research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6-azido-6-de­­oxy-1,2-O-iso­propyl­­idene-α-D-gluco­furan­ose

CROSSMARK_Color_square_no_text.svg

aDiscipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia, bPriority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia, and cSchool of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
*Correspondence e-mail: michela_simone@yahoo.co.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 August 2020; accepted 10 September 2020; online 18 September 2020)

Short syntheses to high Fsp3 index natural-product analogues such as imino­sugars are of paramount importance in the investigation of their biological activities and reducing the use of protecting groups is an advantageous synthetic strategy. An iso­propyl­idene group was employed towards the synthesis of seven-membered ring imino­sugars and the title compound, C9H15N3O5, was crystallized as an inter­mediate, in which the THF ring is twisted and the dioxolane ring adopts an envelope conformation: the dihedral angle between the rings is 67.50 (13)°. In the crystal, the hydroxyl groups participate in O—H⋯(O,O) and O—H⋯N hydrogen-bonding inter­actions, which generate chains of mol­ecules propagating parallel to the a-axis direction. There is a notable non-classical C—H⋯O hydrogen bond, which cross-links the [100] chains into (001) sheets.

1. Chemical context

The installation of various functionalities via N- and/or O-alkyl­ation has been shown to impart improved biological profiles and potencies to imino­sugars (Šesták et al., 2018[Šesták, S., Bella, M., Klunda, T., Gurská, S., Džubák, P., Wöls, F., Wilson, I. B. H., Sladek, V., Hajdúch, M., Poláková, M. & Kóňa, J. (2018). ChemMedChem, 13, 373-383.]; Prichard et al., 2018[Prichard, K., Campkin, D., O'Brien, N., Kato, A., Fleet, G. W. J. & Simone, M. I. (2018). Chem. Biol. Drug Des. 92, 1171-1197.]; Simone et al., 2012[Simone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401-408.]; Sayce et al., 2016[Sayce, A. C., Alonzi, D. S., Killingbeck, S. S., Tyrrell, B. E., Hill, M. L., Caputo, A. T., Iwaki, R., Kinami, K., Ide, D., Kiappes, J. L., Beatty, P. R., Kato, A., Harris, E., Dwek, R. A., Miller, J. L. & Zitzmann, N. (2016). PLoS Negl. Trop. Dis. 10, e0004524.], Woodhouse et al., 2008[Woodhouse, S. D., Smith, C., Michelet, M., Branza-Nichita, N., Hussey, M., Dwek, R. A. & Zitzmann, N. (2008). Antimicrob. Agents Chemother. 52, 1820-1828.]; Johnson & Houston, 2002[Johnson, L. L. & Houston, T. A. (2002). Tetrahedron Lett. 43, 8905-8908.]). Diminishing the number of synthetic steps to the imino­sugar building blocks that are precursors to their alkyl­ated con­geners is advantageous. Many imino­sugar syntheses start from monosaccharide starting materials (Wood et al., 2018[Wood, A., Prichard, K. L., Clarke, Z., Houston, T. A., Fleet, G. W. J. & Simone, M. I. (2018). Eur. J. Org. Chem. pp. 6812-6829.]; Lee et al., 2012[Lee, J. C., Francis, S., Dutta, D., Gupta, V., Yang, Y., Zhu, J., Tash, J. S., Schönbrunn, E. & Georg, G. I. (2012). J. Org. Chem. 77, 3082-3098.]; Rasmussen & Jensen, 2011[Rasmussen, T. S. & Jensen, H. H. (2011). Carbohydr. Res. 346, 2855-2861.]). Reducing the number of protecting groups and removing the need for purification by chromatography are useful strategies to a more expedited synthesis of analogues (Katritzky et al., 1991[Katritzky, A. R., Rachwal, S. & Hitchings, G. J. (1991). Tetrahedron, 47, 2683-2732.]; Steiner et al., 2009[Steiner, A. J., Stütz, A. E., Tarling, C. A., Withers, S. G. & Wrodnigg, T. M. (2009). Aust. J. Chem. 62, 553-557.]; Liu et al., 2014[Liu, Z., Yoshihara, A., Wormald, M. R., Jenkinson, S. F., Gibson, V., Izumori, K. & Fleet, G. W. J. (2014). Org. Lett. 16, 5663-5665.]).

