research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structures of dipotassium rubidium citrate monohydrate, K2RbC6H5O7(H2O), and potassium dirubidium citrate monohydrate, KRb2C6H5O7(H2O), from laboratory X-ray powder diffraction data and DFT calculations

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, North Central College, 131 S. Loomis, St., Naperville IL, 60540, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 May 2020; accepted 27 August 2020; online 4 September 2020)

The crystal structures of the isostructural compounds dipotassium rubidium citrate monohydrate, K2RbC6H5O7(H2O), and potassium dirubidium citrate monohydrate, KRb2C6H5O7(H2O), have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The compounds are isostructural to K3C6H5O7(H2O) and Rb3C6H5O7(H2O), but exhibit different degrees of ordering of the K and Rb cations over the three metal-ion sites. The K and Rb site occupancies correlate well to both the bond-valence sums and the DFT energies of ordered cation systems. The MO6 and MO7 coordination polyhedra share edges to form a three-dimensional framework. The water mol­ecule acts as a donor in two strong charge-assisted O—H⋯O hydrogen bonds to carboxyl­ate groups. The hydroxyl group of the citrate anion forms an intra­molecular hydrogen bond to one of the central carboxyl­ate oxygen atoms.

1. Chemical context

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The study was extended to lithium metal hydrogen citrates in Cigler & Kaduk (2018[Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160-1170.]), to sodium metal hydrogen citrates in Cigler & Kaduk (2019a[Cigler, A. J. & Kaduk, J. A. (2019a). Acta Cryst. E75, 223-227.]), to sodium dirubidium citrates in Cigler & Kaduk (2019b[Cigler, A. J. & Kaduk, J. A. (2019b). Acta Cryst. E75, 432-437.]), to dilithium potassium citrate (Cigler & Kaduk, 2019c[Cigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410-413.]), to lithium dipotassium citrate monohydrate in Cigler & Kaduk (2020[Cigler, A. J. & Kaduk, J. A. (2020). Acta Cryst. E76. Submitted (hb7906).]), and to potassium rubidium hydrogen citrate in Gonzalez et al. (2020[Gonzalez, D., Golab, J. T., Cigler, A. J. & Kaduk, J. A. (2020). Acta Cryst. C76, 706-715.]). These compounds represent further extensions to potassium rubidium citrates. The crystal structure of K3C6H5O7(H2O), Cambridge Structural Database refcode ZZZHVI* has been reported multiple times (Burns & Iball, 1954[Burns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137-138.]; Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.]), and the structure of Rb3C6H5O7(H2O) has been reported by Rammohan & Kaduk (2017[Rammohan, A. & Kaduk, J. A. (2017). Acta Cryst. E73, 227-230.]).

[Scheme 1]

2. Structural commentary

The crystal structures of dipotassium rubidium citrate monohydrate K2RbC6H5O7(H2O), (I)[link], and potassium dirubidium citrate monohydrate KRb2C6H5O7(H2O), (II)[link], have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two compounds are isostructural (Fig. 1[link]). The powder patterns (Fig. 2[link]) and the unit cells show that these compounds are isostructural to K3C6H5O7(H2O) and Rb3C6H5O7(H2O). In each compound, the K and Rb cations are disordered over the three cation sites: in (I)[link], the K/Rb site occupancies are 0.93/0.07, 0.64/0.36, and 0.53/0.47 for the K19/Rb20, K21/Rb22 and K23/Rb24 sites, respectively and in (II)[link] the refined K/Rb occupancies are 0.62/0.38, 0.39/0.61 and 0.36/0.64 for the same metal sites. The refined site occupancies correlate well to the bond-valence sums calculated for K and Rb at each cation site (Fig. 3[link]). DFT calculations on ordered cation systems show that in (I)[link] occupation of site 19 by Rb is disfavored by 0.19 kcal mol−1, while in (II)[link] occupation of this site by K is favored by 0.28 kcal mol−1. These trends are consistent with the refined occupancies, but the energy differences are within the expected errors for such calculations.

[Figure 1]
Figure 1
Overlay of the crystal structures of (I)[link] and (II)[link], viewed approximately down the a-axis direction.
[Figure 2]
Figure 2
Comparison of the X-ray powder patterns (Mo Kα radiation) of K3C6H5O7(H2O), K2RbC6H5O7(H2O), KRb2C6H5O7(H2O), and Rb3C6H5O7(H2O).
[Figure 3]
Figure 3
Correlations between the refined K and Rb site occupancies in (K,Rb)3C6H5O7(H2O) and the bond valence sums for each cation at each of the three potential sites.

For (I)[link], the root-mean-square Cartesian displacement of the non-H atoms of the citrate anion in the disordered refined structure and the ordered DFT-optimized structures is 0.114, 0.080, and 0.079 Å for Rb at site 19, 20, and 21 (Fig. 4[link]). The average absolute difference in the cation positions is 0.085 (29) Å, and the average absolute difference in the position of the water oxygen atom is 0.26 (11) Å. For (II)[link], the similar r.m.s. citrate-atom displacements are 0.077, 0.104, and 0.101 Å (Fig. 5[link]). The average absolute difference in the cation positions is 0.084 (54) Å, and the average absolute difference in the position of the water mol­ecule oxygen atom is 0.28 (14) Å. The good agreement between the disordered refined structures and the ordered DFT-optimized structures provides confidence that the experimental structures are correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]).

[Figure 4]
Figure 4
Comparison of the refined asymmetric unit of (I)[link] (red) and the DFT-optimized structures with Rb at site 19 (blue), site 20 (green), and site 21 (purple).
[Figure 5]
Figure 5
Comparison of the refined asymmetric unit of (II)[link] (red) and the DFT-optimized structures with K at site 19 (blue), site 20 (green), and site 21 (purple).

