2. Structural commentary
The crystal structure of (I) was solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. (Fig. 1) The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld refined and DFT-optimized structures is 0.062 Å (Fig. 2) The absolute difference in the position of the Mg cation in the unit cell is 0.055 Å. The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014): the rest of the discussion will emphasize the DFT-optimized structure. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2020). The citrate anion occurs in the trans, trans-conformation (about C2—C3 and C3—C4, respectively), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018). The central carboxylate group and the hydroxyl group exhibit a significant twist [O17—C3—C6—O15 = −15.6°] from the normal planar arrangement.
| Figure 1 The expanded asymmetric unit of (I) with the atom numbering and 50% probability spheroids. Symmetry-generated atoms [Mg19(x, y, z − 1) and O13(x, y, z + 1)] are linked by dashed bonds. |
| Figure 2 Comparison of the refined and optimized structures of (I). The refined structure is in red, and the DFT-optimized structure is in blue. |
The Mg cation in (I) is six-coordinate (octahedral); the ligands are three carboxylate oxygen atoms, the citrate hydroxyl group, and two cis water molecules. The Mulliken overlap populations indicate that the Mg—O bonds have significant covalent character. The Mg bond-valence sum is 2.22. The citrate anion triply chelates to the Mg cation through the terminal carboxylate O14, the central carboxylate O15, and the hydroxyl group O17 oxygen atoms.
The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) method suggests that we might expect platy morphology for magnesium hydrogen citrate dihydrate, with {200} as the major faces. A 4th order spherical harmonic model was included in the refinement. The texture index was 1.000 (0), indicating that preferred orientation was not significant in this rotated capillary specimen.
The crystal structure of (II) was solved and refined in the same way (Fig. 3) The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld refined and DFT-optimized structures is 0.043 Å (Fig. 4). The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014) and this discussion will emphasize the DFT-optimized structure. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2020). The citrate anion occurs in the trans, gauche-conformation (about C2—C3 and C3—C4, respectively), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018). The central carboxylate group and the hydroxyl group exhibit a significant twist [O17—C3—C6—O16 = 10.6°] from the normal planar arrangement.
| Figure 3 The asymmetric unit of (II) with the atom numbering and 50% probability spheroids. |
| Figure 4 Comparison of the refined and optimized structures of (II). The refined structure is in red, and the DFT-optimized structure is in blue. |
The magnesium cation in (II) is six-coordinate (octahedral) and resides on a twofold axis; the ligands are two cis hydroxyl groups and 4 central carboxylate groups O16. Ionizing the central carboxylate group of citric acid first is the normal pattern (Rammohan & Kaduk, 2018). The Mulliken overlap populations indicate that the Mg—O bonds have significant covalent character and the Mg bond-valence sum is 2.12. The citrate anion doubly chelates to the Mg cation through the hydroxyl group O17 and the central carboxylate group O16.
The Bravais–Friedel–Donnay–Harker method suggests that we might expect elongated morphology for crystals of (II), with [001] as the long axis. A 2nd order spherical harmonic model was included in the refinement. The texture index was 1.004 (0), indicating that preferred orientation was not significant in this rotated capillary specimen.
The root-mean-square Cartesian displacement of the non-hydrogen atoms in the reported and DFT-optimized structures of magnesium citrate decahydrate (MGCITD), [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2 are 0.016 Å for the hexaaqua cation and 0.030 Å for the citrate complex, confirming the excellent quality of the Johnson (1965) single-crystal structure. The citrate anion occurs in the trans, trans conformation. In Group 1 citrates, the trans, gauche conformation is more common for salts of the smaller alkali metals, and the trans, trans conformation is prevalent for the larger cations. Already with three Mg citrates, we see that the structures are more complicated. The torsion angle between the hydroxyl group and the central carboxylate is only −4.8°. The citrate triply chelates to a Mg through the hydroxyl group, the central carboxylate group, and one of the terminal carboxylate groups.
3. Supramolecular features
The MgO6 coordination polyhedra in (I) are isolated (Fig. 5). The crystal structure is characterized by layers parallel to the bc-plane. The un-ionized carboxylic acid O12—H26 forms a strong charge-assisted hydrogen bond to the central carboxylate group O16. The hydroxyl group O17—H18 also acts as a donor to O16. All four protons of the water molecules act as donors in O—H⋯O hydrogen bonds. Three of them involve ionized carboxylate groups, and the fourth is to the other water molecule. (Table 1).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O12—H26⋯O16i | 1.00 | 1.64 | 2.614 | 161 | O17—H18⋯O16ii | 1.00 | 1.69 | 2.682 | 176 | O20—H22⋯O21iii | 0.98 | 1.82 | 2.795 | 171 | O20—H23⋯O13iii | 0.98 | 1.89 | 2.844 | 166 | O21—H24⋯O15ii | 1.00 | 1.69 | 2.666 | 166 | O21—H25⋯O14iv | 0.99 | 1.81 | 2.792 | 174 | Symmetry codes: (i) ; (ii) x, y-1, z; (iii) ; (iv) . | |
| Figure 5 The crystal structure of (I), viewed down the b axis. |
The MgO6 octahedra in (II) share edges to form chains propagating along the c-axis direction (Fig. 6). The two un-ionized terminal carboxylic acid groups form centrosymmetric R22(8) loops, which link the citrate anions into chains along the c-axis direction. The hydroxyl group O17 forms an intermolecular hydrogen bond to the central carboxylate O15. The energies of the O—H⋯O hydrogen bonds were calculated using the correlation of Rammohan & Kaduk (2018). Weak C—H⋯O hydrogen bonds are also present (Table 2).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O11—H21⋯O12i | 1.02 | 1.55 | 2.567 | 179 | O14—H20⋯O13ii | 1.01 | 1.64 | 2.640 | 176 | O17—H18⋯O15iii | 0.99 | 1.72 | 2.708 | 174 | C4—H9⋯O13iv | 1.10 | 2.57 | 3.580 | 152 | C4—H10⋯O15v | 1.09 | 2.47 | 3.522 | 161 | Symmetry codes: (i) -x, -y+1, -z; (ii) ; (iii) x, y, z+1; (iv) ; (v) . | |
| Figure 6 The crystal structure of (II), viewed down the c axis. |
In magnesium citrate decahydrate (MGCITD), [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2, the MgO6 octahedra are isolated (Fig. 7). All of the H atoms of the water molecules act as donors in O—H⋯O hydrogen bonds. The hydroxyl group forms bifurcated hydrogen bonds: one intramolecular to the terminal carboxylate O24 and the other intermolecular to the terminal carboxylate O28.
