research communications
O-isopropylidene-α-D-glucofuranose
of 6-azido-6-deoxy-1,2-aDiscipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia, bPriority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia, and cSchool of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
*Correspondence e-mail: michela_simone@yahoo.co.uk
Short syntheses to high Fsp3 index natural-product analogues such as iminosugars are of paramount importance in the investigation of their biological activities and reducing the use of protecting groups is an advantageous synthetic strategy. An isopropylidene group was employed towards the synthesis of seven-membered ring iminosugars and the title compound, C9H15N3O5, was crystallized as an intermediate, in which the THF ring is twisted and the dioxolane ring adopts an the dihedral angle between the rings is 67.50 (13)°. In the crystal, the hydroxyl groups participate in O—H⋯(O,O) and O—H⋯N hydrogen-bonding interactions, which generate chains of molecules propagating parallel to the a-axis direction. There is a notable non-classical C—H⋯O hydrogen bond, which cross-links the [100] chains into (001) sheets.
Keywords: crystal structure; iminosugar; D-glucose; tosylation; azide; regioselectivity; glycosidase inhibition.
CCDC reference: 1968033
1. Chemical context
The installation of various functionalities via N- and/or O-alkylation has been shown to impart improved biological profiles and potencies to iminosugars (Šesták et al., 2018; Prichard et al., 2018; Simone et al., 2012; Sayce et al., 2016, Woodhouse et al., 2008; Johnson & Houston, 2002). Diminishing the number of synthetic steps to the iminosugar building blocks that are precursors to their alkylated congeners is advantageous. Many iminosugar syntheses start from monosaccharide starting materials (Wood et al., 2018; Lee et al., 2012; Rasmussen & Jensen, 2011). Reducing the number of protecting groups and removing the need for purification by are useful strategies to a more expedited synthesis of analogues (Katritzky et al., 1991; Steiner et al., 2009; Liu et al., 2014).
In the present study, the only protecting group that was used to synthesize seven-membered ring iminosugars was an isopropylidene group (acetonide) to make intermediate 1 from D-glucose. Selective tosylation of the primary hydroxyl group, followed by nucleophilic displacement with sodium azide afforded the title compound 3, C9H15N3O5 (Tsuchiya et al., 1981; Fleet et al., 1989), see Scheme 1.
Primary et al., 1963). There are examples of monotosylation of and analogues using di-n-butyltin oxide and dimethylaminopyridine as catalyst (Tsuda et al., 1991) and of cyclodextrins (Yamamura & Fujita, 1991; Ashton et al., 1991; Fujita et al., 1992). Any mechanistic ambiguities that may have arisen from the SN2 reaction with azide ions was clarified by X-ray crystallographic analysis, which confirmed the structure of the title compound as described below.
can be tosylated regioselectively over secondary (Johnson2. Structural commentary
In compound 3 (Fig. 1), the tetrahydrofuran (THF) ring is best described as twisted with atoms C3 and C4 displaced by 0.169 (3) and −0.384 (2) Å, respectively, from the plane through C5/C6/O1. The fused dioxolane ring adopts an with O3 displaced by 0.402 (2) Å from the mean plane of the other ring atoms (C5/C6/O4/C7; r.m.s. deviation = 0.005 Å). The dihedral angle between the five-membered rings (all atoms) is 67.50 (13)°. The hydroxyl group O2—H2A and the acetonide oxygen atom O3 project axially from the THF ring, lying respectively above and below in a trans arrangement from one another [O2—C4—C5—O3 = 164.46 (18)°]. The other two groups projecting from the THF ring are O4 of the acetonide and the side chain attached to C3, which sit equatorially. The of 3 was not definitively established in the but the configurations of the stereogenic atoms (C2 R, C3 R, C4 S, C5 R and C6 R) were set to match those of the starting material.
3. Supramolecular features
There are no intramolecular hydrogen-bonding interactions in 3 but both hydroxyl groups participate in intermolecular hydrogen-bonding interactions (Table 1, Fig. 2), which generate chains propagating parallel to the a-axis direction. The O5 hydroxyl group donates a hydrogen bond to the proximal azide N atom [O5—H5A⋯N1i; H⋯N = 2.12 Å; O—H⋯N = 157°; symmetry code: (i) x − 1, y, z]. The other group (O2) is involved in an asymmetric, bifurcated hydrogen-bond to the THF ring O atom (O2—H2A⋯O1i; 2.09 Å; 154°) and a weaker contact with one of the dioxolane O-atoms (O2—H2A⋯O4i; 2.71 Å; 150°). There is a notable non-classical hydrogen-bond [C6—H6⋯O5ii; 2.38 Å; 159°; symmetry code: (ii) −x, y − , −z + 2], which cross-links the [100] chains into (001) sheets.
4. Database survey
The most closely related 4 (Fig. 3), the 4-cyclopropyl-1,2,3-triazole derivative of compound 3 [Zhang et al., 2013, Cambridge Structural Database (Groom et al., 2016) refcode NINQOS] synthesized from a copper-catalysed azide–alkyne cycloaddition of the tribenzyl ether analogue of 3 followed by deprotection with NH3/NaOH (Pradere et al., 2008). Conversion of the azide to a triazole removes the hydrogen-bonding capability of the proximal N atom and the packing in this structure is distinctly different with a hydrogen-bonded network being present. Other points of difference in structure 4 relative to 3 include the free hydroxyl group on the THF ring, which adopts an axial conformation, and the dioxolane ring methyl groups tilted closer to the THF ring.
in the literature isOther examples of crystal structures of α-D-glucofuranose derivatives constrained by a 1,2-O-isopropylidene or analogous protecting group include: 3-O-ethyl-3-C-nitromethyl-1,2;5,6-di-O-isopropylidene-α-D-glucofuranose (Ivanovs et al., 2016; QENNEF) and 3-O-benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl-6-O-triphenyl-methyl-α-D-glucofuranose and its azide displacement product (Clarke et al., 2018; QIBFUF). A general observation is that groups departing from O-3 take up axial or quasi-axial orientations relative to the THF ring in all cases examined and as is the case for the 3-O-ethyl group in QENNEF and the benzyl groups in QIBFUF and (4R)-4-carbamoyl-4-[(4R)-3-O-benzyl-1,2-O-isopropylidene-β-L-threofuranos-4-C-yl]-oxazolidin-2-one (Steiner et al., 2009) and the tosylate group in 1,2:5,6-di-O-isopropylidene-3-O-toluenesulfonyl-α-D-glucofuranose (Mamat et al., 2012). The impact of perfluorination on the conformation of monosaccharide derivatives was probed on (R/S)-N-benzyl-N-(5-deoxy-1,2-O-isopropylidene-3-O-methyl-α-D-xylofuranos-5-yl)-2,3,3,3-tetrafluoropropanamide and analogous compounds (Bilska-Markowska et al., 2017). The crystal structures of α-D-glucofuranose-1,2:3,5-bis(phenyl)boronate and α-D-glucofuranose-1,2:3,5-bis(p-tolyl)boronate highlight modulation in structures according to a temperature gradient (Chandran & Nangia, 2006). The structure of chloro(cyclopentadienyl)bis(1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-O-yl)titanate provides insight into the use of as ligands in complexes. The titanium atom is bonded to two monosaccharide OH-3, in axial positions, a cyclopentadienyl and a chloride ligand, to take up a three-legged piano stool arrangement (Riediker et al., 1989). The of (R)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-yl-tert-butanesulfinate contains four symmetry-independent molecules with the tert-butyl and glucose moieties turned away from each other in order to minimize steric repulsion (Chelouan et al., 2018).
5. Synthesis and crystallization
1,2-O-Isopropylidene-6-O-p-toluenesulfonyl-α-D-glucofuranose, 2:
A solution of freshly recrystallized tosyl chloride (0.479 g, 2.55 mmol) in DCM (1.6 ml) was added dropwise over 20 min to a stirring solution of 1,2-O-isopropylidene-α-D-glucofuranose 1 (0.513 g, 2.32 mmol) in pyridine (3.8 ml) and DCM (4.2 ml), under an atmosphere of nitrogen. The reaction was stirred at room temperature for 48 h. TLC analysis (EtOAc/cyclohexane 2:3) revealed the formation of one product (Rf = 0.45). After adding DCM (10 ml), the reaction mixture was washed with 1 M HCl (1 ml). The DCM layer was dried to give 1,2-O-isopropylidene-6-O-p-toluenesulfonyl-α-D-glucofuranose 2 (0.282 g, 32%) as an off-white crystalline solid. δH (CDCl3, 400 MHz) 7.79 (2H, d, J = 8.3 Hz, 2 Ar-H), 7.35 (2H, d, J = 8.1 Hz, 2 Ar-H), 5.88 (1H, d, J = 3.6 Hz, H-1), 4.50 (1H, d, J = 3.6 Hz, H-2), 4.36 (1H, d, J = 2.7 Hz, H-3), 4.29 (1H, dd, J = 10.2, 2.5 Hz, H-6), 4.19 (1H, td, J = 7.7, 2.5 Hz, H-5), 4.11 (1H, dd, J = 10.2, 6.8 Hz, H-6′), 4.01 (1H, dd, J = 7.7, 2.7 Hz, H-4), 2.45 (3H, s, Ar—CH3), 1.45, 1.29 (6H, 2 s, 2 acetonide CH3). δC (acetone-d6, 100 MHz): 145.2 (ArCq—S), 132.3 (ArCq—CH3), 130.0 (2 ArC), 128.0 (2 ArC), 111.9 (Cq acetonide), 105.1 (C-1), 85.0 (C-2), 79.4 (C-4), 75.0 (C-3), 72.1 (C-6), 68.0 (C-5), 26.8 (acetonide CH3), 26.2 (acetonide CH3), 21.7 (Ar—CH3); νmax (cm−1): 3426, 3322, 2979, 2928, 1378, 1215, 1162, 1058, 1037, 1007, 962, 883, 850, 673, 657, 626.
6-Azido-6-deoxy-1,2-O-isopropylidene-α-D-glucofuranose, 3:
Sodium azide (0.290 g, 4.46 mmol) was added to a stirring solution of 2 (1.668 g, 4.45 mmol) in DMF (18 ml) at room temperature. The reaction mixture was then heated to 358 K for 42 h. TLC analysis (EtOAc/cyclohexane 2:3) revealed complete consumption of the starting material (Rf = 0.45) and the formation of one product (Rf = 0.30). The crude product was dried and successively dissolved in 1,4-dioxane with addition of hexane to yield an off-white precipitate, which was filtered off. The remaining filtrate contained 6-azido-6-deoxy-1,2-O-isopropylidene-α-D-glucofuranose, 3. Crystallization was achieved overnight at 248 K, after dissolution in diethyl ether with addition of hexane. The ether–hexane solution was recrystallized to obtain 2nd and 3rd crops of product to yield a combined 0.319 g (29%) of product 3 as a white crystalline solid. δH (CDCl3, 400 MHz): 5.95 (1H, d, J = 3.7 Hz, H-1), 4.53 (1H, d, J = 3.6 Hz, H-2), 4.37 (1H, d, J = 2.8 Hz, H-3), 4.16 (1H, td, J = 6.6, 3.6 Hz, H-5), 4.05 (1H, dd, J = 6.6, 2.8 Hz, H-4), 3.61 (1H, dd, J = 12.7, 3.5 Hz, H-6), 3.55 (1H, dd, J = 12.7, 6.5 Hz, H-6′), 1.49, 1.32 (6H, 2 s, 2 acetonide CH3). νmax (cm−1): 3442, 2992, 2938, 2109, 1385, 1376, 1215, 1164, 1066, 1048, 1008, 955, 881, 854, 788, 674.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically (O—H = 0.84, C—H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(O,C) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 1968033
https://doi.org/10.1107/S2056989020012438/hb7940sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020012438/hb7940Isup2.hkl
Data collection: CrysAlis PRO (Rigaku, 2015); cell
CrysAlis PRO (Rigaku, 2015); data reduction: CrysAlis PRO (Rigaku, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C9H15N3O5 | F(000) = 260 |
Mr = 245.24 | Dx = 1.38 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2yb | Cell parameters from 1783 reflections |
a = 5.7615 (4) Å | θ = 6.2–60.6° |
b = 9.7752 (8) Å | µ = 0.97 mm−1 |
c = 10.6833 (9) Å | T = 190 K |
β = 101.255 (8)° | Plate, colourless |
V = 590.11 (8) Å3 | 0.40 × 0.30 × 0.02 mm |
Z = 2 |
Rigaku Xcalibur, EosS2, Gemini ultra diffractometer | 1788 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 1674 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 8.0217 pixels mm-1 | θmax = 61.5°, θmin = 4.2° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku, 2015) | k = −11→10 |
Tmin = 0.741, Tmax = 1 | l = −12→12 |
3705 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.0212P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1788 reflections | Δρmax = 0.13 e Å−3 |
156 parameters | Δρmin = −0.14 e Å−3 |
1 restraint | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.4 (3) |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3329 (4) | 0.6279 (3) | 1.2308 (2) | 0.0428 (6) | |
H1A | 0.3365 | 0.5953 | 1.3189 | 0.051* | |
H1B | 0.4098 | 0.5574 | 1.1863 | 0.051* | |
C2 | 0.0786 (4) | 0.6435 (2) | 1.1633 (2) | 0.0345 (5) | |
H2 | −0.0043 | 0.5539 | 1.1654 | 0.041* | |
C3 | 0.0532 (4) | 0.6893 (3) | 1.0256 (2) | 0.0329 (5) | |
H3 | 0.1366 | 0.7784 | 1.0212 | 0.04* | |
C4 | −0.2022 (4) | 0.6991 (2) | 0.9528 (2) | 0.0340 (5) | |
H4 | −0.2721 | 0.7914 | 0.9614 | 0.041* | |
C5 | −0.1750 (4) | 0.6702 (2) | 0.8164 (2) | 0.0342 (5) | |
H5 | −0.3207 | 0.6292 | 0.7634 | 0.041* | |
C6 | 0.0389 (4) | 0.5759 (3) | 0.8297 (2) | 0.0357 (5) | |
H6 | −0.0087 | 0.4799 | 0.8045 | 0.043* | |
C7 | 0.0728 (4) | 0.7525 (3) | 0.6883 (2) | 0.0393 (6) | |
C8 | 0.2544 (5) | 0.8648 (3) | 0.7005 (3) | 0.0524 (7) | |
H8A | 0.3755 | 0.8406 | 0.6514 | 0.079* | |
H8B | 0.3287 | 0.8765 | 0.7905 | 0.079* | |
H8C | 0.1774 | 0.9504 | 0.6675 | 0.079* | |
C9 | −0.0399 (6) | 0.7197 (4) | 0.5530 (3) | 0.0654 (9) | |
H9A | 0.0828 | 0.6935 | 0.5056 | 0.098* | |
H9B | −0.1246 | 0.8003 | 0.513 | 0.098* | |
H9C | −0.1514 | 0.6438 | 0.5518 | 0.098* | |
N1 | 0.4698 (3) | 0.7562 (3) | 1.2362 (2) | 0.0498 (6) | |
N2 | 0.4455 (3) | 0.8362 (3) | 1.3223 (2) | 0.0464 (5) | |
N3 | 0.4413 (5) | 0.9168 (3) | 1.3977 (3) | 0.0654 (7) | |
O1 | 0.1584 (3) | 0.58380 (19) | 0.95897 (16) | 0.0426 (4) | |
O2 | −0.3347 (3) | 0.5933 (2) | 0.99674 (16) | 0.0460 (4) | |
H2A | −0.4782 | 0.6016 | 0.9625 | 0.069* | |
O3 | −0.0999 (3) | 0.79118 (16) | 0.76079 (15) | 0.0386 (4) | |
O4 | 0.1823 (3) | 0.63255 (19) | 0.74985 (18) | 0.0497 (5) | |
O5 | −0.0267 (3) | 0.74186 (18) | 1.23341 (15) | 0.0390 (4) | |
H5A | −0.1747 | 0.7349 | 1.2142 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0349 (12) | 0.0567 (16) | 0.0369 (12) | 0.0109 (11) | 0.0075 (9) | 0.0070 (11) |
C2 | 0.0268 (11) | 0.0403 (13) | 0.0379 (12) | 0.0022 (10) | 0.0099 (9) | 0.0035 (10) |
C3 | 0.0271 (12) | 0.0395 (12) | 0.0340 (12) | 0.0030 (9) | 0.0105 (9) | −0.0009 (10) |
C4 | 0.0246 (12) | 0.0409 (13) | 0.0376 (12) | 0.0017 (9) | 0.0086 (10) | 0.0029 (10) |
C5 | 0.0257 (12) | 0.0402 (14) | 0.0352 (12) | −0.0063 (9) | 0.0027 (9) | −0.0005 (10) |
C6 | 0.0323 (12) | 0.0412 (13) | 0.0349 (12) | −0.0046 (10) | 0.0094 (9) | −0.0029 (10) |
C7 | 0.0339 (13) | 0.0491 (14) | 0.0368 (13) | 0.0019 (11) | 0.0112 (10) | 0.0015 (11) |
C8 | 0.0435 (14) | 0.0534 (18) | 0.0639 (18) | −0.0069 (12) | 0.0193 (13) | 0.0006 (14) |
C9 | 0.0598 (18) | 0.094 (3) | 0.0432 (16) | −0.0117 (17) | 0.0118 (13) | −0.0108 (15) |
N1 | 0.0259 (11) | 0.0806 (18) | 0.0433 (12) | −0.0012 (10) | 0.0075 (9) | −0.0069 (12) |
N2 | 0.0298 (10) | 0.0663 (16) | 0.0419 (13) | 0.0060 (10) | 0.0042 (9) | 0.0052 (12) |
N3 | 0.0656 (16) | 0.0718 (17) | 0.0578 (16) | 0.0104 (13) | 0.0099 (12) | −0.0061 (15) |
O1 | 0.0278 (8) | 0.0598 (11) | 0.0404 (9) | 0.0128 (8) | 0.0071 (6) | −0.0047 (8) |
O2 | 0.0220 (7) | 0.0654 (11) | 0.0521 (10) | −0.0030 (8) | 0.0110 (7) | 0.0101 (9) |
O3 | 0.0346 (8) | 0.0432 (10) | 0.0396 (9) | 0.0038 (7) | 0.0110 (7) | 0.0045 (7) |
O4 | 0.0467 (10) | 0.0532 (11) | 0.0569 (11) | 0.0106 (8) | 0.0292 (8) | 0.0106 (8) |
O5 | 0.0269 (8) | 0.0532 (11) | 0.0389 (9) | 0.0031 (7) | 0.0113 (7) | −0.0032 (8) |
C1—N1 | 1.477 (4) | C6—O1 | 1.420 (3) |
C1—C2 | 1.509 (3) | C6—H6 | 1 |
C1—H1A | 0.99 | C7—O3 | 1.427 (3) |
C1—H1B | 0.99 | C7—O4 | 1.429 (3) |
C2—O5 | 1.425 (3) | C7—C9 | 1.499 (4) |
C2—C3 | 1.517 (3) | C7—C8 | 1.505 (4) |
C2—H2 | 1 | C8—H8A | 0.98 |
C3—O1 | 1.451 (3) | C8—H8B | 0.98 |
C3—C4 | 1.527 (3) | C8—H8C | 0.98 |
C3—H3 | 1 | C9—H9A | 0.98 |
C4—O2 | 1.419 (3) | C9—H9B | 0.98 |
C4—C5 | 1.522 (3) | C9—H9C | 0.98 |
C4—H4 | 1 | N1—N2 | 1.236 (3) |
C5—O3 | 1.428 (3) | N2—N3 | 1.131 (4) |
C5—C6 | 1.523 (3) | O2—H2A | 0.84 |
C5—H5 | 1 | O5—H5A | 0.84 |
C6—O4 | 1.411 (3) | ||
N1—C1—C2 | 113.2 (2) | O4—C6—C5 | 105.36 (19) |
N1—C1—H1A | 108.9 | O1—C6—C5 | 106.73 (17) |
C2—C1—H1A | 108.9 | O4—C6—H6 | 111.6 |
N1—C1—H1B | 108.9 | O1—C6—H6 | 111.6 |
C2—C1—H1B | 108.9 | C5—C6—H6 | 111.6 |
H1A—C1—H1B | 107.8 | O3—C7—O4 | 105.03 (18) |
O5—C2—C1 | 106.9 (2) | O3—C7—C9 | 111.3 (2) |
O5—C2—C3 | 109.89 (18) | O4—C7—C9 | 109.7 (2) |
C1—C2—C3 | 113.22 (17) | O3—C7—C8 | 107.8 (2) |
O5—C2—H2 | 108.9 | O4—C7—C8 | 108.8 (2) |
C1—C2—H2 | 108.9 | C9—C7—C8 | 113.7 (2) |
C3—C2—H2 | 108.9 | C7—C8—H8A | 109.5 |
O1—C3—C2 | 107.18 (18) | C7—C8—H8B | 109.5 |
O1—C3—C4 | 104.35 (18) | H8A—C8—H8B | 109.5 |
C2—C3—C4 | 114.43 (17) | C7—C8—H8C | 109.5 |
O1—C3—H3 | 110.2 | H8A—C8—H8C | 109.5 |
C2—C3—H3 | 110.2 | H8B—C8—H8C | 109.5 |
C4—C3—H3 | 110.2 | C7—C9—H9A | 109.5 |
O2—C4—C5 | 110.12 (19) | C7—C9—H9B | 109.5 |
O2—C4—C3 | 108.23 (18) | H9A—C9—H9B | 109.5 |
C5—C4—C3 | 101.95 (16) | C7—C9—H9C | 109.5 |
O2—C4—H4 | 112 | H9A—C9—H9C | 109.5 |
C5—C4—H4 | 112 | H9B—C9—H9C | 109.5 |
C3—C4—H4 | 112 | N2—N1—C1 | 115.41 (19) |
O3—C5—C4 | 109.89 (18) | N3—N2—N1 | 173.0 (3) |
O3—C5—C6 | 103.56 (16) | C6—O1—C3 | 110.24 (17) |
C4—C5—C6 | 104.82 (18) | C4—O2—H2A | 109.5 |
O3—C5—H5 | 112.6 | C7—O3—C5 | 107.83 (18) |
C4—C5—H5 | 112.6 | C6—O4—C7 | 110.02 (17) |
C6—C5—H5 | 112.6 | C2—O5—H5A | 109.5 |
O4—C6—O1 | 109.68 (18) | ||
N1—C1—C2—O5 | −60.8 (2) | C4—C5—C6—O1 | −15.1 (2) |
N1—C1—C2—C3 | 60.3 (3) | C2—C1—N1—N2 | 81.8 (3) |
O5—C2—C3—O1 | −178.66 (18) | C1—N1—N2—N3 | 172 (2) |
C1—C2—C3—O1 | 61.9 (3) | O4—C6—O1—C3 | 106.5 (2) |
O5—C2—C3—C4 | −63.5 (3) | C5—C6—O1—C3 | −7.2 (2) |
C1—C2—C3—C4 | 177.1 (2) | C2—C3—O1—C6 | 148.18 (18) |
O1—C3—C4—O2 | 81.9 (2) | C4—C3—O1—C6 | 26.5 (2) |
C2—C3—C4—O2 | −34.9 (3) | O4—C7—O3—C5 | −28.5 (2) |
O1—C3—C4—C5 | −34.2 (2) | C9—C7—O3—C5 | 90.2 (3) |
C2—C3—C4—C5 | −151.02 (19) | C8—C7—O3—C5 | −144.4 (2) |
O2—C4—C5—O3 | 164.46 (17) | C4—C5—O3—C7 | 139.25 (18) |
C3—C4—C5—O3 | −80.8 (2) | C6—C5—O3—C7 | 27.7 (2) |
O2—C4—C5—C6 | −84.8 (2) | O1—C6—O4—C7 | −115.1 (2) |
C3—C4—C5—C6 | 29.9 (2) | C5—C6—O4—C7 | −0.5 (2) |
O3—C5—C6—O4 | −16.5 (2) | O3—C7—O4—C6 | 17.4 (2) |
C4—C5—C6—O4 | −131.67 (19) | C9—C7—O4—C6 | −102.3 (2) |
O3—C5—C6—O1 | 100.11 (19) | C8—C7—O4—C6 | 132.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.84 | 2.09 | 2.871 (2) | 154 |
O2—H2A···O4i | 0.84 | 2.71 | 3.462 (2) | 150 |
O5—H5A···N1i | 0.84 | 2.12 | 2.910 (3) | 157 |
C6—H6···O5ii | 1.00 | 2.38 | 3.332 (3) | 159 |
Symmetry codes: (i) x−1, y, z; (ii) −x, y−1/2, −z+2. |
Funding information
The B18 Project and the University of Newcastle, the Faculty of Science and the Priority Research Centre for Drug Development are gratefully acknowledged for research funding.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Ashton, P. R., Ellwood, P., Staton, I. & Stoddart, J. F. (1991). J. Org. Chem. 56, 7274–7280. CrossRef CAS Google Scholar
Bilska-Markowska, M., Siodla, T., Patyk-Kaźmierczak, S., Katrusiak, A. & Koroniak, H. (2017). New J. Chem. 41, 12631–12644. CAS Google Scholar
Chandran, S. K. & Nangia, A. (2006). CrystEngComm, 8, 581–585. Web of Science CSD CrossRef CAS Google Scholar
Chelouan, A., Bao, S., Friess, S., Herrera, A., Heinemann, F. W., Escalona, A., Grasruck, A. & Dorta, R. (2018). Organometallics, 37, 3983–3992. CSD CrossRef CAS Google Scholar
Clarke, Z., Barnes, E., Prichard, K. L., Mares, L. J., Clegg, J. K., McCluskey, A., Houston, T. A. & Simone, M. I. (2018). Acta Cryst. E74, 862–867. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fleet, G. W. J., Ramsden, N. G. & Witty, D. R. (1989). Tetrahedron, 45, 327–336. CrossRef CAS Google Scholar
Fujita, K. E., Ohta, K., Masunari, K., Obe, K. & Yamamura, H. (1992). Tetrahedron Lett. 33, 5519–5520. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
IUPAC (1996). Pure Appl. Chem. 68, 1919–2008. CrossRef Google Scholar
Ivanovs, I., Bērziņa, S., Lugiņina, J., Belyakov, S. & Rjabovs, V. (2016). Heterocycl. Commun. 22, 95–98. CSD CrossRef CAS Google Scholar
Johnson, L. L. & Houston, T. A. (2002). Tetrahedron Lett. 43, 8905–8908. CrossRef CAS Google Scholar
Johnson, W. S., Collins, J. C., Pappo, R., Rubin, M. B., Kropp, P. J., Johns, W. F., Pike, J. E. & Bartmann, W. (1963). J. Am. Chem. Soc. 85, 1409–1430. CrossRef CAS Google Scholar
Katritzky, A. R., Rachwal, S. & Hitchings, G. J. (1991). Tetrahedron, 47, 2683–2732. CrossRef CAS Google Scholar
Lee, J. C., Francis, S., Dutta, D., Gupta, V., Yang, Y., Zhu, J., Tash, J. S., Schönbrunn, E. & Georg, G. I. (2012). J. Org. Chem. 77, 3082–3098. CSD CrossRef CAS PubMed Google Scholar
Liu, Z., Yoshihara, A., Wormald, M. R., Jenkinson, S. F., Gibson, V., Izumori, K. & Fleet, G. W. J. (2014). Org. Lett. 16, 5663–5665. CrossRef CAS PubMed Google Scholar
Mamat, C., Peppel, T. & Köckerling, M. (2012). Crystals, 2, 105–109. Web of Science CSD CrossRef CAS Google Scholar
Pradere, U., Roy, V., McBrayer, T. R., Schinazi, R. F. & Agrofoglio, L. A. (2008). Tetrahedron, 64, 9044–9051. CrossRef CAS Google Scholar
Prichard, K., Campkin, D., O'Brien, N., Kato, A., Fleet, G. W. J. & Simone, M. I. (2018). Chem. Biol. Drug Des. 92, 1171–1197. CrossRef CAS PubMed Google Scholar
Rasmussen, T. S. & Jensen, H. H. (2011). Carbohydr. Res. 346, 2855–2861. CrossRef CAS PubMed Google Scholar
Riediker, M., Hafner, A., Piantini, U., Rihs, G. & Togni, A. (1989). Angew. Chem. Int. Ed. Engl. 28, 499–500. CSD CrossRef Google Scholar
Rigaku (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sayce, A. C., Alonzi, D. S., Killingbeck, S. S., Tyrrell, B. E., Hill, M. L., Caputo, A. T., Iwaki, R., Kinami, K., Ide, D., Kiappes, J. L., Beatty, P. R., Kato, A., Harris, E., Dwek, R. A., Miller, J. L. & Zitzmann, N. (2016). PLoS Negl. Trop. Dis. 10, e0004524. CrossRef PubMed Google Scholar
Šesták, S., Bella, M., Klunda, T., Gurská, S., Džubák, P., Wöls, F., Wilson, I. B. H., Sladek, V., Hajdúch, M., Poláková, M. & Kóňa, J. (2018). ChemMedChem, 13, 373–383. PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401–408. Web of Science CrossRef CAS Google Scholar
Steiner, A. J., Stütz, A. E., Tarling, C. A., Withers, S. G. & Wrodnigg, T. M. (2009). Aust. J. Chem. 62, 553–557. CrossRef CAS Google Scholar
Steiner, B., Langer, V. & Koóš, M. (2009). Carbohydr. Res. 344, 2079–2082. CSD CrossRef PubMed CAS Google Scholar
Tsuchiya, T., Miyake, T., Kageyama, S., Umezawa, S., Umezawa, H. & Takita, T. (1981). Tetrahedron Lett. 22, 1413–1416. CrossRef CAS Google Scholar
Tsuda, Y., Nishimura, M., Kobayashi, T., Sato, Y. & Kanemitsu, K. (1991). Chem. Pharm. Bull. 39, 2883–2887. CrossRef CAS Google Scholar
Wood, A., Prichard, K. L., Clarke, Z., Houston, T. A., Fleet, G. W. J. & Simone, M. I. (2018). Eur. J. Org. Chem. pp. 6812–6829. CrossRef Google Scholar
Woodhouse, S. D., Smith, C., Michelet, M., Branza-Nichita, N., Hussey, M., Dwek, R. A. & Zitzmann, N. (2008). Antimicrob. Agents Chemother. 52, 1820–1828. CrossRef PubMed CAS Google Scholar
Yamamura, H. & Fujita, K. (1991). Chem. Pharm. Bull. 39, 2505–2508. CrossRef CAS Google Scholar
Zhang, Q., He, P., Zhou, G., Yu, K. & Liu, H. (2013). Acta Cryst. E69, o1386. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.