Most of the citrate anion bond distances, bond angles and torsion angles in the experimental structures fall within the normal range indicated by a Mercury Mogul Geometry Check (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Only the O12—C1—C2 [113.9 (5) and 114.7 (5)°; average = 124 (3)°, Z-score = 3.6 and 3.3] and the O13—C5—C4 angles [114.4 (5) and 115.1 (5)°; average = 124 (5)°, Z-score = 5.1 and 4.8] are flagged as unusual. The citrate anion occurs in the trans, trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]) and is typical for citrate salts of the larger Group 1 cations. The central carboxyl­ate group and the hydroxyl group exhibit small twist angles [O17—C3—C6—O16 torsion angle = −6 (2) and 0.5 (2)°] from the normal planar arrangement. The Mulliken overlap populations indicate that the K—O and Rb—O bonds are ionic. M19/20 is six-coordinate, and M21/22 and M23/24 are seven-coordinate. The water mol­ecule coordinates to M19/20 and M21/22.

There is extensive chelation of the citrate anion to the metal ions. The carboxyl­ate groups O11/O12 and O15/O16 chelate to separate metal cations 21/22. The terminal carboxyl­ate O12 and central carboxyl­ate O15 and O16 oxygen atoms chelate to M23/24 and M19/20. The terminal carboxyl­ate O14 and the central carboxyl­ate O15 and O16 chelate to M19/20 and M23/24. The hydroxyl O17 and terminal carboxyl­ate O11 and O13 chelate to M21/22 and M23/24.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). Études Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) method suggests that we might expect blocky morphology for these two compounds. No preferred orientation model was necessary in the refinement.

3. Supra­molecular features

The MO6 and MO7 coordination polyhedra in both structures share edges to form a three-dimensional framework (Fig. 6[link]). The hydro­phobic methyl­ene group sides of the citrate anions occupy channels in the framework. The hydrogen bonds in the six ordered systems used for the DFT calculations differ slightly but the general pattern is similar: Tables 1[link]–3[link][link] list the geometrical data for (I)[link] with the Rb atom placed at the M19, M21 and M23 sites, respectively and the K atoms occupying the other two sites. Tables 4[link]–6[link][link] present data for (II)[link] with the K atom occupying the M19, M21 and M23 sites, respectively and the Rb atoms occupying the other two sites. The water mol­ecule O25/H26/H27 forms strong charge-assisted hydrogen bonds to the central carboxyl­ate oxygen atom O15 and the terminal carboxyl­ate O13. The energies of the O—H⋯O hydrogen bonds were calculated using the correlation of Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The hydroxyl group O17 forms an intra­molecular hydrogen bond to the central carboxyl­ate O16. In some of the ordered models, the hydroxyl group also forms an inter­molecular hydrogen bond to the terminal carboxyl­ate O13.

Table 1
Hydrogen-bond geometry (Å, °) for (I) M19[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O16 0.98 1.99 2.598 118
O17—H18⋯O13i 0.98 2.35 3.196 145
O25—H26⋯O13ii 0.99 1.66 2.641 174
O25—H27⋯O15 0.99 1.68 2.662 176
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (I) M20[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O16 0.98 1.96 2.598 118
O17—H18⋯O13i 0.98 2.37 3.203 142
O25—H26⋯O13ii 0.99 1.68 2.662 171
O25—H27⋯O15 0.98 1.72 2.696 176
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (I) M21[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O16 0.98 1.97 2.594 120
O17—H18⋯O13i 0.98 2.33 3.124 138
O25—H26⋯O13ii 0.99 1.66 2.643 175
O25—H27⋯O15 0.98 1.71 2.696 175
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (II) M19[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O16 0.98 1.93 2.579 122
O17—H18⋯O13i 0.98 2.45 3.220 136
O25—H26⋯O13ii 0.99 1.68 2.660 173
O25—H27⋯O15 0.98 1.72 2.700 174
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for (II) M20[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O16 0.98 1.98 2.596 118
O25—H26⋯O13i 0.99 1.66 2.648 177
O25—H27⋯O15 0.99 1.69 2.671 177
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for (II) M21[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O16 0.98 1.94 2.582 121
O25—H26⋯O13i 0.99 1.66 2.642 173
O25—H27⋯O15 0.98 1.69 2.669 175
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 6]
Figure 6
Crystal structure of K2RbC6H5O7(H2O) and KRb2C6H5O7(H2O) (shown for K2RbC6H5O7(H2O)), viewed down the b-axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The powder pattern of K2RbC6H5O7(H2O) was indexed on a primitive monoclinic unit cell having a = 7.2676, b = 11.8499, c = 13.1006 A, β = 98.234°, V = 1116.61 Å3 using DICVOL14 (Louër & Boultif, 2014[Louër, D. & Boultif, A. (2014). Powder Diffr. 29, S7-S12.]). A similar cell was obtained using N-TREOR (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]). Analysis of the systematic absences using EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]) suggested the space group of P21/n. The pattern of KRb2C6H5O7(H2O) was indexed on a similar unit cell using N-TREOR, so the compounds were assumed to be isostructural. Reduced cell searches in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded ten10 hits, including four for K3C6H5O7(H2O), ZZZHVI* (Burns & Iball, 1954[Burns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137-138.]; Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.]; Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]).