| Figure 7 The crystal structure of [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2, (MGCITD) viewed down the b axis. |
5. Synthesis and crystallization
To prepare (I), magnesium hydrogen citrate dihydrate was synthesized by dissolving 2.0798 g (10.0 mmol) of H3C6H5O7(H2O) in 10 ml of water, and adding 0.8427 g (10.0 mmol) of `MgCO3' to the clear solution [the magnesium carbonate reagent was actually Mg5(CO3)4(OH)2]. After slow fizzing, a clear colorless solution was obtained. This solution was dried in a 333 K oven to yield (I) as a white solid.
Compound (II) was obtained from the scale [94.5 (1) wt% magnesian calcite Ca0.84Mg0.16CO3, 5.3 (4) wt% brucite Mg(OH)2, and 0.2 (1) wt% vaterite polymorph of CaCO3] in a Megahome water still. The still was cleaned by filling the tank with tap water (from Lake Michigan), adding several tablespoons of citric acid monohydrate, and boiling for ∼2 h. The pale-yellow solution was decanted into a plastic pail, and allowed to evaporate at ambient conditions. Over five months, several white solids (calcium citrates, which will be discussed in another paper) crystallized, and were isolated. After five months, a clear yellow syrup remained. This was dried at 423 K to yield (II) as a white powder.
6. Refinement
Crystal data, data collection and structure refinement details for (I) are summarized in Table 3. A laboratory powder pattern, measured using Cu Kα radiation, was indexed using DICVOL (Louër & Boultif, 2007) as incorporated into FOX (Favre-Nicolin & Černý, 2002) on a primitive orthorhombic cell with a = 26.9042 (24), b = 5.9323 (4), c = 6.1649 (5) Å, V = 985.27 (17) Å3, and Z = 4. Attempts to solve the structure with multiple programs using the laboratory data were unsuccessful. The powder pattern measured at 11-BM using a wavelength of 0.413070 Å was indexed on a primitive orthorhombic cell with DICVOL as incorporated into FOX: a = 26.91159 (14), b = 5.92442 (2), c = 6.15170 (2) Å, V = 980.800 (7) Å3, and Z = 4. The Space Group Explorer suggested Pna21, which was confirmed by successful solution and refinement of the structure. The structure was solved using Monte Carlo-simulated annealing techniques as implemented in FOX. The scatterers were a citrate anion, a Mg atom, and two O atoms (water molecules). In the best solution, one of the water molecules was too close to a carboxylate oxygen atom, and was discarded. The Mg coordination was 5/6 of an octahedron, so the second water molecule was placed manually using Materials Studio (Dassault Systems, 2019).
| (I) | (II) | Crystal data | Chemical formula | Mg2+·C6H6O72−·2H2O | Mg(H2C6H5O7)2 | Mr | 250.44 | 380.13 | Crystal system, space group | Orthorhombic, Pna21 | Monoclinic, C2/c | Temperature (K) | 295 | 295 | a, b, c (Å) | 26.91181 (13), 5.924517 (17), 6.151787 (18) | 23.26381 (16), 10.97790 (4), 5.924466 (18) | α, β, γ (°) | 90, 90, 90 | 90, 82.5511 (3), 90 | V (Å3) | 980.84 (1) | 1500.267 (6) | Z | 4 | 4 | Radiation type | Synchrotron, λ = 0.41307 Å | Synchrotron, λ = 0.41307 Å | Specimen shape, size (mm) | Cylinder, 3.0 × 1.5 | Cylinder, 3.0 × 1.5 | | Data collection | Diffractometer | APS 11-BM | 11-BM APS | Specimen mounting | Kapton capillary | Kapton capillary | Data collection mode | Transmission | Transmission | Data collection method | Step | Step | θ values (°) | 2θmin = 0.500 2θmax = 49.991 2θstep = 0.001 | 2θmin = 0.500 2θmax = 49.991 2θstep = 0.001 | | Refinement | R factors and goodness of fit | Rp = 0.086, Rwp = 0.110, Rexp = 0.060, χ2 = 3.486 | Rp = 0.098, Rwp = 0.120, Rexp = 0.083, χ2 = 2.16 | No. of parameters | 76 | 60 | No. of restraints | 29 | – | Computer programs: FOX (Favre-Nicolin & Černý, 2002), GSAS-II (Toby & Von Dreele, 2013), Mercury (Macrae et al., 2020), DIAMOND (Crystal Impact, 2015), publCIF (Westrip, 2010). | |
The structure of (I) was refined by the Rietveld method using GSAS-II (Toby & Von Dreele, 2013) (Fig. 8). The initial refinement clarified the presence of extra peaks, which were identified as citric acid (02-061-2110; CITRAC10), which was added as a second phase; its concentration refined to 12.2 wt%. A few very weak peaks indicate the presence of an unidentified impurity. Analysis of potential hydrogen bonding using Mercury (Macrae et al., 2020) made it possible to determine approximate positions for the hydroxyl hydrogen atom H18 and the four water molecule hydrogen atoms. The C1—O12 bond was longer than the other carboxylate distances, and the O12⋯O16i distance was 2.62 Å, making it clear that H26, the proton of the un-ionized carboxyl group, was located on O12. All heavy-atom bond distances and angles of the citrate anion were restrained: C1—C2 = C4—C5 = 1.51 (3), C2—C3 = C3—C4 = 1.54 (3), C3—C6 = 1.55 (3), C3—O17 = 1.42 (3), C1—O11 = 1.22 (3), C1—O12 = 1.32 (3), and the C—O of the ionized carboxylate groups = 1.27 (3) Å, C1—C2—C3 = C3—C4—C5 = 115 (3), the angles around C3 = 109.5 (3), the O—C—C angles of the carboxylate groups = 115 (3), and the O—C—O angles of the carboxylate groups = 130 (3)°. The restraints contributed 1.5% to the final χ2. The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement using Materials Studio. The Uiso values of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3× that of these carbon atoms. The Uiso values of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3× this value. The Uiso values of the O atoms of the water molecules were constrained to be equal, and the Uiso values of their H atoms to be 1.3× this value. The background was described by a four-term shifted Chebyshev polynomial, with a peak at 10.84° to describe the scattering from the Kapton capillary and any amorphous component.
| Figure 8 Rietveld plot for (I). The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 5× for 2θ > 10.0°, and by a factor of 20× for 2θ > 15.0°. The row of blue tick marks indicates the calculated reflection positions, and the red tick marks indicate the peak positions for the citric acid impurity. The red line is the background curve. |
A density functional geometry optimization for (I) (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994), and the basis set for Mg was that of McCarthy & Harrison (1994). The calculation used 8 k-points and the B3LYP functional, and took around four days on a 2.4 GHz PC.
Crystal data, data collection and structure refinement details for (II) are summarized in Table 3. It proved difficult to index the laboratory pattern, though the correct cell was included in hits found by DICVOL06 (Louër & Boultif, 2007). The synchrotron pattern was indexed on a primitive monoclinic unit cell with N-TREOR (Altomare et al., 2013): a = 23.24984 (8), b = 10.97779 (3), c = 5.92449 (1) Å, β = 979.1860 (2)°, V = 1500.241 (8) Å3, and Z = 4. The systematic absences unambiguously determined the space group as P21/c The structure was solved by direct methods using EXPO2009 (Altomare et al., 2013), assuming that it was a Ca salt. During the refinement, the electron density at the metal site and the metal–oxygen bond distances made it clear that it was a Mg salt rather than a Ca compound.
The structure was refined by the Rietveld method using GSAS-II (Toby & Von Dreele, 2013) (Fig. 9). Analysis of the refined structure using PLATON (Spek, 2020) and the Find Symmetry module of Materials Studio (Dassault Systems, 2019) suggested the presence of extra symmetry, and that the true space group was C2/c (transformation matrix 1 0 1 / 0 0 / 0 0 ). The structure was re-refined in this space group, using the strategy described above for (I). The position of the peak in the background was 5.37°.
| Figure 9 Rietveld plot for (II). The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 2× for 2θ > 3.0°, by a factor of 10× for 2θ > 12.0°, and by a factor of 40× for 2θ > 17.0°. The row of blue tick marks indicates the calculated reflection positions. The red line is the background curve. |
A density functional geometry optimization for (II) (fixed experimental unit cell) was carried out using CRYSTAL17 (Dovesi et al., 2018). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994), and the basis set for Mg was that of Peintinger et al. (2013). The calculation used 8 k-points and the B3LYP functional, and took ∼15 h on a 3.54 GHz PC.
A density functional geometry optimization (fixed experimental unit cell) of the structure of magnesium citrate decahydrate (MGCITD) was carried out using CRYSTAL09 (Dovesi et al., 2005). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994), and the basis set for Mg was that of McCarthy & Harrison (1994). The calculation used 8 k-points and the B3LYP functional, and took 11 days on a 2.4 GHz PC.
Supporting information
Program(s) used to refine structure: GSAS-II (Toby & Von Dreele, 2013) for (II).
magnesium hydrogen citrate dihydrate (I)
top Crystal data top Mg2+·C6H6O72−·2H2O | V = 980.84 (1) Å3 |
Mr = 250.44 | Z = 4 |
Orthorhombic, Pna21 | Dx = 1.696 Mg m−3 |
a = 26.91181 (13) Å | Synchrotron radiation |
b = 5.924517 (17) Å | T = 295 K |
c = 6.151787 (18) Å | cylinder, 3.0 × 1.5 mm |
Data collection top APS 11-BM diffractometer | Data collection mode: transmission |
Specimen mounting: Kapton capillary | Scan method: step |
Refinement top Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, G/L mix 19.594, 2586.054, 2128.049, 48.827, -44.218, 6452.631, 1.000, | Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,0) = 0.025(4); 0:0:C(2,2) = -0.025(5) |
29 restraints | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.48943 (13) | 0.7789 (8) | 0.55610 | 0.0202 (4)* | |
C2 | 0.46229 (15) | 0.7167 (7) | 0.3481 (7) | 0.0103 (9)* | |
C3 | 0.40501 (13) | 0.7286 (6) | 0.3574 (9) | 0.0103* | |
C4 | 0.38562 (14) | 0.7010 (7) | 0.1229 (9) | 0.0103* | |
C5 | 0.32959 (12) | 0.6702 (9) | 0.0955 (9) | 0.0202* | |
C6 | 0.38764 (16) | 0.9591 (6) | 0.4509 (10) | 0.0202* | |
H7 | 0.47783 | 0.80849 | 0.21591 | 0.0133* | |
H8 | 0.47190 | 0.53629 | 0.31678 | 0.0133* | |
H9 | 0.39783 | 0.84023 | 0.00853 | 0.0133* | |
H10 | 0.40434 | 0.55040 | 0.03933 | 0.0133* | |
O11 | 0.46605 (12) | 0.8354 (7) | 0.7185 (7) | 0.0202* | |
O12 | 0.53720 (11) | 0.7677 (6) | 0.5337 (8) | 0.0202* | |
O13 | 0.31529 (12) | 0.6138 (6) | −0.0898 (9) | 0.0202* | |
O14 | 0.30170 (12) | 0.6980 (6) | 0.2576 (9) | 0.0202* | |
O15 | 0.35114 (12) | 0.9501 (5) | 0.5750 (9) | 0.0202* | |
O16 | 0.40759 (12) | 1.1313 (6) | 0.3708 (9) | 0.0202* | |
O17 | 0.38526 (12) | 0.5579 (5) | 0.4951 (9) | 0.0202* | |
H18 | 0.39334 | 0.40298 | 0.44299 | 0.0263* | |
Mg19 | 0.31438 (7) | 0.6445 (3) | 0.5864 (8) | 0.0152 (5)* | |
O20 | 0.24223 (12) | 0.7558 (5) | 0.6155 (10) | 0.0183 (8)* | |
O21 | 0.29100 (11) | 0.3095 (5) | 0.5592 (9) | 0.0183* | |
H22 | 0.22860 | 0.77371 | 0.75942 | 0.0238* | |
H23 | 0.22652 | 0.87428 | 0.52100 | 0.0238* | |
H24 | 0.31432 | 0.18972 | 0.57251 | 0.0238* | |
H25 | 0.25819 | 0.26280 | 0.61541 | 0.0238* | |
H26 | 0.55280 | 0.81813 | 0.67454 | 0.0263* | |
Geometric parameters (Å, º) top C1—C2 | 1.519 (4) | O13—C5 | 1.249 (4) |
C1—O11 | 1.227 (4) | O13—Mg19i | 2.000 (4) |
C1—O12 | 1.294 (3) | O14—C5 | 1.259 (4) |
C2—C1 | 1.519 (4) | O14—Mg19 | 2.075 (4) |
C2—C3 | 1.544 (4) | O15—C6 | 1.245 (4) |
C2—H7 | 1.064 | O15—Mg19 | 2.065 (3) |
C2—H8 | 1.117 | O16—C6 | 1.254 (4) |
C3—C2 | 1.544 (4) | O17—C3 | 1.423 (4) |
C3—C4 | 1.543 (4) | O17—H18 | 0.996 |
C3—C6 | 1.553 (4) | O17—Mg19 | 2.054 (4) |
C3—O17 | 1.423 (4) | H18—O17 | 0.996 (3) |
C4—C3 | 1.543 (4) | Mg19—O13ii | 2.000 (4) |
C4—C5 | 1.528 (4) | Mg19—O14 | 2.075 (4) |
C4—H9 | 1.133 | Mg19—O15 | 2.065 (3) |
C4—H10 | 1.147 | Mg19—O17 | 2.054 (4) |
C5—C4 | 1.528 (4) | Mg19—O20 | 2.059 (4) |
C5—O13 | 1.249 (4) | Mg19—O21 | 2.089 (3) |
C5—O14 | 1.259 (4) | O20—Mg19 | 2.059 (4) |
C6—C3 | 1.553 (4) | O20—H22 | 0.964 |
C6—O15 | 1.245 (4) | O20—H23 | 1.005 |
C6—O16 | 1.254 (4) | O21—Mg19 | 2.089 (3) |
H7—C2 | 1.064 | O21—H24 | 0.9507 |
H8—C2 | 1.117 | O21—H25 | 0.988 |
H9—C4 | 1.133 | H22—O20 | 0.964 |
H10—C4 | 1.147 | H23—O20 | 1.005 |
O11—C1 | 1.227 (4) | H24—O21 | 0.950 |
O12—C1 | 1.294 (3) | H25—O21 | 0.988 |
O12—H26 | 1.008 | H26—O12 | 1.008 |
| | | |
C2—C1—O11 | 120.4 (3) | C5—O13—Mg19i | 152.7 (4) |
C2—C1—O12 | 112.0 (3) | C5—O14—Mg19 | 130.8 (3) |
O11—C1—O12 | 127.6 (3) | C6—O15—Mg19 | 115.9 (3) |
C1—C2—C3 | 115.9 (3) | C3—O17—H18 | 112.5 |
C1—C2—H7 | 109.3 | C3—O17—Mg19 | 109.4 (2) |
C3—C2—H7 | 113.4 | H18—O17—Mg19 | 121.41 |
C1—C2—H8 | 105.4 | O13ii—Mg19—O14 | 170.49 (17) |
C3—C2—H8 | 106.3 | O13ii—Mg19—O15 | 96.18 (18) |
H7—C2—H8 | 105.5 | O14—Mg19—O15 | 84.94 (17) |
C2—C3—C4 | 107.3 (3) | O13ii—Mg19—O17 | 103.79 (17) |
C2—C3—C6 | 110.8 (3) | O14—Mg19—O17 | 85.67 (16) |
C4—C3—C6 | 109.7 (3) | O15—Mg19—O17 | 76.40 (14) |
C2—C3—O17 | 111.3 (3) | O13ii—Mg19—O20 | 87.36 (17) |
C4—C3—O17 | 110.8 (3) | O14—Mg19—O20 | 83.15 (17) |
C6—C3—O17 | 107.0 (3) | O15—Mg19—O20 | 100.02 (15) |
C3—C4—C5 | 116.7 (3) | O17—Mg19—O20 | 168.5 (2) |
C3—C4—H9 | 113.9 | O13ii—Mg19—O21 | 89.83 (17) |
C5—C4—H9 | 107.7 | O14—Mg19—O21 | 91.01 (19) |
C3—C4—H10 | 110.7 | O15—Mg19—O21 | 167.16 (18) |
C5—C4—H10 | 106.9 | O17—Mg19—O21 | 91.17 (15) |
H9—C4—H10 | 99.2 | O20—Mg19—O21 | 91.56 (15) |
C4—C5—O13 | 115.9 (3) | Mg19—O20—H22 | 118.30 |
C4—C5—O14 | 119.0 (3) | Mg19—O20—H23 | 124.8 |
O13—C5—O14 | 125.1 (3) | H22—O20—H23 | 107.1 |
C3—C6—O15 | 115.3 (3) | Mg19—O21—H24 | 120.21 |
C3—C6—O16 | 116.2 (3) | Mg19—O21—H25 | 120.48 |
O15—C6—O16 | 127.8 (3) | H24—O21—H25 | 110.6 |
C1—O12—H26 | 107.9 | | |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1. |
Crystal data top C6H10MgO9 | b = 5.9244 Å |
Mr = 250.44 | c = 6.1517 Å |
Orthorhombic, Pna21 | V = 980.80 Å3 |
a = 26.9116 Å | Z = 4 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.48690 | 0.78384 | 0.55610 | 0.03000* | |
C2 | 0.46156 | 0.71131 | 0.34896 | 0.03000* | |
C3 | 0.40476 | 0.72893 | 0.34810 | 0.03000* | |
C4 | 0.38635 | 0.69837 | 0.11128 | 0.03000* | |
C5 | 0.33073 | 0.66732 | 0.08379 | 0.03000* | |
C6 | 0.38608 | 0.95837 | 0.43867 | 0.03000* | |
H7 | 0.47783 | 0.80849 | 0.21591 | 0.039000* | |
H8 | 0.47190 | 0.53629 | 0.31678 | 0.039000* | |
H9 | 0.39783 | 0.84023 | 0.00853 | 0.039000* | |
H10 | 0.40434 | 0.55040 | 0.03933 | 0.039000* | |
O11 | 0.46603 | 0.86068 | 0.71575 | 0.03000* | |
O12 | 0.53597 | 0.75370 | 0.54317 | 0.03000* | |
O13 | 0.31511 | 0.59826 | −0.09886 | 0.03000* | |
O14 | 0.30103 | 0.70296 | 0.24037 | 0.03000* | |
O15 | 0.34967 | 0.95455 | 0.57014 | 0.03000* | |
O16 | 0.40589 | 1.13578 | 0.36647 | 0.03000* | |
O17 | 0.38352 | 0.55877 | 0.48700 | 0.03000* | |
H18 | 0.39334 | 0.40298 | 0.44299 | 0.039000* | |
Mg19 | 0.31266 | 0.64580 | 0.57726 | 0.03000* | |
O20 | 0.24313 | 0.76390 | 0.61354 | 0.03000* | |
O21 | 0.28934 | 0.31025 | 0.54282 | 0.03000* | |
H22 | 0.22860 | 0.77371 | 0.75942 | 0.039000* | |
H23 | 0.22652 | 0.87428 | 0.52100 | 0.039000* | |
H24 | 0.31432 | 0.18972 | 0.57251 | 0.039000* | |
H25 | 0.25819 | 0.26280 | 0.61541 | 0.039000* | |
H26 | 0.55280 | 0.81813 | 0.67454 | 0.039000* | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O12—H26···O16i | 1.00 | 1.64 | 2.614 | 161 |
O17—H18···O16ii | 1.00 | 1.69 | 2.682 | 176 |
O20—H22···O21iii | 0.98 | 1.82 | 2.795 | 171 |
O20—H23···O13iii | 0.98 | 1.89 | 2.844 | 166 |
O21—H24···O15ii | 1.00 | 1.69 | 2.666 | 166 |
O21—H25···O14iv | 0.99 | 1.81 | 2.792 | 174 |
Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) x, y−1, z; (iii) −x+1/2, y+1/2, z+1/2; (iv) −x+1/2, y−1/2, z+1/2. |
Crystal data top C6H8O7 | β = 111.2291 (14)° |
Mr = 192.12 | V = 770.06 (2) Å3 |
Monoclinic, P21/a | Z = 4 |
a = 12.8139 (7) Å | Dx = 1.657 Mg m−3 |
b = 5.62177 (11) Å | T = 295 K |
c = 11.4681 (6) Å | |
Refinement top Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 2.57(4)e3, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.08920 | −0.54280 | 0.39950 | 0.025* | |
C2 | 0.15990 | −0.56050 | 0.32070 | 0.025* | |
C3 | 0.16260 | −0.80550 | 0.26120 | 0.025* | |
C4 | 0.24750 | −0.79220 | 0.19560 | 0.025* | |
C5 | 0.26980 | −1.03280 | 0.15150 | 0.025* | |
C6 | 0.04560 | −0.86720 | 0.16750 | 0.025* | |
H1 | 0.13730 | −0.43320 | 0.25620 | 0.025* | |
H2 | 0.23180 | −0.52200 | 0.37470 | 0.025* | |
H3 | 0.22140 | −0.68820 | 0.12140 | 0.025* | |
H4 | 0.31830 | −0.72800 | 0.25370 | 0.025* | |
H5 | 0.02820 | −0.31480 | 0.49180 | 0.025* | |
H6 | 0.38460 | −1.22410 | 0.16410 | 0.025* | |
H7 | −0.05570 | −0.76850 | 0.01350 | 0.025* | |
H8 | 0.14360 | −1.03130 | 0.36590 | 0.025* | |
O1 | 0.07850 | −0.32830 | 0.43520 | 0.025* | |
O2 | 0.04560 | −0.71880 | 0.42820 | 0.025* | |
O3 | 0.37730 | −1.07600 | 0.18790 | 0.025* | |
O4 | 0.19930 | −1.17200 | 0.09030 | 0.025* | |
O5 | 0.01470 | −0.72840 | 0.06840 | 0.025* | |
O6 | −0.01090 | −1.02400 | 0.18460 | 0.025* | |
O7 | 0.20030 | −0.98600 | 0.35170 | 0.025* | |
Geometric parameters (Å, º) top C1—C2 | 1.4967 | H1—H2 | 1.5397 |
C1—O1 | 1.2966 | H2—C2 | 0.9306 |
C1—O2 | 1.2380 | H2—H1 | 1.5397 |
C2—C1 | 1.4967 | H3—C4 | 0.9857 |
C2—C3 | 1.5430 | H3—H4 | 1.5904 |
C2—H1 | 0.994 | H4—C4 | 0.9795 |
C2—H2 | 0.9306 | H4—H3 | 1.5904 |
C3—C2 | 1.5430 | H5—O1 | 1.0703 |
C3—C4 | 1.5322 | H6—O3 | 0.8916 |
C3—C6 | 1.5349 | H7—O5 | 0.9218 |
C3—O7 | 1.4061 | H8—O7 | 0.8396 |
C4—C3 | 1.5322 | O1—C1 | 1.2966 |
C4—C5 | 1.5072 | O1—H5 | 1.0703 |
C4—H3 | 0.9857 | O2—C1 | 1.2380 |
C4—H4 | 0.9795 | O3—C5 | 1.3093 |
C5—C4 | 1.5072 | O3—H6 | 0.8916 |
C5—O3 | 1.3093 | O4—C5 | 1.2091 |
C5—O4 | 1.2091 | O5—C6 | 1.3158 |
C6—C3 | 1.5349 | O5—H7 | 0.9218 |
C6—O5 | 1.3158 | O6—C6 | 1.2010 |
C6—O6 | 1.2010 | O7—C3 | 1.4061 |
H1—C2 | 0.994 | O7—H8 | 0.8396 |
| | | |
C2—C1—O1 | 114.13 | C3—C4—H3 | 111.932 |
C2—C1—O2 | 122.512 | C5—C4—H3 | 106.793 |
O1—C1—O2 | 123.357 | C3—C4—H4 | 109.352 |
C1—C2—C3 | 116.215 | C5—C4—H4 | 108.511 |
C1—C2—H1 | 108.935 | H3—C4—H4 | 108.048 |
C3—C2—H1 | 111.145 | C4—C5—O3 | 111.401 |
C1—C2—H2 | 104.631 | C4—C5—O4 | 125.664 |
C3—C2—H2 | 109.06 | O3—C5—O4 | 122.935 |
H1—C2—H2 | 106.214 | C3—C6—O5 | 112.508 |
C2—C3—C4 | 107.888 | C3—C6—O6 | 123.044 |
C2—C3—C6 | 109.796 | O5—C6—O6 | 124.445 |
C4—C3—C6 | 110.76 | C1—O1—H5 | 114.406 |
C2—C3—O7 | 111.993 | C5—O3—H6 | 106.888 |
C4—C3—O7 | 106.402 | C6—O5—H7 | 111.033 |
C6—C3—O7 | 109.943 | C3—O7—H8 | 105.778 |
C3—C4—C5 | 112.058 | | |
Magnesium bis(dihydrogen citrate) (II)
top Crystal data top Mg2+·2C6H7O7− | V = 1500.27 (1) Å3 |
Mr = 406.53 | Z = 4 |
Monoclinic, C2/c | Dx = 1.800 Mg m−3 |
a = 23.26381 (16) Å | Synchrotron radiation, λ = 0.41307 Å |
b = 10.97790 (4) Å | T = 295 K |
c = 5.924466 (18) Å | white |
β = 82.5511 (3)° | cylinder, 3.0 × 1.5 mm |
Data collection top APS 11-BM diffractometer | Scan method: step |
Specimen mounting: Kapton capillary | 2θmin = 0.500°, 2θmax = 49.991°, 2θstep = 0.001° |
Data collection mode: transmission | |
Refinement top Least-squares matrix: full | Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 1.163, -0.126, 0.063, 0.000, 0.000, 0.002, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "uniaxial" model (106 * delta Q/Q) anisotropic axis is [0, 0, 1] parameters: equatorial mustrain, axial mustrain, G/L mix 1556(11), 880(8), 1.000, |
Rp = 0.098 | 60 parameters |
Rwp = 0.120 | H-atom parameters not defined? |
Rexp = 0.083 | (Δ/σ)max = 2.829 |
R(F2) = 0.08746 | Background function: Background function: "chebyschev-1" function with 4 terms: 75.08(16), -28.81(26), 8.70(18), -4.70(14), Background peak parameters: pos, int, sig, gam: 5.370(17), 7.52(18)e4, 6.02(27)e3, 0.100, |
49492 data points | Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.0720(26); 0:0:C(2,0) = 0.039(4); 0:0:C(2,2) = 0.1089(29) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.06727 (13) | 0.5905 (3) | 0.0107 (8) | 0.0280 (4)* | |
C2 | 0.12138 (12) | 0.6630 (3) | 0.0408 (6) | 0.0135 (7)* | |
C3 | 0.11122 (10) | 0.7998 (2) | 0.0807 (5) | 0.0135* | |
C4 | 0.16939 (14) | 0.8630 (3) | 0.0995 (5) | 0.0135* | |
C5 | 0.20688 (16) | 0.8168 (3) | 0.2773 (6) | 0.0280* | |
C6 | 0.08530 (15) | 0.8589 (3) | −0.1256 (5) | 0.0280* | |
H7 | 0.14177 | 0.62313 | 0.18170 | 0.0176* | |
H8 | 0.14929 | 0.64867 | −0.11299 | 0.0176* | |
H9 | 0.19616 | 0.85871 | −0.06251 | 0.0176* | |
H10 | 0.16162 | 0.96177 | 0.13684 | 0.0176* | |
O11 | 0.07343 (11) | 0.4733 (2) | 0.0383 (5) | 0.0280* | |
O12 | 0.02252 (12) | 0.6459 (2) | −0.0215 (5) | 0.0280* | |
O13 | 0.20723 (12) | 0.7082 (2) | 0.3239 (4) | 0.0280* | |
O14 | 0.23727 (12) | 0.9021 (2) | 0.3559 (5) | 0.0280* | |
O15 | 0.11197 (12) | 0.8383 (2) | −0.3181 (5) | 0.0280* | |
O16 | 0.04262 (12) | 0.9288 (2) | −0.0762 (4) | 0.0280* | |
O17 | 0.07035 (10) | 0.8186 (2) | 0.2785 (4) | 0.0280* | |
H18 | 0.08676 | 0.82392 | 0.42629 | 0.0364* | |
Mg19 | 0.00000 | 0.93974 (19) | 0.25000 | 0.0202 (7)* | |
H20 | 0.25763 | 0.86212 | 0.48563 | 0.0364* | |
H21 | 0.03540 | 0.42942 | 0.03325 | 0.0364* | |
Geometric parameters (Å, º) top C1—C2 | 1.519 (3) | H10—C4 | 1.1165 |
C1—O11 | 1.308 (3) | O11—C1 | 1.308 (3) |
C1—O12 | 1.241 (3) | O11—H21 | 1.011 (3) |
C2—C1 | 1.519 (3) | O12—C1 | 1.241 (3) |
C2—C3 | 1.534 (3) | O13—C5 | 1.224 (3) |
C2—H7 | 1.1030 | O14—C5 | 1.296 (3) |
C2—H8 | 1.060 | O14—H20 | 1.0500 |
C3—C2 | 1.534 (3) | O15—C6 | 1.247 (3) |
C3—C4 | 1.538 (3) | O16—C6 | 1.259 (3) |
C3—C6 | 1.571 (3) | O16—Mg19 | 2.058 (3) |
C3—O17 | 1.425 (3) | O16—Mg19i | 2.096 (3) |
C4—C3 | 1.538 (3) | O17—C3 | 1.425 (3) |
C4—C5 | 1.538 (3) | O17—H18 | 1.0013 |
C4—H9 | 1.076 | O17—Mg19 | 2.133 (3) |
C4—H10 | 1.1165 | H18—O17 | 1.0013 |
C5—C4 | 1.538 (3) | Mg19—O16 | 2.058 (3) |
C5—O13 | 1.224 (3) | Mg19—O16ii | 2.058 (3) |
C5—O14 | 1.296 (3) | Mg19—O16i | 2.096 (3) |
C6—C3 | 1.571 (3) | Mg19—O16iii | 2.096 (3) |
C6—O15 | 1.247 (3) | Mg19—O17 | 2.133 (3) |
C6—O16 | 1.259 (3) | Mg19—O17ii | 2.133 (3) |
H7—C2 | 1.1030 | H20—O14 | 1.0500 |
H8—C2 | 1.060 | H21—O11 | 1.0110 |
H9—C4 | 1.076 | | |
| | | |
C2—C1—O11 | 113.3 (2) | H9—C4—H10 | 106.22 |
C2—C1—O12 | 119.1 (2) | C4—C5—O13 | 119.8 (2) |
O11—C1—O12 | 127.5 (3) | C4—C5—O14 | 113.1 (2) |
C1—C2—C3 | 114.7 (2) | O13—C5—O14 | 127.1 (3) |
C1—C2—H7 | 108.98 | O15—C6—O16 | 127.4 (3) |
C3—C2—H7 | 110.16 | C1—O11—H21 | 110.75 |
C1—C2—H8 | 104.24 | C5—O14—H20 | 106.25 |
C3—C2—H8 | 110.07 | C6—O16—Mg19 | 121.5 (2) |
H7—C2—H8 | 108.42 | C6—O16—Mg19i | 135.7 (2) |
C2—C3—C4 | 109.49 (13) | Mg19—O16—Mg19i | 102.71 (11) |
C2—C3—O17 | 110.0 (2) | C3—O17—H18 | 115.99 |
C4—C3—O17 | 112.0 (2) | O16—Mg19—O16ii | 173.29 (19) |
C3—C4—C5 | 118.9 (2) | O16—Mg19—O16i | 77.29 (11) |
C3—C4—H9 | 109.19 | O16ii—Mg19—O16i | 107.49 (12) |
C5—C4—H9 | 106.41 | O16—Mg19—O16iii | 107.49 (12) |
C3—C4—H10 | 109.34 | O16ii—Mg19—O16iii | 77.29 (11) |
C5—C4—H10 | 106.05 | O16i—Mg19—O16iii | 92.92 (17) |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x, y, −z+1/2; (iii) x, −y+2, z+3/2. |
Crystal data top C12H12MgO14 | c = 5.924466 Å |
Mr = 380.13 | β = 82.5510° |
Monoclinic, C2/c | V = 1500.25 Å3 |
a = 23.263806 Å | Z = 4 |
b = 10.977897 Å | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.066697 | 0.592918 | 0.019370 | 0.02800* | |
C2 | 0.120835 | 0.663366 | 0.040473 | 0.01350* | |
C3 | 0.111356 | 0.800364 | 0.083233 | 0.01350* | |
C4 | 0.169510 | 0.865519 | 0.103042 | 0.01350* | |
C5 | 0.206049 | 0.815740 | 0.276452 | 0.02800* | |
C6 | 0.086358 | 0.858791 | −0.123082 | 0.02800* | |
H7 | 0.141872 | 0.622809 | 0.175820 | 0.017600* | |
H8 | 0.149980 | 0.650794 | −0.118440 | 0.017600* | |
H9 | 0.196771 | 0.859661 | −0.061861 | 0.017600* | |
H10 | 0.161628 | 0.962195 | 0.135988 | 0.017600* | |
O11 | 0.073635 | 0.474712 | 0.041921 | 0.02800* | |
O12 | 0.020939 | 0.641776 | −0.015759 | 0.02800* | |
O13 | 0.210674 | 0.706317 | 0.318331 | 0.02800* | |
O14 | 0.235389 | 0.900676 | 0.369735 | 0.02800* | |
O15 | 0.112196 | 0.838454 | −0.316242 | 0.02800* | |
O16 | 0.041922 | 0.928258 | −0.075928 | 0.02800* | |
O17 | 0.069907 | 0.823253 | 0.279849 | 0.02800* | |
H18 | 0.086850 | 0.823247 | 0.424908 | 0.036400* | |
Mg19 | 0.00000 | 0.939597 | 0.25000 | 0.020200* | |
H20 | 0.257581 | 0.861395 | 0.484930 | 0.036400* | |
H21 | 0.036202 | 0.428868 | 0.030415 | 0.036400* | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O11—H21···O12i | 1.02 | 1.55 | 2.567 | 179 |
O14—H20···O13ii | 1.01 | 1.64 | 2.640 | 176 |
O17—H18···O15iii | 0.99 | 1.72 | 2.708 | 174 |
C4—H9···O13iv | 1.10 | 2.57 | 3.580 | 152 |
C4—H10···O15v | 1.09 | 2.47 | 3.522 | 161 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1/2, −y+3/2, −z+1; (iii) x, y, z+1; (iv) −x+1/2, −y+3/2, −z; (v) x, −y+2, z+1/2. |
Crystal data top C12H30Mg3O24 | c = 9.1350 Å |
Mr = 631.05 | β = 96.8600° |
Monoclinic, P21/n | V = 1226.25 Å3 |
a = 20.2220 Å | Z = 2 |
b = 6.6860 Å | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.32527 | 0.37608 | −0.21401 | 0.00000* | |
C2 | 0.38451 | 0.45577 | −0.11329 | 0.00000* | |
C3 | 0.36751 | −0.34515 | −0.03946 | 0.00000* | |
C4 | 0.43213 | −0.25338 | 0.03746 | 0.00000* | |
C5 | 0.42398 | −0.06235 | 0.12413 | 0.00000* | |
C6 | 0.31593 | −0.38215 | 0.07191 | 0.00000* | |
H7 | 0.42506 | 0.48305 | −0.17971 | 0.00000* | |
H8 | 0.12316 | 0.09204 | −0.06504 | 0.00000* | |
H9 | 0.10594 | 0.28446 | 0.02046 | 0.00000* | |
H10 | −0.07582 | 0.31823 | 0.03007 | 0.00000* | |
H11 | −0.02225 | 0.33290 | 0.17064 | 0.00000* | |
H12 | 0.13541 | −0.44107 | 0.18391 | 0.00000* | |
H13 | 0.18161 | −0.39965 | 0.06432 | 0.00000* | |
H14 | 0.40011 | 0.34753 | −0.02685 | 0.00000* | |
H15 | 0.46361 | −0.21620 | −0.04831 | 0.00000* | |
H16 | 0.45875 | −0.36309 | 0.11100 | 0.00000* | |
H17 | 0.31484 | −0.27005 | −0.23049 | 0.00000* | |
H18 | 0.21544 | 0.09673 | 0.18783 | 0.00000* | |
H19 | 0.26158 | 0.27605 | 0.15127 | 0.00000* | |
H20 | 0.03218 | −0.25322 | 0.22859 | 0.00000* | |
H21 | 0.08743 | −0.08738 | 0.24278 | 0.00000* | |
Mg22 | 0.00000 | 0.00000 | 0.00000 | 0.00000* | |
Mg23 | 0.28120 | 0.00002 | −0.03838 | 0.00000* | |
O24 | 0.30983 | 0.47427 | −0.33321 | 0.00000* | |
O25 | 0.08758 | 0.15699 | −0.01882 | 0.00000* | |
O26 | −0.04215 | 0.24084 | 0.09404 | 0.00000* | |
O27 | 0.13785 | −0.45485 | 0.07789 | 0.00000* | |
O28 | 0.29211 | 0.23046 | −0.17595 | 0.00000* | |
O29 | 0.47379 | −0.00062 | 0.20839 | 0.00000* | |
O30 | 0.36791 | 0.02758 | 0.10966 | 0.00000* | |
O31 | 0.26375 | −0.27533 | 0.05738 | 0.00000* | |
O32 | 0.32823 | 0.48746 | 0.17156 | 0.00000* | |
O33 | 0.33975 | −0.20083 | −0.14661 | 0.00000* | |
O34 | 0.23596 | 0.16252 | 0.10819 | 0.00000* | |
O35 | 0.04053 | −0.11092 | 0.20610 | 0.00000* | |
Bond lengths (Å) top C1—C2 | 1.517 | H6—O4 | 0.980 |
C1—O1 | 1.278 | H7—O4 | 0.980 |
C1—O5 | 1.255 | H11—O10 | 0.981 |
C2—C3i | 1.549 | H12—O11 | 0.983 |
C2—H1 | 1.092 | H13—O11 | 0.975 |
C2—H8 | 1.090 | H14—O12 | 0.992 |
C3—C2ii | 1.549 | H15—O12 | 0.980 |
C3—C4 | 1.536 | Mg2—O1iii | 2.069 |
C3—C6 | 1.561 | Mg2—O5 | 2.017 |
C3—O10 | 1.440 | Mg2—O7 | 2.091 |
C4—C5 | 1.522 | Mg2—O8 | 2.086 |
C4—H9 | 1.096 | Mg2—O10 | 2.112 |
C4—H10 | 1.092 | Mg2—O11 | 2.026 |
C5—O6 | 1.262 | O1—Mg2iv | 2.069 |
C5—O7 | 1.276 | O2—Mg1 | 2.083 |
C6—O8 | 1.268 | O3—Mg1 | 2.057 |
C6—O9ii | 1.264 | O9—C6i | 1.264 |
H2—O2 | 0.978 | O12—Mg1 | 2.097 |
H3—O2 | 0.980 | Mg1—O2v | 2.083 |
H4—O3 | 0.989 | Mg1—O3v | 2.057 |
H5—O3 | 0.981 | Mg1—O12v | 2.097 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z−1/2; (iv) −x+1/2, y+1/2, −z−1/2; (v) −x, −y, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O35—H21···O32 | 0.980 | 1.868 | 2.831 | 171.6 |
O35—H20···O29 | 0.992 | 1.760 | 2.745 | 171.5 |
O34—H19···O32 | 0.975 | 1.947 | 2.877 | 158.8 |
O34—H18···O32 | 0.983 | 1.798 | 2.780 | 175.3 |
O33—H17···O24 | 0.981 | 1.947 | 2.783 | 141.5 |
O33—H17···O28 | 0.981 | 1.997 | 2.986 | 133.1 |
O27—H13···O31 | 0.980 | 1.865 | 2.841 | 173.3 |
O27—H12···O30 | 0.980 | 1.906 | 2.873 | 168.3 |
O26—H11···O29 | 0.981 | 1.778 | 2.750 | 169.8 |
O26—H10···O27 | 0.989 | 1.756 | 2.745 | 177.6 |
O25—H9···O27 | 0.980 | 1.910 | 2.887 | 174.0 |
O25—H8···O24 | 0.978 | 1.903 | 2.880 | 176.2 |
Acknowledgements
Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. I thank Lynn Ribaud and Saul Lapidus for their assistance in the data collection.
References
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bravais, A. (1866). Études Cristallographiques. Paris: Gauthier Villars. Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systems (2019). Materials Studio, BIOVIA, San Diego, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360. Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573. Web of Science CrossRef CAS Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gates-Rector, S. & Blanton, T. N. (2019). Powder Diffr. 34, 352–360. CAS Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hanawalt, J. D., Rinn, H. & Frevel, L. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457–512. CrossRef CAS Google Scholar
Johnson, C. K. (1965). Acta Cryst. 18, 1004–1018. CSD CrossRef IUCr Journals Web of Science Google Scholar
Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 26, 191–196. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McCarthy, M. I. & Harrison, N. M. (1994). Phys. Rev. B, 49, 8574–8582. CrossRef ICSD CAS Web of Science Google Scholar
Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459. Web of Science CrossRef CAS PubMed Google Scholar
Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access