[Scheme 1]

In the present study, the only protecting group that was used to synthesize seven-membered ring imino­sugars was an iso­propyl­idene group (acetonide) to make inter­mediate 1 from D-glucose. Selective tosyl­ation of the primary hydroxyl group, followed by nucleophilic displacement with sodium azide afforded the title compound 3, C9H15N3O5 (Tsuchiya et al., 1981[Tsuchiya, T., Miyake, T., Kageyama, S., Umezawa, S., Umezawa, H. & Takita, T. (1981). Tetrahedron Lett. 22, 1413-1416.]; Fleet et al., 1989[Fleet, G. W. J., Ramsden, N. G. & Witty, D. R. (1989). Tetrahedron, 45, 327-336.]), see Scheme 1[link][IUPAC (1996). Pure Appl. Chem. 68, 1919-2008.].

Primary alcohols can be tosyl­ated regioselectively over secondary alcohols (Johnson et al., 1963[Johnson, W. S., Collins, J. C., Pappo, R., Rubin, M. B., Kropp, P. J., Johns, W. F., Pike, J. E. & Bartmann, W. (1963). J. Am. Chem. Soc. 85, 1409-1430.]). There are examples of mono­tosyl­ation of monosaccharides and analogues using di-n-butyl­tin oxide and di­methyl­amino­pyridine as catalyst (Tsuda et al., 1991[Tsuda, Y., Nishimura, M., Kobayashi, T., Sato, Y. & Kanemitsu, K. (1991). Chem. Pharm. Bull. 39, 2883-2887.]) and of cyclo­dextrins (Yamamura & Fujita, 1991[Yamamura, H. & Fujita, K. (1991). Chem. Pharm. Bull. 39, 2505-2508.]; Ashton et al., 1991[Ashton, P. R., Ellwood, P., Staton, I. & Stoddart, J. F. (1991). J. Org. Chem. 56, 7274-7280.]; Fujita et al., 1992[Fujita, K. E., Ohta, K., Masunari, K., Obe, K. & Yamamura, H. (1992). Tetrahedron Lett. 33, 5519-5520.]). Any mechanistic ambiguities that may have arisen from the SN2 reaction with azide ions was clarified by X-ray crystallographic analysis, which confirmed the structure of the title compound as described below.

2. Structural commentary

In compound 3 (Fig. 1[link]), the tetra­hydro­furan (THF) ring is best described as twisted with atoms C3 and C4 displaced by 0.169 (3) and −0.384 (2) Å, respectively, from the plane through C5/C6/O1. The fused dioxolane ring adopts an envelope conformation with O3 displaced by 0.402 (2) Å from the mean plane of the other ring atoms (C5/C6/O4/C7; r.m.s. deviation = 0.005 Å). The dihedral angle between the five-membered rings (all atoms) is 67.50 (13)°. The hydroxyl group O2—H2A and the acetonide oxygen atom O3 project axially from the THF ring, lying respectively above and below in a trans arrangement from one another [O2—C4—C5—O3 = 164.46 (18)°]. The other two groups projecting from the THF ring are O4 of the acetonide and the side chain attached to C3, which sit equatorially. The absolute structure of 3 was not definitively established in the refinement but the configurations of the stereogenic atoms (C2 R, C3 R, C4 S, C5 R and C6 R) were set to match those of the starting material.

[Figure 1]
Figure 1
The mol­ecular structure of 3 showing 50% displacement ellipsoids.

3. Supra­molecular features

There are no intra­molecular hydrogen-bonding inter­actions in 3 but both hydroxyl groups participate in inter­molecular hydrogen-bonding inter­actions (Table 1[link], Fig. 2[link]), which generate chains propagating parallel to the a-axis direction. The O5 hydroxyl group donates a hydrogen bond to the proximal azide N atom [O5—H5A⋯N1i; H⋯N = 2.12 Å; O—H⋯N = 157°; symmetry code: (i) x − 1, y, z]. The other group (O2) is involved in an asymmetric, bifurcated hydrogen-bond to the THF ring O atom (O2—H2A⋯O1i; 2.09 Å; 154°) and a weaker contact with one of the dioxolane O-atoms (O2—H2A⋯O4i; 2.71 Å; 150°). There is a notable non-classical hydrogen-bond [C6—H6⋯O5ii; 2.38 Å; 159°; symmetry code: (ii) −x, y − [{1\over 2}], −z + 2], which cross-links the [100] chains into (001) sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.84 2.09 2.871 (2) 154
O2—H2A⋯O4i 0.84 2.71 3.462 (2) 150
O5—H5A⋯N1i 0.84 2.12 2.910 (3) 157
C6—H6⋯O5ii 1.00 2.38 3.332 (3) 159
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
Partial packing diagram for 3 showing hydrogen bonds as dashed lines.

4. Database survey

The most closely related crystal structure in the literature is 4 (Fig. 3[link]), the 4-cyclo­propyl-1,2,3-triazole derivative of compound 3 [Zhang et al., 2013[Zhang, Q., He, P., Zhou, G., Yu, K. & Liu, H. (2013). Acta Cryst. E69, o1386.], Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode NINQOS] synthesized from a copper-catalysed azide–alkyne cyclo­addition of the tribenzyl ether analogue of 3 followed by deprotection with NH3/NaOH (Pradere et al., 2008[Pradere, U., Roy, V., McBrayer, T. R., Schinazi, R. F. & Agrofoglio, L. A. (2008). Tetrahedron, 64, 9044-9051.]). Conversion of the azide to a triazole removes the hydrogen-bonding capability of the proximal N atom and the packing in this structure is distinctly different with a hydrogen-bonded network being present. Other points of difference in structure 4 relative to 3 include the free hydroxyl group on the THF ring, which adopts an axial conformation, and the dioxolane ring methyl groups tilted closer to the THF ring.

[Figure 3]
Figure 3
Structure of 4 (see text).

Other examples of crystal structures of α-D-gluco­furan­ose derivatives constrained by a 1,2-O-iso­propyl­idene or analog­ous protecting group include: 3-O-ethyl-3-C-nitro­methyl-1,2;5,6-di-O-iso­propyl­idene-α-D-gluco­furan­ose (Ivanovs et al., 2016[Ivanovs, I., Bērziņa, S., Lugiņina, J., Belyakov, S. & Rjabovs, V. (2016). Heterocycl. Commun. 22, 95-98.]; QENNEF) and 3-O-benzyl-1,2-O-iso­propyl­idene-5-O-methane­sulfonyl-6-O-triphenyl-methyl-α-D-gluco­furan­ose and its azide displacement product (Clarke et al., 2018[Clarke, Z., Barnes, E., Prichard, K. L., Mares, L. J., Clegg, J. K., McCluskey, A., Houston, T. A. & Simone, M. I. (2018). Acta Cryst. E74, 862-867.]; QIBFUF). A general observation is that groups departing from O-3 take up axial or quasi-axial orientations relative to the THF ring in all cases examined and as is the case for the 3-O-ethyl group in QENNEF and the benzyl groups in QIBFUF and (4R)-4-carbamoyl-4-[(4R)-3-O-benzyl-1,2-O-iso­propyl­idene-β-L-threo­furanos-4-C-yl]-oxazolidin-2-one (Steiner et al., 2009[Steiner, B., Langer, V. & Koóš, M. (2009). Carbohydr. Res. 344, 2079-2082.]) and the tosyl­ate group in 1,2:5,6-di-O-iso­propyl­idene-3-O-toluene­sulfonyl-α-D-gluco­furan­ose (Mamat et al., 2012[Mamat, C., Peppel, T. & Köckerling, M. (2012). Crystals, 2, 105-109.]). The impact of perfluorination on the conformation of monosaccharide derivatives was probed on (R/S)-N-benzyl-N-(5-de­oxy-1,2-O-iso­propyl­idene-3-O-methyl-α-D-xylo­furanos-5-yl)-2,3,3,3-tetra­fluoro­propanamide and analogous com­pounds (Bilska-Markowska et al., 2017[Bilska-Markowska, M., Siodla, T., Patyk-Kaźmierczak, S., Katrusiak, A. & Koroniak, H. (2017). New J. Chem. 41, 12631-12644.]). The crystal structures of α-D-gluco­furan­ose-1,2:3,5-bis­(phen­yl)boronate and α-D-gluco­furan­ose-1,2:3,5-bis(p-tol­yl)boronate highlight modulation in structures according to a temperature gradient (Chandran & Nangia, 2006[Chandran, S. K. & Nangia, A. (2006). CrystEngComm, 8, 581-585.]). The structure of chloro­(cyclo­penta­dien­yl)bis­(1,2:5,6-di-O-iso­propyl­idene-α-D-gluco­furan­os-3-O-yl)titanate provides insight into the use of monosaccharides as ligands in complexes. The titanium atom is bonded to two monosaccharide OH-3, in axial positions, a cyclo­penta­dienyl and a chloride ligand, to take up a three-legged piano stool arrangement (Riediker et al., 1989[Riediker, M., Hafner, A., Piantini, U., Rihs, G. & Togni, A. (1989). Angew. Chem. Int. Ed. Engl. 28, 499-500.]). The unit cell of (R)-3-de­oxy-1,2:5,6-di-O-iso­propyl­idene-α-D-glu­co­furanos-3-yl-tert-butane­sulfinate contains four symmetry-independent mol­ecules with the tert-butyl and glucose moieties turned away from each other in order to minimize steric repulsion (Chelouan et al., 2018[Chelouan, A., Bao, S., Friess, S., Herrera, A., Heinemann, F. W., Escalona, A., Grasruck, A. & Dorta, R. (2018). Organometallics, 37, 3983-3992.]).

5. Synthesis and crystallization

1,2-O-Iso­propyl­idene-6-O-p-toluene­sulfonyl-α-D-gluco­furan­ose, 2:

A solution of freshly recrystallized tosyl chloride (0.479 g, 2.55 mmol) in DCM (1.6 ml) was added dropwise over 20 min to a stirring solution of 1,2-O-iso­propyl­idene-α-D-gluco­furan­ose 1 (0.513 g, 2.32 mmol) in pyridine (3.8 ml) and DCM (4.2 ml), under an atmosphere of nitro­gen. The reaction was stirred at room temperature for 48 h. TLC analysis (EtOAc/cyclo­hexane 2:3) revealed the formation of one product (Rf = 0.45). After adding DCM (10 ml), the reaction mixture was washed with 1 M HCl (1 ml). The DCM layer was dried to give 1,2-O-iso­propyl­idene-6-O-p-toluene­sulfonyl-α-D-gluco­furan­ose 2 (0.282 g, 32%) as an off-white crystalline solid. δH (CDCl3, 400 MHz) 7.79 (2H, d, J = 8.3 Hz, 2 Ar-H), 7.35 (2H, d, J = 8.1 Hz, 2 Ar-H), 5.88 (1H, d, J = 3.6 Hz, H-1), 4.50 (1H, d, J = 3.6 Hz, H-2), 4.36 (1H, d, J = 2.7 Hz, H-3), 4.29 (1H, dd, J = 10.2, 2.5 Hz, H-6), 4.19 (1H, td, J = 7.7, 2.5 Hz, H-5), 4.11 (1H, dd, J = 10.2, 6.8 Hz, H-6′), 4.01 (1H, dd, J = 7.7, 2.7 Hz, H-4), 2.45 (3H, s, Ar—CH3), 1.45, 1.29 (6H, 2 s, 2 acetonide CH3). δC (acetone-d6, 100 MHz): 145.2 (ArCq—S), 132.3 (ArCq—CH3), 130.0 (2 ArC), 128.0 (2 ArC), 111.9 (Cq acetonide), 105.1 (C-1), 85.0 (C-2), 79.4 (C-4), 75.0 (C-3), 72.1 (C-6), 68.0 (C-5), 26.8 (acetonide CH3), 26.2 (acetonide CH3), 21.7 (Ar—CH3); νmax (cm−1): 3426, 3322, 2979, 2928, 1378, 1215, 1162, 1058, 1037, 1007, 962, 883, 850, 673, 657, 626.

6-Azido-6-de­oxy-1,2-O-iso­propyl­idene-α-D-gluco­furan­ose, 3:

Sodium azide (0.290 g, 4.46 mmol) was added to a stirring solution of 2 (1.668 g, 4.45 mmol) in DMF (18 ml) at room temperature. The reaction mixture was then heated to 358 K for 42 h. TLC analysis (EtOAc/cyclo­hexane 2:3) revealed complete consumption of the starting material (Rf = 0.45) and the formation of one product (Rf = 0.30). The crude product was dried and successively dissolved in 1,4-dioxane with addition of hexane to yield an off-white precipitate, which was filtered off. The remaining filtrate contained 6-azido-6-de­oxy-1,2-O-iso­propyl­idene-α-D-gluco­furan­ose, 3. Crystallization was achieved overnight at 248 K, after dissolution in diethyl ether with addition of hexane. The ether–hexane solution was recrystallized to obtain 2nd and 3rd crops of product to yield a combined 0.319 g (29%) of product 3 as a white crystalline solid. δH (CDCl3, 400 MHz): 5.95 (1H, d, J = 3.7 Hz, H-1), 4.53 (1H, d, J = 3.6 Hz, H-2), 4.37 (1H, d, J = 2.8 Hz, H-3), 4.16 (1H, td, J = 6.6, 3.6 Hz, H-5), 4.05 (1H, dd, J = 6.6, 2.8 Hz, H-4), 3.61 (1H, dd, J = 12.7, 3.5 Hz, H-6), 3.55 (1H, dd, J = 12.7, 6.5 Hz, H-6′), 1.49, 1.32 (6H, 2 s, 2 acetonide CH3). νmax (cm−1): 3442, 2992, 2938, 2109, 1385, 1376, 1215, 1164, 1066, 1048, 1008, 955, 881, 854, 788, 674.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (O—H = 0.84, C—H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(O,C) or 1.5Ueq(C-methyl).

Table 2
Experimental details

Crystal data
Chemical formula C9H15N3O5
Mr 245.24
Crystal system, space group Monoclinic, P21
Temperature (K) 190
a, b, c (Å) 5.7615 (4), 9.7752 (8), 10.6833 (9)
β (°) 101.255 (8)
V3) 590.11 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.97
Crystal size (mm) 0.40 × 0.30 × 0.02
 
Data collection
Diffractometer Rigaku Xcalibur, EosS2, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2015[Rigaku (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.741, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 3705, 1788, 1674
Rint 0.044
θmax (°) 61.5
(sin θ/λ)max−1) 0.570
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.08
No. of reflections 1788
No. of parameters 156
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.15
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter −0.4 (3)
Computer programs: CrysAlis PRO (Rigaku, 2015[Rigaku (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2015); cell refinement: CrysAlis PRO (Rigaku, 2015); data reduction: CrysAlis PRO (Rigaku, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

6-Azido-6-deoxy-1,2-O-isopropylidene-α-D-glucofuranose top
Crystal data top
C9H15N3O5F(000) = 260
Mr = 245.24Dx = 1.38 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 1783 reflections
a = 5.7615 (4) Åθ = 6.2–60.6°
b = 9.7752 (8) ŵ = 0.97 mm1
c = 10.6833 (9) ÅT = 190 K
β = 101.255 (8)°Plate, colourless
V = 590.11 (8) Å30.40 × 0.30 × 0.02 mm
Z = 2
Data collection top
Rigaku Xcalibur, EosS2, Gemini ultra
diffractometer
1788 independent reflections
Radiation source: fine-focus sealed X-ray tube1674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.0217 pixels mm-1θmax = 61.5°, θmin = 4.2°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku, 2015)
k = 1110
Tmin = 0.741, Tmax = 1l = 1212
3705 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.0212P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1788 reflectionsΔρmax = 0.13 e Å3
156 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.4 (3)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3329 (4)0.6279 (3)1.2308 (2)0.0428 (6)
H1A0.33650.59531.31890.051*
H1B0.40980.55741.18630.051*
C20.0786 (4)0.6435 (2)1.1633 (2)0.0345 (5)
H20.00430.55391.16540.041*
C30.0532 (4)0.6893 (3)1.0256 (2)0.0329 (5)
H30.13660.77841.02120.04*
C40.2022 (4)0.6991 (2)0.9528 (2)0.0340 (5)
H40.27210.79140.96140.041*
C50.1750 (4)0.6702 (2)0.8164 (2)0.0342 (5)
H50.32070.62920.76340.041*
C60.0389 (4)0.5759 (3)0.8297 (2)0.0357 (5)
H60.00870.47990.80450.043*
C70.0728 (4)0.7525 (3)0.6883 (2)0.0393 (6)
C80.2544 (5)0.8648 (3)0.7005 (3)0.0524 (7)
H8A0.37550.84060.65140.079*
H8B0.32870.87650.79050.079*
H8C0.17740.95040.66750.079*
C90.0399 (6)0.7197 (4)0.5530 (3)0.0654 (9)
H9A0.08280.69350.50560.098*
H9B0.12460.80030.5130.098*
H9C0.15140.64380.55180.098*
N10.4698 (3)0.7562 (3)1.2362 (2)0.0498 (6)
N20.4455 (3)0.8362 (3)1.3223 (2)0.0464 (5)
N30.4413 (5)0.9168 (3)1.3977 (3)0.0654 (7)
O10.1584 (3)0.58380 (19)0.95897 (16)0.0426 (4)
O20.3347 (3)0.5933 (2)0.99674 (16)0.0460 (4)
H2A0.47820.60160.96250.069*
O30.0999 (3)0.79118 (16)0.76079 (15)0.0386 (4)
O40.1823 (3)0.63255 (19)0.74985 (18)0.0497 (5)
O50.0267 (3)0.74186 (18)1.23341 (15)0.0390 (4)
H5A0.17470.73491.21420.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (12)0.0567 (16)0.0369 (12)0.0109 (11)0.0075 (9)0.0070 (11)
C20.0268 (11)0.0403 (13)0.0379 (12)0.0022 (10)0.0099 (9)0.0035 (10)
C30.0271 (12)0.0395 (12)0.0340 (12)0.0030 (9)0.0105 (9)0.0009 (10)
C40.0246 (12)0.0409 (13)0.0376 (12)0.0017 (9)0.0086 (10)0.0029 (10)
C50.0257 (12)0.0402 (14)0.0352 (12)0.0063 (9)0.0027 (9)0.0005 (10)
C60.0323 (12)0.0412 (13)0.0349 (12)0.0046 (10)0.0094 (9)0.0029 (10)
C70.0339 (13)0.0491 (14)0.0368 (13)0.0019 (11)0.0112 (10)0.0015 (11)
C80.0435 (14)0.0534 (18)0.0639 (18)0.0069 (12)0.0193 (13)0.0006 (14)
C90.0598 (18)0.094 (3)0.0432 (16)0.0117 (17)0.0118 (13)0.0108 (15)
N10.0259 (11)0.0806 (18)0.0433 (12)0.0012 (10)0.0075 (9)0.0069 (12)
N20.0298 (10)0.0663 (16)0.0419 (13)0.0060 (10)0.0042 (9)0.0052 (12)
N30.0656 (16)0.0718 (17)0.0578 (16)0.0104 (13)0.0099 (12)0.0061 (15)
O10.0278 (8)0.0598 (11)0.0404 (9)0.0128 (8)0.0071 (6)0.0047 (8)
O20.0220 (7)0.0654 (11)0.0521 (10)0.0030 (8)0.0110 (7)0.0101 (9)
O30.0346 (8)0.0432 (10)0.0396 (9)0.0038 (7)0.0110 (7)0.0045 (7)
O40.0467 (10)0.0532 (11)0.0569 (11)0.0106 (8)0.0292 (8)0.0106 (8)
O50.0269 (8)0.0532 (11)0.0389 (9)0.0031 (7)0.0113 (7)0.0032 (8)
Geometric parameters (Å, º) top
C1—N11.477 (4)C6—O11.420 (3)
C1—C21.509 (3)C6—H61
C1—H1A0.99C7—O31.427 (3)
C1—H1B0.99C7—O41.429 (3)
C2—O51.425 (3)C7—C91.499 (4)
C2—C31.517 (3)C7—C81.505 (4)
C2—H21C8—H8A0.98
C3—O11.451 (3)C8—H8B0.98
C3—C41.527 (3)C8—H8C0.98
C3—H31C9—H9A0.98
C4—O21.419 (3)C9—H9B0.98
C4—C51.522 (3)C9—H9C0.98
C4—H41N1—N21.236 (3)
C5—O31.428 (3)N2—N31.131 (4)
C5—C61.523 (3)O2—H2A0.84
C5—H51O5—H5A0.84
C6—O41.411 (3)
N1—C1—C2113.2 (2)O4—C6—C5105.36 (19)
N1—C1—H1A108.9O1—C6—C5106.73 (17)
C2—C1—H1A108.9O4—C6—H6111.6
N1—C1—H1B108.9O1—C6—H6111.6
C2—C1—H1B108.9C5—C6—H6111.6
H1A—C1—H1B107.8O3—C7—O4105.03 (18)
O5—C2—C1106.9 (2)O3—C7—C9111.3 (2)
O5—C2—C3109.89 (18)O4—C7—C9109.7 (2)
C1—C2—C3113.22 (17)O3—C7—C8107.8 (2)
O5—C2—H2108.9O4—C7—C8108.8 (2)
C1—C2—H2108.9C9—C7—C8113.7 (2)
C3—C2—H2108.9C7—C8—H8A109.5
O1—C3—C2107.18 (18)C7—C8—H8B109.5
O1—C3—C4104.35 (18)H8A—C8—H8B109.5
C2—C3—C4114.43 (17)C7—C8—H8C109.5
O1—C3—H3110.2H8A—C8—H8C109.5
C2—C3—H3110.2H8B—C8—H8C109.5
C4—C3—H3110.2C7—C9—H9A109.5
O2—C4—C5110.12 (19)C7—C9—H9B109.5
O2—C4—C3108.23 (18)H9A—C9—H9B109.5
C5—C4—C3101.95 (16)C7—C9—H9C109.5
O2—C4—H4112H9A—C9—H9C109.5
C5—C4—H4112H9B—C9—H9C109.5
C3—C4—H4112N2—N1—C1115.41 (19)
O3—C5—C4109.89 (18)N3—N2—N1173.0 (3)
O3—C5—C6103.56 (16)C6—O1—C3110.24 (17)
C4—C5—C6104.82 (18)C4—O2—H2A109.5
O3—C5—H5112.6C7—O3—C5107.83 (18)
C4—C5—H5112.6C6—O4—C7110.02 (17)
C6—C5—H5112.6C2—O5—H5A109.5
O4—C6—O1109.68 (18)
N1—C1—C2—O560.8 (2)C4—C5—C6—O115.1 (2)
N1—C1—C2—C360.3 (3)C2—C1—N1—N281.8 (3)
O5—C2—C3—O1178.66 (18)C1—N1—N2—N3172 (2)
C1—C2—C3—O161.9 (3)O4—C6—O1—C3106.5 (2)
O5—C2—C3—C463.5 (3)C5—C6—O1—C37.2 (2)
C1—C2—C3—C4177.1 (2)C2—C3—O1—C6148.18 (18)
O1—C3—C4—O281.9 (2)C4—C3—O1—C626.5 (2)
C2—C3—C4—O234.9 (3)O4—C7—O3—C528.5 (2)
O1—C3—C4—C534.2 (2)C9—C7—O3—C590.2 (3)
C2—C3—C4—C5151.02 (19)C8—C7—O3—C5144.4 (2)
O2—C4—C5—O3164.46 (17)C4—C5—O3—C7139.25 (18)
C3—C4—C5—O380.8 (2)C6—C5—O3—C727.7 (2)
O2—C4—C5—C684.8 (2)O1—C6—O4—C7115.1 (2)
C3—C4—C5—C629.9 (2)C5—C6—O4—C70.5 (2)
O3—C5—C6—O416.5 (2)O3—C7—O4—C617.4 (2)
C4—C5—C6—O4131.67 (19)C9—C7—O4—C6102.3 (2)
O3—C5—C6—O1100.11 (19)C8—C7—O4—C6132.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.842.092.871 (2)154
O2—H2A···O4i0.842.713.462 (2)150
O5—H5A···N1i0.842.122.910 (3)157
C6—H6···O5ii1.002.383.332 (3)159
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+2.
 