5. Synthesis and crystallization

Dipotassium rubidium citrate monohydrate, (I)[link], was synthesized by adding stoichiometric qu­anti­ties of 1.382 g K2CO3 (Sigma–Aldrich) and 1.154 g Rb2CO3 (Sigma–Aldrich) to a solution of 2.03 g citric acid monohydrate (10.0 mmol, Sigma–Aldrich) in 10 ml of water. After the fizzing subsided, the clear solution was dried in a 403 K oven to yield a white solid. Potassium dirubidium citrate monohydrate, (II)[link], was synthesized in the same way starting from 0.691 g of K2CO3 and 2.309 g of Rb2CO3.

6. Refinement

Crystal data, data collection and structure refinement details for (I)[link] are summarized in Table 7[link] (Fig. 7[link]). To minimize Rb fluorescence, the pulse height discriminator lower level of the X'Celerator detector was raised from the default 39.0% to 51.0%. The structure was solved with FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]), using 2 K atoms, 1 Rb atom and a citrate anion as fragments. A Le Bail fit yielded Rwp = 3.73%. Initial refinement did not include the water mol­ecule, and yielded an acceptable fit (Rwp = 4.8%), but the Uiso values of the C atoms in the central part of the mol­ecule were relatively large (∼0.10 Å2). The bond-valence sums of the cations were, however, far too low, showing that the water mol­ecule was indeed present. It was inserted in the position from the known monohydrate structures.

Table 7
Experimental details

  (I) (II)
Crystal data
Chemical formula 2K+·Rb+·C6H5O73−·H2O K+·2Rb+·C6H5O73−·H2O
Mr 365.78 399.97
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 300 300
a, b, c (Å) 7.2407 (10), 11.8145 (3), 13.062 (2) 7.3507 (5), 11.8468 (4), 13.2275 (12)
β (°) 98.334 (7) 98.109 (4)
V3) 1105.56 (9) 1140.37 (6)
Z 4 4
Radiation type Kα1,2, λ = 0.70932, 0.71361 Å Kα1,2, λ = 0.70932, 0.71361 Å
Specimen shape, size (mm) Cylinder, 12 × 0.5 Cylinder, 12 × 0.5
 
Data collection
Diffractometer PANalytical Empyrean PANalytical Empyrean
Specimen mounting Glass capillary Glass capillary
Data collection mode Transmission Transmission
Scan method Step Step
2θ values (°) 2θmin = 1.021 2θmax = 49.985 2θstep = 0.017 2θmin = 1.021 2θmax = 49.985 2θstep = 0.017
 
Refinement
R factors and goodness of fit Rp = 0.026, Rwp = 0.033, Rexp = 0.018, R(F2) = 0.04795, χ2 = 3.549 Rp = 0.024, Rwp = 0.032, Rexp = 0.018, R(F2) = 0.06949, χ2 = 3.426
No. of parameters 70 70
No. of restraints 29 29
H-atom treatment Only H-atom displacement parameters refined Only H-atom displacement parameters refined
(Δ/σ)max 0.205 0.722
Computer programs: FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]), GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), Materials Studio (Dassault Systems, 2019[Dassault Systems (2019). Materials Studio, BIOVIA, San Diego, USA.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 7]
Figure 7
Rietveld plot for (I)[link]. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 3× for 2θ > 26.0°. The row of blue tick marks indicates the calculated reflection positions. The red line is the background curve.

The structure was refined by the Rietveld method using GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]). The hydrogen atoms were included in fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systems, 2019[Dassault Systems (2019). Materials Studio, BIOVIA, San Diego, USA.]). All C—C and C—O bond distances and all bond angles were restrained based on previous citrate structures: C1—C2 = C4—C5 = 1.51 (1) Å, C2—C3 = C3—C4 = 1.54 (1) Å, C3—C6 = 1.55 (1) Å, C3—O17 = 1.42 (3) Å, C(carbox­yl)—O(carbox­yl) = 1.27 (3) Å, C1—C2—C3 = C3—C4—C5 = 115 (3)°, all angles about C3 = 109 (3)°, carboxyl C—C—O = 115 (3)°, and carboxyl O—C—O = 130 (3)°. Each of the three cation sites was modeled as a mixture of K and Rb; the sums of the site occupancies were constrained to be unity, but the total K and Rb contents were not constrained/restrained, to provide an inter­nal consistency check. The Uiso of the atoms in the central and outer portions of the citrate anion were constrained to be equal, and the Uiso of the hydrogen atoms were constrained to be 1.3× those of the atoms to which they are attached. The Uiso of the cations were constrained to be equal. A capillary absorption model (fixed μ.R = 0.84, calculated using the tool on the 11-BM web site) was included into the refinement. A Chebyschev polynomial function with four coefficients, along with a peak at 13.11° to model the scattering of the glass capillary, was used to model the background.

Because DFT techniques cannot accommodate disordered systems, three density functional geometry optimizations (with Rb at each of the three cations sites, and K at the other two) were carried out using CRYSTAL14 (Dovesi et al., 2014[Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287-1317.]). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis sets for K and Rb were those of Peintinger et al. (2013[Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451-459.]). The calculations were run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, using 8 k-points and the B3LYP functional.

Crystal data, data collection and structure refinement details for (II)[link] are summarized in Table 7[link] (Fig. 8[link]). The same solution and refinement strategy as for (I)[link] was followed. Three density functional geometry optimizations (with K at each of the three cations sites, and Rb at the other two) were carried out using CRYSTAL17 (Dovesi et al., 2018[Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.]) with atom basis sets and computer hardware as described in the previous paragraph.

[Figure 8]
Figure 8
Rietveld plot for (II)[link]. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 3× for 2θ > 26.0°. The row of blue tick marks indicates the calculated reflection positions. The red line is the background curve.

Supporting information


Computing details top

Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for (I). Program(s) used to refine structure: GSAS-II (Toby & Von Dreele, 2013) for (I), (II). Molecular graphics: Mercury (Macrae et al., 2020), Materials Studio (Dassault Systems, 2019), DIAMOND (Crystal Impact, 2015) for (I), (II). Software used to prepare material for publication: publCIF (Westrip, 2010) for (I), (II).

Dipotassium rubidium citrate monohydrate (I) top
Crystal data top
2K+·Rb+·C6H5O73·H2OV = 1105.56 (9) Å3
Mr = 365.78Z = 4
Monoclinic, P21/nDx = 2.198 Mg m3
Hall symbol: -P 2yn Kα1,2 radiation, λ = 0.70932, 0.71361 Å
a = 7.2407 (10) ÅT = 300 K
b = 11.8145 (3) Åwhite
c = 13.062 (2) Åcylinder, 12 × 0.5 mm
β = 98.334 (7)°Specimen preparation: Prepared at 403 K
Data collection top
PANalytical Empyrean
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tubeScan method: step
Specimen mounting: Glass capillary2θmin = 1.021°, 2θmax = 49.985°, 2θstep = 0.017°
Refinement top
Least-squares matrix: full29 restraints
Rp = 0.02615 constraints
Rwp = 0.033Only H-atom displacement parameters refined
Rexp = 0.018Weighting scheme based on measured s.u.'s
R(F2) = 0.04795(Δ/σ)max = 0.205
2931 data pointsBackground function: Background function: "chebyschev-1" function with 4 terms: 2307(6), -280(6), 22(5), -43(4), Background peak parameters: pos, int, sig, gam: 10.29(6), 1.13(5)e5, 2.80(23)e4, 0.100,
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 19.949, 12.795, 0.000, 2.075, 0.000, 0.032, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 21847.124, 158.305, 5787.320, 10788.591, 22832.702, -379.772, 23098.342, 3225.801, 2172.138, 1.000,Preferred orientation correction: Spherical Harmonics correction. Order = 2 Model: cylindrical Orientation angles: omega = 0.00; chi = 0.00; phi = 0.00; Coefficients: 0::C(2,0,-2) = -0.0803; 0::C(2,0,0) = 0.1239; 0::C(2,0,2) = 0.2546; Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = 0.0000; 0:0:C(2,0) = 0.0000; 0:0:C(2,2) = 0.0000
70 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.385 (2)0.3957 (7)0.1274 (12)0.033 (4)*
C20.3114 (18)0.2874 (6)0.1675 (13)0.016 (6)*
C30.4195 (10)0.1791 (7)0.1480 (7)0.016*
C40.3077 (19)0.0749 (7)0.1745 (12)0.016*
C50.358 (2)0.0357 (7)0.1277 (11)0.033*
C60.6126 (11)0.1800 (17)0.2170 (9)0.033*
H70.315330.293700.254880.021*
H80.159970.276400.130430.021*
H90.329560.061670.261870.021*
H100.153180.091930.148040.021*
O110.267 (3)0.4511 (11)0.0657 (13)0.033*
O120.535 (2)0.4299 (12)0.1794 (12)0.033*
O130.236 (3)0.0732 (15)0.0569 (13)0.033*
O140.489 (2)0.0890 (10)0.1815 (12)0.033*
O150.6078 (18)0.186 (2)0.3140 (9)0.033*
O160.7512 (13)0.1662 (17)0.1688 (11)0.033*
O170.4449 (16)0.1744 (11)0.0424 (8)0.033*
H180.519300.136500.011100.043*
K190.1246 (11)0.4396 (6)0.1156 (8)0.0280 (14)*0.928
Rb200.12460.43960.11560.0280*0.072
K210.9916 (7)0.1613 (4)0.3832 (5)0.0280*0.645
Rb220.99160.16130.38320.0280*0.355
K230.8338 (8)0.0689 (4)0.1125 (4)0.0280*0.534
Rb240.83380.06890.11250.0280*0.466
O250.374 (3)0.2108 (17)0.4690 (15)0.080 (11)*
H260.341200.282900.458900.104*
H270.447200.205900.419800.104*
Geometric parameters (Å, º) top
C1—C21.5094 (19)K19—O113.00 (2)
C1—O111.269 (5)K19—O11i2.763 (16)
C1—O121.263 (6)K19—O12iv2.714 (19)
C2—C11.5094 (19)K19—O14ix2.711 (18)
C2—C31.5398 (19)K19—O15ix3.05 (3)
C3—C21.5398 (19)Rb20—O113.00 (2)
C3—C41.5398 (19)Rb20—O11i2.763 (13)
C3—C61.5501 (19)Rb20—O12iv2.714 (17)
C3—O171.419 (5)Rb20—O14ix2.711 (15)
C4—C31.5398 (19)Rb20—O15ix3.05 (2)
C4—C51.5100 (19)Rb20—O25viii2.61 (2)
C5—C41.5100 (19)K21—O11vii3.055 (16)
C5—O131.263 (5)K21—O12vii2.852 (15)
C5—O141.261 (5)K21—O14ii3.077 (14)
C6—C31.5501 (19)K21—O152.809 (14)
C6—O151.273 (5)K21—O163.076 (16)
C6—O161.271 (5)K21—O17x2.899 (12)
O11—C11.269 (5)K21—O25iii2.89 (2)
O11—K193.00 (2)Rb22—O11vii3.055 (15)
O11—K19i2.763 (16)Rb22—O12vii2.852 (14)
O11—K21ii3.055 (16)Rb22—O14ii3.077 (13)
O12—C11.263 (6)Rb22—O152.809 (13)
O12—K19iii2.714 (19)Rb22—O163.076 (13)
O12—K21ii2.852 (15)Rb22—O17x2.899 (11)
O12—K23ii2.746 (15)Rb22—O25iii2.89 (2)
O13—C51.263 (5)K23—O12vii2.746 (15)
O13—K23iv3.11 (2)K23—O13iii3.11 (2)
O13—K23v2.766 (19)K23—O13v2.766 (19)
O14—C51.261 (5)K23—O142.784 (16)
O14—K19vi2.711 (18)K23—O15vii3.07 (2)
O14—K21vii3.077 (14)K23—O162.96 (2)
O14—K232.784 (16)K23—O17v2.922 (14)
O15—C61.273 (5)Rb24—O12vii2.746 (15)
O15—K19vi3.05 (3)Rb24—O13iii3.11 (2)
O15—K212.809 (14)Rb24—O13v2.766 (19)
O15—K23ii3.07 (2)Rb24—O142.784 (16)
O16—C61.271 (5)Rb24—O15vii3.07 (2)
O16—K213.076 (16)Rb24—O162.957 (18)
O16—K232.96 (2)Rb24—O17v2.922 (13)
O17—C31.419 (5)O25—K19x2.61 (2)
O17—K21viii2.899 (12)O25—K21iv2.89 (2)
O17—K23v2.922 (14)
C2—C1—O11114.7 (5)O11i—K19—O25viii74.2 (5)
C2—C1—O12113.9 (5)O12iv—K19—O25viii106.8 (6)
O11—C1—O12128.8 (5)O14ix—K19—O25viii126.5 (6)
C1—C2—C3115.7 (5)K19i—K19—O25viii69.1 (5)
C2—C3—C4109.32 (17)K21ix—K19—O25viii123.5 (5)
C2—C3—C6109.59 (17)K21xi—K19—O25viii46.3 (4)
C4—C3—C6109.52 (17)O11i—Rb20—O12iv92.3 (4)
C2—C3—O17109.46 (17)O11i—Rb20—O14ix159.0 (4)
C4—C3—O17109.51 (17)O12iv—Rb20—O14ix84.9 (5)
C6—C3—O17109.43 (17)O11i—Rb20—O25viii74.2 (5)
C3—C4—C5115.7 (5)O12iv—Rb20—O25viii106.8 (6)
C4—C5—O13114.5 (5)O14ix—Rb20—O25viii126.5 (5)
C4—C5—O14114.4 (5)O12vii—Rb22—O1589.0 (6)
O13—C5—O14128.3 (5)O12vii—Rb22—O17x146.8 (4)
C3—C6—O15115.3 (4)O15—Rb22—O17x87.1 (4)
C3—C6—O16114.9 (4)O12vii—Rb22—O25iii109.1 (5)
O15—C6—O16129.5 (5)O15—Rb22—O25iii162.0 (6)
C1—O11—K19i156.8 (15)O17x—Rb22—O25iii78.0 (4)
C1—O12—K19iii126.7 (14)O12vii—K23—O13v142.4 (5)
C1—O12—K23ii132.9 (11)O12vii—Rb24—O13v142.4 (4)
K19iii—O12—K23ii96.1 (6)O12vii—Rb24—O1482.9 (5)
C5—O13—K23v113.6 (12)O13v—Rb24—O14104.0 (4)
C5—O14—K19vi128.2 (8)O12vii—Rb24—O17v142.0 (4)
O11i—K19—O12iv92.3 (5)O13v—Rb24—O17v71.1 (4)
O11i—K19—O14ix159.0 (6)O14—Rb24—O17v68.0 (4)
O12iv—K19—O14ix84.9 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1/2, y1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+1/2, y+3/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+3/2, z+3/2; (xi) x1/2, y+3/2, z+1/2.
(I_19_DFT) top
Crystal data top
C6H7K2O8Rbb = 11.8185 Å
Mr = 370.73c = 13.0617 Å
Monoclinic, P21/nβ = 98.3340°
Hall symbol: -P 2ynV = 1105.95 Å3
a = 7.24070 ÅZ = 4
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3876020.3962470.1344530.03300*
C20.3007520.2850780.1615290.01600*
C30.4141160.1779790.1496080.01600*
C40.2917360.0788930.1783010.01600*
C50.3340030.0345330.1320300.03300*
C60.6079790.1775900.2178530.03300*
H70.2707880.2892620.2408340.02100*
H80.1696920.2738350.1102020.02100*
H90.3068650.0725480.2622500.02100*
H100.1464950.0996770.1508160.02100*
O110.3048600.4506020.0580450.03300*
O120.5339950.4296480.1910700.03300*
O130.2153160.0692160.0569510.03300*
O140.4781720.0880490.1695730.03300*
O150.6120960.1860200.3150930.03300*
O160.7487860.1657080.1730060.03300*
O170.4414990.1694280.0428030.03300*
H180.5724180.1485270.0425480.04300*
Rb190.1155640.4326990.1143770.02800*
K200.0161560.1597110.3848600.02800*
K210.8294100.0707650.1098410.02800*
O250.3546820.2115810.4395750.08000*
H260.3282470.2931380.4460040.10400*
H270.4458030.2035990.3908770.10400*
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O160.981.992.598118
O17—H18···O13i0.982.353.196145
O25—H26···O13ii0.991.662.641174
O25—H27···O150.991.682.662176
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
(I_20_DFT) top
Crystal data top
C6H7K2O8Rbb = 11.81851 Å
Mr = 370.73c = 13.06177 Å
Monoclinic, P21/nβ = 98.3340°
Hall symbol: -P 2ynV = 1105.95 Å3
a = 7.24070 ÅZ = 4
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3810130.3940550.1307080.03300*
C20.2931840.2851320.1624340.01600*
C30.4028980.1765810.1514160.01600*
C40.2800010.0780450.1802940.01600*
C50.3315060.0348360.1367290.03300*
C60.5952450.1731400.2206580.03300*
H70.2710640.2930990.2428880.02100*
H80.1577640.2751940.1148420.02100*
H90.2926730.0729330.2642740.02100*
H100.1354380.0973970.1497470.02100*
O110.2819870.4557430.0649500.03300*
O120.5445210.4187120.1732630.03300*
O130.2230870.0711010.0581550.03300*
O140.4752370.0853890.1800080.03300*
O150.5982090.1861100.3174140.03300*
O160.7352160.1527950.1770580.03300*
O170.4323820.1653510.0451230.03300*
H180.5635940.1435360.0472230.04300*
K190.1150170.4453490.1132680.02800*
Rb200.0026400.1659320.3847270.02800*
K210.8280730.0691280.1161900.02800*
O250.3958790.2168700.4729570.08000*
H260.3488480.2951950.4681490.10400*
H270.4642020.2051580.4141300.10400*
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O160.981.962.598118
O17—H18···O13i0.982.373.203142
O25—H26···O13ii0.991.682.662171
O25—H27···O150.981.722.696176
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
(I_21_DFT) top
Crystal data top
C6H7K2O8Rbb = 11.81851 Å
Mr = 370.73c = 13.06177 Å
Monoclinic, P21/nβ = 98.3340°
Hall symbol: -P 2ynV = 1105.95 Å3
a = 7.24070 ÅZ = 4
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3827790.3950000.1263840.03300*
C20.3031210.2857820.1634560.01600*
C30.4161310.1780710.1525870.01600*
C40.2929700.0791980.1809600.01600*
C50.3407450.0366190.1410340.03300*
C60.6084660.1752580.2224080.03300*
H70.2832060.2953700.2441130.02100*
H80.1660280.2726000.1185200.02100*
H90.3020260.0761700.2649230.02100*
H100.1490420.0985950.1492260.02100*
O110.2768150.4536870.0614030.03300*
O120.5472060.4229370.1641560.03300*
O130.2305330.0740380.0635330.03300*
O140.4791790.0895540.1866800.03300*
O150.6098420.1812470.3197180.03300*
O160.7504510.1628980.1788070.03300*
O170.4468450.1694330.0463540.03300*
H180.5793480.1516030.0477750.04300*
K190.1128540.4369530.1086890.02800*
K200.0129540.1570610.3892840.02800*
Rb210.8374660.0725210.1149620.02800*
O250.3611210.2095550.4524810.08000*
H260.3249950.2902350.4502300.10400*
H270.4464720.1978350.4013250.10400*
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O160.981.972.594120
O17—H18···O13i0.982.333.124138
O25—H26···O13ii0.991.662.643175
O25—H27···O150.981.712.696175
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
Potassium dirubidium citrate monohydrate (II) top
Crystal data top
K+·2Rb+·C6H5O73·H2OV = 1140.37 (6) Å3
Mr = 399.97Z = 4
Monoclinic, P21/nDx = 2.330 Mg m3
Hall symbol: -P 2yn Kα1,2 radiation, λ = 0.70932, 0.71361 Å
a = 7.3507 (5) ÅT = 300 K
b = 11.8468 (4) Åwhite
c = 13.2275 (12) Åcylinder, 12 × 0.5 mm
β = 98.109 (4)°Specimen preparation: Prepared at 403 K
Data collection top
PANalytical Empyrean
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tubeScan method: step
Specimen mounting: glass capillary2θmin = 1.021°, 2θmax = 49.985°, 2θstep = 0.017°
Refinement top
Least-squares matrix: full29 restraints
Rp = 0.02415 constraints
Rwp = 0.032Only H-atom displacement parameters refined
Rexp = 0.018Weighting scheme based on measured s.u.'s
R(F2) = 0.06949(Δ/σ)max = 0.722
2931 data pointsBackground function: Background function: "chebyschev-1" function with 4 terms: 2587(5), -233(6), 10(4), -28(4), Background peak parameters: pos, int, sig, gam: 10.54(5), 1.39(5)e5, 3.08(20)e4, 0.100,
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 19.949, 12.795, 0.000, 2.075, 0.000, 0.032, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 629.894, 666.269, 773.433, -118.805, -89.875, -165.278, 167.735, 57.322, 73.783, 1.000,Preferred orientation correction: Spherical Harmonics correction. Order = 2 Model: cylindrical Orientation angles: omega = 0.00; chi = 0.00; phi = 0.00; Coefficients: 0::C(2,0,-2) = -0.0045; 0::C(2,0,0) = 0.1825; 0::C(2,0,2) = 0.1091; March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
70 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.395 (3)0.3900 (9)0.1268 (15)0.035 (5)*
C20.317 (2)0.2852 (8)0.1695 (15)0.022 (8)*
C30.4170 (10)0.1747 (9)0.1508 (8)0.022*
C40.303 (2)0.0734 (8)0.1788 (14)0.022*
C50.348 (2)0.0379 (9)0.1324 (16)0.035*
C60.6080 (12)0.173 (2)0.2178 (11)0.035*
H70.323180.294120.255750.028*
H80.166420.276630.134420.028*
H90.325180.061080.265130.028*
H100.151060.092670.153530.028*
O110.280 (3)0.4464 (15)0.0661 (16)0.035*
O120.552 (3)0.4191 (15)0.1714 (16)0.035*
O130.229 (3)0.0728 (16)0.0599 (16)0.035*
O140.489 (3)0.0872 (13)0.1775 (16)0.035*
O150.606 (2)0.188 (3)0.3132 (11)0.035*
O160.7441 (14)0.167 (2)0.1683 (15)0.035*
O170.4399 (19)0.1676 (15)0.0464 (9)0.035*
H180.517900.141500.010800.046*
K190.1195 (9)0.4371 (6)0.1136 (6)0.0293 (13)*0.621
Rb200.11950.43710.11360.0293*0.379
K210.9951 (6)0.1642 (5)0.3815 (5)0.0293*0.394
Rb220.99510.16420.38150.0293*0.606
K230.8366 (8)0.0671 (5)0.1150 (5)0.0293*0.356
Rb240.83660.06710.11500.0293*0.644
O250.387 (4)0.205 (3)0.456 (2)0.122 (15)*
H260.347600.271900.458400.159*
H270.460700.206200.411700.159*
Geometric parameters (Å, º) top
C1—C21.5099 (18)O17—K23v2.981 (16)
C1—O111.270 (5)K19—O113.09 (3)
C1—O121.267 (5)K19—O11i2.855 (17)
C2—C11.5099 (18)K19—O12iv2.65 (2)
C2—C31.5403 (18)K19—O14ix2.81 (2)
C3—C21.5403 (18)K19—O25viii2.69 (3)
C3—C41.5402 (18)Rb20—O113.09 (2)
C3—C61.5508 (18)Rb20—O11i2.855 (16)
C3—O171.417 (5)Rb20—O12iv2.65 (2)
C4—C31.5402 (18)Rb20—O14ix2.81 (2)
C4—C51.5104 (18)Rb20—O15ix3.12 (3)
C5—C41.5104 (18)Rb20—O25viii2.69 (3)
C5—O131.270 (5)K21—O11vii3.09 (2)
C5—O141.264 (5)K21—O12vii2.995 (19)
C6—C31.5508 (18)K21—O14ii3.053 (17)
C6—O151.277 (5)K21—O152.890 (16)
C6—O161.272 (5)K21—O17x3.024 (15)
O11—C11.270 (5)K21—O25iii2.95 (3)
O11—K193.09 (3)Rb22—O11vii3.092 (19)
O11—K19i2.855 (17)Rb22—O12vii2.995 (19)
O11—K21ii3.09 (2)Rb22—O14ii3.053 (16)
O12—C11.267 (5)Rb22—O152.890 (15)
O12—K19iii2.65 (2)Rb22—O163.145 (17)
O12—K21ii2.995 (19)Rb22—O17x3.024 (14)
O12—K23ii2.83 (2)Rb22—O25iii2.95 (3)
O13—C51.270 (5)K23—O12vii2.83 (2)
O13—K23iv3.08 (3)K23—O13iii3.08 (3)
O13—K23v2.83 (2)K23—O13v2.83 (2)
O14—C51.264 (5)K23—O142.81 (2)
O14—K19vi2.81 (2)K23—O15vii3.06 (3)
O14—K21vii3.053 (17)K23—O162.96 (2)
O14—K232.81 (2)K23—O17v2.981 (16)
O15—C61.277 (5)Rb24—O12vii2.83 (2)
O15—Rb20vi3.12 (3)Rb24—O13iii3.08 (3)
O15—K212.890 (16)Rb24—O13v2.83 (2)
O15—K23ii3.06 (3)Rb24—O142.81 (2)
O16—C61.272 (5)Rb24—O15vii3.06 (3)
O16—Rb223.145 (17)Rb24—O162.96 (2)
O16—K232.96 (2)Rb24—O17v2.981 (15)
O17—C31.417 (5)O25—K19x2.69 (3)
O17—K21viii3.024 (15)O25—K21iv2.95 (3)
C2—C1—O11114.5 (5)O15—C6—O16129.5 (5)
C2—C1—O12114.7 (5)C1—O12—K19iii134.2 (17)
O11—C1—O12129.2 (5)O12iv—K19—O25viii107.0 (8)
C1—C2—C3115.05 (18)O11i—Rb20—O12iv89.6 (5)
C2—C3—C4109.49 (17)O11i—Rb20—O14ix155.8 (6)
C2—C3—C6109.51 (17)O12iv—Rb20—O14ix84.7 (6)
C4—C3—C6109.52 (17)O11i—Rb20—O25viii72.9 (7)
C2—C3—O17109.43 (17)O12iv—Rb20—O25viii107.0 (8)
C4—C3—O17109.41 (17)O14ix—Rb20—O25viii131.2 (7)
C6—C3—O17109.47 (17)K19i—Rb20—O25viii65.7 (7)
C3—C4—C5115.04 (18)K21ix—Rb20—O25viii122.7 (6)
C4—C5—O13115.1 (5)K21xi—Rb20—O25viii46.7 (6)
C4—C5—O14115.1 (5)K23ix—Rb20—O25viii136.0 (7)
O13—C5—O14129.4 (4)O12vii—Rb24—O13v147.2 (5)
C3—C6—O15115.3 (5)O12vii—Rb24—O1481.4 (6)
C3—C6—O16114.9 (5)O13v—Rb24—O14103.4 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1/2, y1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+1/2, y+3/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+3/2, z+3/2; (xi) x1/2, y+3/2, z+1/2.
(II_19_DFT) top
Crystal data top
C6H7KO8Rb2b = 11.846841 Å
Mr = 417.10c = 13.227547 Å
Monoclinic, P21/nβ = 98.1091°
Hall symbol: -P 2ynV = 1140.37 Å3
a = 7.350692 ÅZ = 4
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3791470.3934810.1270920.03533*
C20.2971570.2846670.1619000.02188*
C30.4082990.1768470.1531080.02188*
C40.2882550.0784710.1827260.02188*
C50.3379890.0367510.1429570.03533*
C60.5974280.1751900.2217020.03533*
H70.2742300.2949090.2410470.02844*
H80.1637020.2723280.1158340.02844*
H90.2993220.0754760.2656890.02844*
H100.1460790.0971060.1521220.02844*
O110.2751460.4550710.0655110.03533*
O120.5429640.4179710.1633840.03533*
O130.2309480.0745620.0666650.03533*
O140.4769990.0869210.1877350.03533*
O150.5991780.1837120.3175260.03533*
O160.7367830.1607960.1781560.03533*
O170.4398510.1650510.0485700.03533*
H180.5712750.1487060.0519080.04593*
K190.1158730.4422480.1097840.02929*
Rb200.9970780.1658050.3845570.02929*
Rb210.8351910.0699230.1155670.02929*
O250.3934730.2162400.4687160.12179*
H260.3425810.2931180.4603360.15833*
H270.4613030.2023020.4110830.58330*
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O160.981.932.579122
O17—H18···O13i0.982.453.220136
O25—H26···O13ii0.991.682.660173
O25—H27···O150.981.722.700174
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
(II_20_DFT) top
Crystal data top
C6H7KO8Rb2b = 11.846841 Å
Mr = 417.10c = 13.227549 Å
Monoclinic, P21/nβ = 98.1091°
Hall symbol: -P 2ynV = 1140.37 Å3
a = 7.350692 ÅZ = 4
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3842180.3928610.1269730.03533*
C20.3052120.2824290.1603740.02188*
C30.4191090.1700610.1492530.02188*
C40.2989830.0766710.1774660.02188*
C50.3421010.0384170.1356030.03533*
C60.6087830.1764230.2174780.03533*
H70.2800070.2893570.2393650.02844*
H80.1738560.2683360.1129220.02844*
H90.3098710.0723650.2603300.02844*
H100.1565290.0966010.1485990.02844*
O110.2948640.4431910.0517520.03533*
O120.5313970.4290500.1775610.03533*
O130.2272000.0756400.0619120.03533*
O140.4813150.0914490.1761520.03533*
O150.6102590.1809020.3134920.03533*
O160.7491350.1691960.1736630.03533*
O170.4487750.1682790.0442350.03533*
H180.5792240.1513370.0442850.04593*
Rb190.1138450.4251260.1113670.02929*
K200.9782360.1562770.3851430.02929*
Rb210.8394590.0731640.1109940.02929*
O250.3435620.2061120.4294280.12179*
H260.3163580.2874130.4353880.15833*
H270.4386480.1976420.3844160.5833*
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O160.981.982.596118
O25—H26···O13i0.991.662.648177
O25—H27···O150.991.692.671177
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(II_21_DFT) top
Crystal data top
C6H7KO8Rb2b = 11.846841 Å
Mr = 417.10c = 13.227549 Å
Monoclinic, P21/nβ = 98.1091°
Hall symbol: -P 2ynV = 1140.37 Å3
a = 7.350692 ÅZ = 4
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3846400.3954040.1356470.03533*
C20.2978490.2852890.1633950.02188*
C30.4075720.1778710.1514650.02188*
C40.2883810.0794560.1818250.02188*
C50.3301180.0324300.1342340.03533*
C60.5994330.1769500.2173000.03533*
H70.2716180.2905990.2423320.02844*
H80.1673500.2746300.1141570.02844*
H90.3077670.0725150.2647230.02844*
H100.1447640.1000050.1566920.02844*
O110.2981370.4523270.0635660.03533*
O120.5347470.4252080.1877300.03533*
O130.2133850.0658910.0600670.03533*
O140.4736940.0850910.1700460.03533*
O150.6059900.1871340.3131010.03533*
O160.7361530.1621190.1714020.03533*
O170.4334330.1669660.0459150.03533*
H180.5632510.1471630.0471300.04593*
Rb190.1155890.4368880.1154840.02929*
Rb200.9970210.1665110.3818750.02929*
K210.8267370.0663490.1114250.02929*
O250.3898860.2205560.4564070.12179*
H260.3494110.3000460.4553680.15833*
H270.4636210.2100920.4006080.15833*
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O160.981.942.582121
O25—H26···O13i0.991.662.642173
O25—H27···O150.981.692.669175
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.

References

First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBravais, A. (1866). Études Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBurns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137–138.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCarrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067–8071.  CSD CrossRef CAS Web of Science Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2019a). Acta Cryst. E75, 223–227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2019b). Acta Cryst. E75, 432–437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410–413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2020). Acta Cryst. E76. Submitted (hb7906).  CrossRef IUCr Journals Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systems (2019). Materials Studio, BIOVIA, San Diego, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.  Google Scholar
First citationDovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.  Web of Science CrossRef CAS Google Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGonzalez, D., Golab, J. T., Cigler, A. J. & Kaduk, J. A. (2020). Acta Cryst. C76, 706–715.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLouër, D. & Boultif, A. (2014). Powder Diffr. 29, S7–S12.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017). Acta Cryst. E73, 227–230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds