621 |
Rb20 | −0.1195 | 0.4371 | 0.1136 | 0.0293* | 0.379 |
K21 | 0.9951 (6) | 0.1642 (5) | 0.3815 (5) | 0.0293* | 0.394 |
Rb22 | 0.9951 | 0.1642 | 0.3815 | 0.0293* | 0.606 |
K23 | 0.8366 (8) | −0.0671 (5) | 0.1150 (5) | 0.0293* | 0.356 |
Rb24 | 0.8366 | −0.0671 | 0.1150 | 0.0293* | 0.644 |
O25 | 0.387 (4) | 0.205 (3) | 0.456 (2) | 0.122 (15)* | |
H26 | 0.34760 | 0.27190 | 0.45840 | 0.159* | |
H27 | 0.46070 | 0.20620 | 0.41170 | 0.159* |
C1—C2 | 1.5099 (18) | O17—K23v | 2.981 (16) |
C1—O11 | 1.270 (5) | K19—O11 | 3.09 (3) |
C1—O12 | 1.267 (5) | K19—O11i | 2.855 (17) |
C2—C1 | 1.5099 (18) | K19—O12iv | 2.65 (2) |
C2—C3 | 1.5403 (18) | K19—O14ix | 2.81 (2) |
C3—C2 | 1.5403 (18) | K19—O25viii | 2.69 (3) |
C3—C4 | 1.5402 (18) | Rb20—O11 | 3.09 (2) |
C3—C6 | 1.5508 (18) | Rb20—O11i | 2.855 (16) |
C3—O17 | 1.417 (5) | Rb20—O12iv | 2.65 (2) |
C4—C3 | 1.5402 (18) | Rb20—O14ix | 2.81 (2) |
C4—C5 | 1.5104 (18) | Rb20—O15ix | 3.12 (3) |
C5—C4 | 1.5104 (18) | Rb20—O25viii | 2.69 (3) |
C5—O13 | 1.270 (5) | K21—O11vii | 3.09 (2) |
C5—O14 | 1.264 (5) | K21—O12vii | 2.995 (19) |
C6—C3 | 1.5508 (18) | K21—O14ii | 3.053 (17) |
C6—O15 | 1.277 (5) | K21—O15 | 2.890 (16) |
C6—O16 | 1.272 (5) | K21—O17x | 3.024 (15) |
O11—C1 | 1.270 (5) | K21—O25iii | 2.95 (3) |
O11—K19 | 3.09 (3) | Rb22—O11vii | 3.092 (19) |
O11—K19i | 2.855 (17) | Rb22—O12vii | 2.995 (19) |
O11—K21ii | 3.09 (2) | Rb22—O14ii | 3.053 (16) |
O12—C1 | 1.267 (5) | Rb22—O15 | 2.890 (15) |
O12—K19iii | 2.65 (2) | Rb22—O16 | 3.145 (17) |
O12—K21ii | 2.995 (19) | Rb22—O17x | 3.024 (14) |
O12—K23ii | 2.83 (2) | Rb22—O25iii | 2.95 (3) |
O13—C5 | 1.270 (5) | K23—O12vii | 2.83 (2) |
O13—K23iv | 3.08 (3) | K23—O13iii | 3.08 (3) |
O13—K23v | 2.83 (2) | K23—O13v | 2.83 (2) |
O14—C5 | 1.264 (5) | K23—O14 | 2.81 (2) |
O14—K19vi | 2.81 (2) | K23—O15vii | 3.06 (3) |
O14—K21vii | 3.053 (17) | K23—O16 | 2.96 (2) |
O14—K23 | 2.81 (2) | K23—O17v | 2.981 (16) |
O15—C6 | 1.277 (5) | Rb24—O12vii | 2.83 (2) |
O15—Rb20vi | 3.12 (3) | Rb24—O13iii | 3.08 (3) |
O15—K21 | 2.890 (16) | Rb24—O13v | 2.83 (2) |
O15—K23ii | 3.06 (3) | Rb24—O14 | 2.81 (2) |
O16—C6 | 1.272 (5) | Rb24—O15vii | 3.06 (3) |
O16—Rb22 | 3.145 (17) | Rb24—O16 | 2.96 (2) |
O16—K23 | 2.96 (2) | Rb24—O17v | 2.981 (15) |
O17—C3 | 1.417 (5) | O25—K19x | 2.69 (3) |
O17—K21viii | 3.024 (15) | O25—K21iv | 2.95 (3) |
C2—C1—O11 | 114.5 (5) | O15—C6—O16 | 129.5 (5) |
C2—C1—O12 | 114.7 (5) | C1—O12—K19iii | 134.2 (17) |
O11—C1—O12 | 129.2 (5) | O12iv—K19—O25viii | 107.0 (8) |
C1—C2—C3 | 115.05 (18) | O11i—Rb20—O12iv | 89.6 (5) |
C2—C3—C4 | 109.49 (17) | O11i—Rb20—O14ix | 155.8 (6) |
C2—C3—C6 | 109.51 (17) | O12iv—Rb20—O14ix | 84.7 (6) |
C4—C3—C6 | 109.52 (17) | O11i—Rb20—O25viii | 72.9 (7) |
C2—C3—O17 | 109.43 (17) | O12iv—Rb20—O25viii | 107.0 (8) |
C4—C3—O17 | 109.41 (17) | O14ix—Rb20—O25viii | 131.2 (7) |
C6—C3—O17 | 109.47 (17) | K19i—Rb20—O25viii | 65.7 (7) |
C3—C4—C5 | 115.04 (18) | K21ix—Rb20—O25viii | 122.7 (6) |
C4—C5—O13 | 115.1 (5) | K21xi—Rb20—O25viii | 46.7 (6) |
C4—C5—O14 | 115.1 (5) | K23ix—Rb20—O25viii | 136.0 (7) |
O13—C5—O14 | 129.4 (4) | O12vii—Rb24—O13v | 147.2 (5) |
C3—C6—O15 | 115.3 (5) | O12vii—Rb24—O14 | 81.4 (6) |
C3—C6—O16 | 114.9 (5) | O13v—Rb24—O14 | 103.4 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) x−1, y, z; (v) −x+1, −y, −z; (vi) −x+1/2, y−1/2, −z+1/2; (vii) −x+3/2, y−1/2, −z+1/2; (viii) x+1/2, −y+3/2, z+1/2; (ix) −x+1/2, y+1/2, −z+1/2; (x) x+3/2, −y+3/2, z+3/2; (xi) x−1/2, −y+3/2, z+1/2. |
C6H7KO8Rb2 | b = 11.846841 Å |
Mr = 417.10 | c = 13.227547 Å |
Monoclinic, P21/n | β = 98.1091° |
Hall symbol: -P 2yn | V = 1140.37 Å3 |
a = 7.350692 Å | Z = 4 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.379147 | 0.393481 | 0.127092 | 0.03533* | |
C2 | 0.297157 | 0.284667 | 0.161900 | 0.02188* | |
C3 | 0.408299 | 0.176847 | 0.153108 | 0.02188* | |
C4 | 0.288255 | 0.078471 | 0.182726 | 0.02188* | |
C5 | 0.337989 | −0.036751 | 0.142957 | 0.03533* | |
C6 | 0.597428 | 0.175190 | 0.221702 | 0.03533* | |
H7 | 0.274230 | 0.294909 | 0.241047 | 0.02844* | |
H8 | 0.163702 | 0.272328 | 0.115834 | 0.02844* | |
H9 | 0.299322 | 0.075476 | 0.265689 | 0.02844* | |
H10 | 0.146079 | 0.097106 | 0.152122 | 0.02844* | |
O11 | 0.275146 | 0.455071 | 0.065511 | 0.03533* | |
O12 | 0.542964 | 0.417971 | 0.163384 | 0.03533* | |
O13 | 0.230948 | −0.074562 | 0.066665 | 0.03533* | |
O14 | 0.476999 | −0.086921 | 0.187735 | 0.03533* | |
O15 | 0.599178 | 0.183712 | 0.317526 | 0.03533* | |
O16 | 0.736783 | 0.160796 | 0.178156 | 0.03533* | |
O17 | 0.439851 | 0.165051 | 0.048570 | 0.03533* | |
H18 | 0.571275 | 0.148706 | 0.051908 | 0.04593* | |
K19 | −0.115873 | 0.442248 | 0.109784 | 0.02929* | |
Rb20 | 0.997078 | 0.165805 | 0.384557 | 0.02929* | |
Rb21 | 0.835191 | −0.069923 | 0.115567 | 0.02929* | |
O25 | 0.393473 | 0.216240 | 0.468716 | 0.12179* | |
H26 | 0.342581 | 0.293118 | 0.460336 | 0.15833* | |
H27 | 0.461303 | 0.202302 | 0.411083 | 0.58330* |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O16 | 0.98 | 1.93 | 2.579 | 122 |
O17—H18···O13i | 0.98 | 2.45 | 3.220 | 136 |
O25—H26···O13ii | 0.99 | 1.68 | 2.660 | 173 |
O25—H27···O15 | 0.98 | 1.72 | 2.700 | 174 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, y+1/2, −z+1/2. |
C6H7KO8Rb2 | b = 11.846841 Å |
Mr = 417.10 | c = 13.227549 Å |
Monoclinic, P21/n | β = 98.1091° |
Hall symbol: -P 2yn | V = 1140.37 Å3 |
a = 7.350692 Å | Z = 4 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.384218 | 0.392861 | 0.126973 | 0.03533* | |
C2 | 0.305212 | 0.282429 | 0.160374 | 0.02188* | |
C3 | 0.419109 | 0.170061 | 0.149253 | 0.02188* | |
C4 | 0.298983 | 0.076671 | 0.177466 | 0.02188* | |
C5 | 0.342101 | −0.038417 | 0.135603 | 0.03533* | |
C6 | 0.608783 | 0.176423 | 0.217478 | 0.03533* | |
H7 | 0.280007 | 0.289357 | 0.239365 | 0.02844* | |
H8 | 0.173856 | 0.268336 | 0.112922 | 0.02844* | |
H9 | 0.309871 | 0.072365 | 0.260330 | 0.02844* | |
H10 | 0.156529 | 0.096601 | 0.148599 | 0.02844* | |
O11 | 0.294864 | 0.443191 | 0.051752 | 0.03533* | |
O12 | 0.531397 | 0.429050 | 0.177561 | 0.03533* | |
O13 | 0.227200 | −0.075640 | 0.061912 | 0.03533* | |
O14 | 0.481315 | −0.091449 | 0.176152 | 0.03533* | |
O15 | 0.610259 | 0.180902 | 0.313492 | 0.03533* | |
O16 | 0.749135 | 0.169196 | 0.173663 | 0.03533* | |
O17 | 0.448775 | 0.168279 | 0.044235 | 0.03533* | |
H18 | 0.579224 | 0.151337 | 0.044285 | 0.04593* | |
Rb19 | −0.113845 | 0.425126 | 0.111367 | 0.02929* | |
K20 | 0.978236 | 0.156277 | 0.385143 | 0.02929* | |
Rb21 | 0.839459 | −0.073164 | 0.110994 | 0.02929* | |
O25 | 0.343562 | 0.206112 | 0.429428 | 0.12179* | |
H26 | 0.316358 | 0.287413 | 0.435388 | 0.15833* | |
H27 | 0.438648 | 0.197642 | 0.384416 | 0.5833* |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O16 | 0.98 | 1.98 | 2.596 | 118 |
O25—H26···O13i | 0.99 | 1.66 | 2.648 | 177 |
O25—H27···O15 | 0.99 | 1.69 | 2.671 | 177 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
C6H7KO8Rb2 | b = 11.846841 Å |
Mr = 417.10 | c = 13.227549 Å |
Monoclinic, P21/n | β = 98.1091° |
Hall symbol: -P 2yn | V = 1140.37 Å3 |
a = 7.350692 Å | Z = 4 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.384640 | 0.395404 | 0.135647 | 0.03533* | |
C2 | 0.297849 | 0.285289 | 0.163395 | 0.02188* | |
C3 | 0.407572 | 0.177871 | 0.151465 | 0.02188* | |
C4 | 0.288381 | 0.079456 | 0.181825 | 0.02188* | |
C5 | 0.330118 | −0.032430 | 0.134234 | 0.03533* | |
C6 | 0.599433 | 0.176950 | 0.217300 | 0.03533* | |
H7 | 0.271618 | 0.290599 | 0.242332 | 0.02844* | |
H8 | 0.167350 | 0.274630 | 0.114157 | 0.02844* | |
H9 | 0.307767 | 0.072515 | 0.264723 | 0.02844* | |
H10 | 0.144764 | 0.100005 | 0.156692 | 0.02844* | |
O11 | 0.298137 | 0.452327 | 0.063566 | 0.03533* | |
O12 | 0.534747 | 0.425208 | 0.187730 | 0.03533* | |
O13 | 0.213385 | −0.065891 | 0.060067 | 0.03533* | |
O14 | 0.473694 | −0.085091 | 0.170046 | 0.03533* | |
O15 | 0.605990 | 0.187134 | 0.313101 | 0.03533* | |
O16 | 0.736153 | 0.162119 | 0.171402 | 0.03533* | |
O17 | 0.433433 | 0.166966 | 0.045915 | 0.03533* | |
H18 | 0.563251 | 0.147163 | 0.047130 | 0.04593* | |
Rb19 | −0.115589 | 0.436888 | 0.115484 | 0.02929* | |
Rb20 | 0.997021 | 0.166511 | 0.381875 | 0.02929* | |
K21 | 0.826737 | −0.066349 | 0.111425 | 0.02929* | |
O25 | 0.389886 | 0.220556 | 0.456407 | 0.12179* | |
H26 | 0.349411 | 0.300046 | 0.455368 | 0.15833* | |
H27 | 0.463621 | 0.210092 | 0.400608 | 0.15833* |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O16 | 0.98 | 1.94 | 2.582 | 121 |
O25—H26···O13i | 0.99 | 1.66 | 2.642 | 173 |
O25—H27···O15 | 0.98 | 1.69 | 2.669 | 175 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.
References
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bravais, A. (1866). Études Cristallographiques. Paris: Gauthier Villars. Google Scholar
Burns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137–138. CSD CrossRef IUCr Journals Web of Science Google Scholar
Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067–8071. CSD CrossRef CAS Web of Science Google Scholar
Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cigler, A. J. & Kaduk, J. A. (2019a). Acta Cryst. E75, 223–227. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cigler, A. J. & Kaduk, J. A. (2019b). Acta Cryst. E75, 432–437. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410–413. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cigler, A. J. & Kaduk, J. A. (2020). Acta Cryst. E76. Submitted (hb7906). CrossRef IUCr Journals Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systems (2019). Materials Studio, BIOVIA, San Diego, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360. Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317. Web of Science CrossRef CAS Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Gonzalez, D., Golab, J. T., Cigler, A. J. & Kaduk, J. A. (2020). Acta Cryst. C76, 706–715. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Louër, D. & Boultif, A. (2014). Powder Diffr. 29, S7–S12. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459. Web of Science CrossRef CAS PubMed Google Scholar
Rammohan, A. & Kaduk, J. A. (2017). Acta Cryst. E73, 227–230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.