Funding information

The B18 Project and the University of Newcastle, the Faculty of Science and the Priority Research Centre for Drug Development are gratefully acknowledged for research funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAshton, P. R., Ellwood, P., Staton, I. & Stoddart, J. F. (1991). J. Org. Chem. 56, 7274–7280.  CrossRef CAS Google Scholar
First citationBilska-Markowska, M., Siodla, T., Patyk-Kaźmierczak, S., Katrusiak, A. & Koroniak, H. (2017). New J. Chem. 41, 12631–12644.  CAS Google Scholar
First citationChandran, S. K. & Nangia, A. (2006). CrystEngComm, 8, 581–585.  Web of Science CSD CrossRef CAS Google Scholar
First citationChelouan, A., Bao, S., Friess, S., Herrera, A., Heinemann, F. W., Escalona, A., Grasruck, A. & Dorta, R. (2018). Organometallics, 37, 3983–3992.  CSD CrossRef CAS Google Scholar
First citationClarke, Z., Barnes, E., Prichard, K. L., Mares, L. J., Clegg, J. K., McCluskey, A., Houston, T. A. & Simone, M. I. (2018). Acta Cryst. E74, 862–867.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFleet, G. W. J., Ramsden, N. G. & Witty, D. R. (1989). Tetrahedron, 45, 327–336.  CrossRef CAS Google Scholar
First citationFujita, K. E., Ohta, K., Masunari, K., Obe, K. & Yamamura, H. (1992). Tetrahedron Lett. 33, 5519–5520.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIUPAC (1996). Pure Appl. Chem. 68, 1919–2008.  CrossRef Google Scholar
First citationIvanovs, I., Bērziņa, S., Lugiņina, J., Belyakov, S. & Rjabovs, V. (2016). Heterocycl. Commun. 22, 95–98.  CSD CrossRef CAS Google Scholar
First citationJohnson, L. L. & Houston, T. A. (2002). Tetrahedron Lett. 43, 8905–8908.  CrossRef CAS Google Scholar
First citationJohnson, W. S., Collins, J. C., Pappo, R., Rubin, M. B., Kropp, P. J., Johns, W. F., Pike, J. E. & Bartmann, W. (1963). J. Am. Chem. Soc. 85, 1409–1430.  CrossRef CAS Google Scholar
First citationKatritzky, A. R., Rachwal, S. & Hitchings, G. J. (1991). Tetrahedron, 47, 2683–2732.  CrossRef CAS Google Scholar
First citationLee, J. C., Francis, S., Dutta, D., Gupta, V., Yang, Y., Zhu, J., Tash, J. S., Schönbrunn, E. & Georg, G. I. (2012). J. Org. Chem. 77, 3082–3098.  CSD CrossRef CAS PubMed Google Scholar
First citationLiu, Z., Yoshihara, A., Wormald, M. R., Jenkinson, S. F., Gibson, V., Izumori, K. & Fleet, G. W. J. (2014). Org. Lett. 16, 5663–5665.  CrossRef CAS PubMed Google Scholar
First citationMamat, C., Peppel, T. & Köckerling, M. (2012). Crystals, 2, 105–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationPradere, U., Roy, V., McBrayer, T. R., Schinazi, R. F. & Agrofoglio, L. A. (2008). Tetrahedron, 64, 9044–9051.  CrossRef CAS Google Scholar
First citationPrichard, K., Campkin, D., O'Brien, N., Kato, A., Fleet, G. W. J. & Simone, M. I. (2018). Chem. Biol. Drug Des. 92, 1171–1197.  CrossRef CAS PubMed Google Scholar
First citationRasmussen, T. S. & Jensen, H. H. (2011). Carbohydr. Res. 346, 2855–2861.  CrossRef CAS PubMed Google Scholar
First citationRiediker, M., Hafner, A., Piantini, U., Rihs, G. & Togni, A. (1989). Angew. Chem. Int. Ed. Engl. 28, 499–500.  CSD CrossRef Google Scholar
First citationRigaku (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSayce, A. C., Alonzi, D. S., Killingbeck, S. S., Tyrrell, B. E., Hill, M. L., Caputo, A. T., Iwaki, R., Kinami, K., Ide, D., Kiappes, J. L., Beatty, P. R., Kato, A., Harris, E., Dwek, R. A., Miller, J. L. & Zitzmann, N. (2016). PLoS Negl. Trop. Dis. 10, e0004524.  CrossRef PubMed Google Scholar
First citationŠesták, S., Bella, M., Klunda, T., Gurská, S., Džubák, P., Wöls, F., Wilson, I. B. H., Sladek, V., Hajdúch, M., Poláková, M. & Kóňa, J. (2018). ChemMedChem, 13, 373–383.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401–408.  Web of Science CrossRef CAS Google Scholar
First citationSteiner, A. J., Stütz, A. E., Tarling, C. A., Withers, S. G. & Wrodnigg, T. M. (2009). Aust. J. Chem. 62, 553–557.  CrossRef CAS Google Scholar
First citationSteiner, B., Langer, V. & Koóš, M. (2009). Carbohydr. Res. 344, 2079–2082.  CSD CrossRef PubMed CAS Google Scholar
First citationTsuchiya, T., Miyake, T., Kageyama, S., Umezawa, S., Umezawa, H. & Takita, T. (1981). Tetrahedron Lett. 22, 1413–1416.  CrossRef CAS Google Scholar
First citationTsuda, Y., Nishimura, M., Kobayashi, T., Sato, Y. & Kanemitsu, K. (1991). Chem. Pharm. Bull. 39, 2883–2887.  CrossRef CAS Google Scholar
First citationWood, A., Prichard, K. L., Clarke, Z., Houston, T. A., Fleet, G. W. J. & Simone, M. I. (2018). Eur. J. Org. Chem. pp. 6812–6829.  CrossRef Google Scholar
First citationWoodhouse, S. D., Smith, C., Michelet, M., Branza-Nichita, N., Hussey, M., Dwek, R. A. & Zitzmann, N. (2008). Antimicrob. Agents Chemother. 52, 1820–1828.  CrossRef PubMed CAS Google Scholar
First citationYamamura, H. & Fujita, K. (1991). Chem. Pharm. Bull. 39, 2505–2508.  CrossRef CAS Google Scholar
First citationZhang, Q., He, P., Zhou, G., Yu, K. & Liu, H. (2013). Acta Cryst. E69, o1386.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds