research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,1′-{(1E,1′E)-[4,4′-(9H-fluorene-9,9-di­yl)bis­­(4,1-phenyl­ene)]bis­­(aza­nylyl­­idene)bis­(methanylyl­­idene)}bis­­(naphthalen-2-ol) di­chloro­benzene monosolvate

CROSSMARK_Color_square_no_text.svg

aCollege of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, bN. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation, cPeoples Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, dFaculty of Chemistry, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam, and eKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, Moscow, Russian Federation
*Correspondence e-mail: alexander.tskhovrebov@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 17 August 2020; accepted 1 September 2020; online 4 September 2020)

The bis­(anil) mol­ecule of the title compound, C47H32N2O2·C6H4Cl2, contains two anil fragments in the enol–enol form, exhibiting intra­molecular O—H⋯N hydrogen bonds. The two hy­droxy­naphthalene ring systems are approximately parallel to each other with a dihedral angle of 4.67 (8)° between them, and each ring system makes a large dihedral angle [55.11 (11) and 48.50 (10)°] with the adjacent benzene ring. In the crystal, the bis­(anil) mol­ecules form an inversion dimer by a pair of weak C—H⋯O inter­actions. The dimers arrange in a one-dimensional column along the b axis via another C—H⋯O inter­action and a ππ stacking inter­action between the hy­droxy­naphthalene ring system with a centroid–centroid distance of 3.6562 (16) Å. The solvent 1,2-di­chloro­benzene mol­ecules are located between the dimers and bind neighbouring columns by weak C—H⋯Cl inter­actions. Theoretical prediction of potential biological activities was performed, which suggested that the title anil compound can exhibit histone de­acetyl­ase SIRT2, histone de­acetyl­ase class III and histone de­acetyl­ase SIRT1 activities, and will act as inhibitor to aspulvinone di­methyl­allyl­transferase, de­hydro-L-gulonate deca­rboxylase and gluta­thione thiol­esterase.

1. Chemical context

Schiff bases formed by the condensation of salicyl­aldehydes with amines are also known as anils. They often exhibit potent anti­bacterial, anti­proliferative and anti­toxic properties (Williams, 1972[Williams, D. R. (1972). Chem. Rev. 72, 203-213.]). In addition, they are an important class of ligands, which are widely used in inorganic and coordination chemistry (Devi et al., 2019[Devi, J., Yadav, M., Kumar, D., Naik, L. S. & Jindal, D. K. (2019). Appl. Organomet. Chem. 33, e4693.]). Non-coordinating anils undergo excited-state intra­molecular proton transfer (ESIPT), which make them attractive objects for photophysical investigations (Minkin et al., 2011[Minkin, V. I., Tsukanov, A. V., Dubonosov, A. D. & Bren, V. A. (2011). J. Mol. Struct. 998, 179-191.]; Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]). Their colours and proton-transfer equilibrium is greatly dependent on the substituents in the core (Sliwa et al., 2009[Sliwa, M., Mouton, N., Ruckebusch, C., Aloïse, S., Poizat, O., Buntinx, G., Métivier, R., Nakatani, K., Masuhara, H. & Asahi, T. (2009). J. Phys. Chem. C, 113, 11959-11968.], 2010[Sliwa, M., Mouton, N., Ruckebusch, C., Poisson, L., Idrissi, A., Aloïse, S., Potier, L., Dubois, J., Poizat, O. & Buntinx, G. (2010). Photochem. Photobiol. Sci. 9, 661-669.]). Here we describe a crystal structure of the title compound, which was synthesized by the condensation between 4,4′-(9H-fluorene-9,9-di­yl)dianiline and two equivalents of 2-hy­droxy-1-naphthaldehyde. According to the PASS program – computer prediction of biological activities (Filimonov et al., 2014[Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Compd, 50, 444-457.]), the title compound will exhibit histone de­acetyl­ase SIRT2, histone de­acetyl­ase class III and histone de­acetyl­ase SIRT1 (91, 86 and 73%, respectively), and will act inhibitor of enzymes, such as aspulvinone di­methyl­allyl­transferase (81% probability), de­hydro-L-gulonate deca­rboxylase (75%) and gluta­thione thiol­esterase (71%).

[Scheme 1]

2. Structural commentary

In the title bis­(anil) mol­ecule, two hy­droxy­naphthalene ring systems are approximately parallel to each other with a dihedral angle of 4.67 (8)° between them (Fig. 1[link]). The 9H-fluorene ring system (C1–C13) forms large dihedral angles of 78.80 (10) and 61.41 (9)°, respectively, with the benzene C14–C19 and C31–C36 rings. Each hy­droxy­naphthalene ring system also forms a large dihedral angle with the adjacent benzene ring [55.11 (11)° between the C21–C30 ring system and the C14–C19 ring, and 48.50 (10)° between the C38–C47 ring system and the C31–C36 ring]. Both fragments of the hy­droxy­naphthalene Schiff bases are in the enol form, forming intra­molecular O—H⋯N hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 (3) 1.75 (3) 2.526 (3) 148 (3)
O2—H2⋯N2 1.00 (4) 1.63 (4) 2.558 (3) 152 (3)
C3—H3⋯O1i 0.95 2.58 3.461 (3) 155
C35—H35⋯O1ii 0.95 2.44 3.389 (3) 178
C28—H28⋯Cl1iii 0.95 2.86 3.770 (3) 161
C45—H45⋯Cl1ii 0.95 2.86 3.457 (3) 122
C46—H46⋯Cl1ii 0.95 2.88 3.465 (3) 121
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intra­molecular O—H⋯N hydrogen bonds (Table 1[link]).

3. Supra­molecular features

In the crystal, the bis­(anil) mol­ecules form an inversion dimer via a pair of weak C—H⋯O inter­actions (C3—H3⋯O1i; symmetry code given in Table 1[link]). The dimers form a 1D column along the b axis through a C—H⋯O (C35—H35⋯O1ii; Table 1[link]) and a ππ stacking inter­action between the hydroxyl naphthalene ring systems with a centroid-centroid distance of 3.6562 (16) Å (Cg1⋯Cg2ii; Cg1 and Cg2 are the centroids of C21–C30 and C38–C47 ring systems, respectively). Di­chloro­benzene mol­ecules are located between the dimers and bind the neighboring columns by weak C—H⋯Cl inter­actions (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A packing diagram of the title compound. Dashed lines indicate the intra­molecular O—H⋯N hydrogen bonds and the inter­molecular C—H⋯O and C—H⋯Cl inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of March, 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the existence of several structurally similar bis-hy­droxy­imines derivatives. All of them were prepared via the condensation of the corresponding di­amine and an appropriate hy­droxy­aldehyde (Elmali et al., 1995[Elmali, A., Özbey, S., Kendi, E., Kabak, M. & Elerman, Y. (1995). Acta Cryst. C51, 1878-1880.]; Blagus & Kaitner, 2011[Blagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o2908-o2909.]; Popović et al., 2001[Popović, Z., Roje, V., Pavlović, G., Matković-Čalogović, D. & Giester, G. (2001). J. Mol. Struct. 597, 39-47.]; Meng et al., 2008[Meng, T.-J., Qin, X.-Q., Zhao, W.-X., Huang, X.-Q. & Wei, G.-D. (2008). Acta Cryst. E64, o1520.]; Wang et al., 2016[Wang, Q., Lu, H., Pang, F., Huang, J., Nie, F. & Chen, F. X. (2016). RSC Adv. 6, 56827-56830.]; Han et al., 2015[Han, Y., Sun, J.-J., Wang, G.-L. & Yan, C.-G. (2015). J. Mol. Struct. 1083, 300-310.]). Inter­estingly, although keto–enol tautamerization is a well-established phenomenon for such systems, the majority of known bis-hy­droxy­imines exist in enol-enol forms, except the one reported by Popović et al. (2001[Popović, Z., Roje, V., Pavlović, G., Matković-Čalogović, D. & Giester, G. (2001). J. Mol. Struct. 597, 39-47.]).

5. Synthesis and crystallization

The compound was obtained by the condensation between 2-hy­droxy-1-naphthaldehyde and 4,4′-(9H-fluorene-9,9-di­yl)dianiline according to the literature (Elhusseiny et al., 2015[Elhusseiny, A. F. M., Hassan, H. H. A., Hussien, H., El-Dissouky, A., Palmer, R. A. & Cockcroft, J. K. (2015). Transition Met. Chem. 40, 643-655.]; Kundu et al., 2015[Kundu, A., Hariharan, P. S., Prabakaran, K., Moon, D. & Anthony, S. P. (2015). RSC Adv. 5, 98618-98625.]). Single crystals suitable for the X-ray analysis were obtained by the slow evaporation of a saturated 1,2-di­chloro­benzene solution.

6. Refinement

Crystal data, details of data collection, and results of structure refinement are summarized in Table 2[link]. All C-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and refined using a riding model [Uiso(H) = 1.2Ueq(C)], while the H atoms of the OH groups were localized in a difference-Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C47H32N2O2·C6H4Cl2
Mr 803.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.3070 (6), 9.1782 (4), 32.2298 (16)
β (°) 100.251 (2)
V3) 3873.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.8 × 0.4 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.596, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18958, 7377, 5542
Rint 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.140, 1.03
No. of reflections 7377
No. of parameters 538
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.41
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,1'-{(1E,1'E)-[4,4'-(9H-Fluorene-9,9-diyl)bis(4,1-phenylene)]bis(azanylylidene)bis(methanylylidene)}bis(naphthalen-2-ol) dichlorobenzene monosolvate top
Crystal data top
C47H32N2O2·C6H4Cl2F(000) = 1672
Mr = 803.74Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.3070 (6) ÅCell parameters from 6276 reflections
b = 9.1782 (4) Åθ = 2.6–29.6°
c = 32.2298 (16) ŵ = 0.22 mm1
β = 100.251 (2)°T = 100 K
V = 3873.5 (3) Å3Plate, yellow
Z = 40.8 × 0.4 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
5542 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 26.0°, θmin = 1.8°
Tmin = 0.596, Tmax = 0.746h = 1616
18958 measured reflectionsk = 1011
7377 independent reflectionsl = 3339
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0606P)2 + 3.6798P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7377 reflectionsΔρmax = 0.33 e Å3
538 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86399 (5)0.50325 (8)0.48868 (2)0.03159 (18)
Cl20.67342 (7)0.49018 (11)0.53468 (2)0.0506 (2)
C480.7535 (2)0.4140 (3)0.46574 (8)0.0240 (6)
C490.6694 (2)0.4093 (3)0.48571 (8)0.0293 (6)
C500.5823 (2)0.3367 (3)0.46676 (10)0.0363 (7)
H500.5242240.3340470.4801290.044*
C510.5794 (2)0.2680 (3)0.42838 (10)0.0374 (7)
H510.5195340.2177210.4155330.045*
C520.6634 (2)0.2723 (3)0.40872 (10)0.0341 (7)
H520.6616650.2238470.3825450.041*
C530.7503 (2)0.3472 (3)0.42716 (8)0.0275 (6)
H530.8075520.3525310.4133130.033*
O10.67650 (15)0.8293 (2)0.59900 (6)0.0254 (4)
H10.655 (2)0.836 (3)0.5719 (10)0.038*
O20.00869 (17)0.3629 (2)0.27222 (6)0.0346 (5)
H20.071 (3)0.422 (4)0.2835 (11)0.052*
N10.67572 (17)0.9057 (2)0.52365 (6)0.0218 (5)
N20.15609 (16)0.4833 (2)0.32226 (7)0.0224 (5)
C10.54205 (19)0.7866 (3)0.34681 (7)0.0185 (5)
C20.53815 (19)0.9371 (3)0.32573 (7)0.0178 (5)
C30.4827 (2)1.0591 (3)0.33307 (8)0.0217 (6)
H30.4391491.0567240.3534280.026*
C40.4920 (2)1.1856 (3)0.31005 (8)0.0255 (6)
H40.4542621.2700900.3147270.031*
C50.5559 (2)1.1893 (3)0.28034 (8)0.0285 (6)
H50.5610401.2759260.2647290.034*
C60.6123 (2)1.0679 (3)0.27327 (8)0.0261 (6)
H60.6560201.0707070.2529870.031*
C70.60383 (19)0.9421 (3)0.29627 (7)0.0208 (5)
C80.65444 (19)0.8007 (3)0.29556 (8)0.0213 (5)
C90.7264 (2)0.7520 (3)0.27193 (8)0.0274 (6)
H90.7506230.8153670.2525760.033*
C100.7617 (2)0.6106 (3)0.27713 (9)0.0316 (7)
H100.8108460.5764770.2613880.038*
C110.7257 (2)0.5180 (3)0.30522 (9)0.0300 (6)
H110.7500400.4205530.3082220.036*
C120.6548 (2)0.5654 (3)0.32899 (8)0.0245 (6)
H120.6307580.5012800.3482050.029*
C130.61944 (19)0.7073 (3)0.32437 (7)0.0202 (5)
C140.58069 (19)0.8082 (3)0.39440 (7)0.0187 (5)
C150.5104 (2)0.8411 (3)0.42059 (8)0.0219 (6)
H150.4394720.8422560.4092180.026*
C160.5432 (2)0.8722 (3)0.46297 (8)0.0215 (5)
H160.4944620.8917130.4804970.026*
C170.64629 (19)0.8750 (3)0.47993 (8)0.0194 (5)
C180.71678 (19)0.8396 (3)0.45441 (8)0.0206 (5)
H180.7876760.8384840.4658630.025*
C190.6834 (2)0.8059 (3)0.41211 (8)0.0212 (5)
H190.7320350.7807750.3950370.025*
C200.75022 (19)0.9948 (3)0.53695 (8)0.0206 (5)
H200.7808991.0468110.5169870.025*
C210.78777 (19)1.0168 (3)0.58159 (8)0.0199 (5)
C220.75129 (19)0.9278 (3)0.61090 (8)0.0201 (5)
C230.7938 (2)0.9344 (3)0.65415 (8)0.0233 (6)
H230.7672400.8743210.6736560.028*
C240.8724 (2)1.0262 (3)0.66798 (8)0.0240 (6)
H240.9011291.0276260.6971560.029*
C250.9131 (2)1.1202 (3)0.64022 (8)0.0227 (6)
C260.9951 (2)1.2152 (3)0.65491 (9)0.0273 (6)
H261.0242041.2157860.6840480.033*
C271.0332 (2)1.3061 (3)0.62817 (9)0.0300 (6)
H271.0898111.3672470.6383940.036*
C280.9882 (2)1.3087 (3)0.58537 (9)0.0311 (7)
H281.0132431.3744620.5668530.037*
C290.9088 (2)1.2179 (3)0.56990 (8)0.0254 (6)
H290.8799111.2216140.5407610.031*
C300.86878 (19)1.1184 (3)0.59640 (8)0.0203 (5)
C310.43890 (19)0.7081 (3)0.33971 (7)0.0179 (5)
C320.35105 (19)0.7645 (3)0.31484 (7)0.0190 (5)
H320.3545670.8554600.3010840.023*
C330.2587 (2)0.6909 (3)0.30973 (7)0.0201 (5)
H330.2000100.7318000.2925630.024*
C340.2513 (2)0.5582 (3)0.32948 (7)0.0204 (5)
C350.3380 (2)0.4996 (3)0.35461 (8)0.0222 (6)
H350.3342730.4083410.3681750.027*
C360.4297 (2)0.5747 (3)0.35972 (8)0.0210 (5)
H360.4879550.5344820.3773140.025*
C370.1256 (2)0.4184 (3)0.35336 (8)0.0213 (5)
H370.1632200.4312050.3810490.026*
C380.03563 (19)0.3267 (3)0.34722 (8)0.0206 (5)
C390.0164 (2)0.2972 (3)0.30650 (8)0.0251 (6)
C400.0959 (2)0.1940 (3)0.29929 (9)0.0313 (7)
H400.1302030.1757400.2713160.038*
C410.1241 (2)0.1202 (3)0.33190 (9)0.0291 (6)
H410.1771200.0498380.3264100.035*
C420.07517 (19)0.1470 (3)0.37423 (8)0.0226 (6)
C430.1041 (2)0.0681 (3)0.40780 (9)0.0261 (6)
H430.1559660.0038530.4020310.031*
C440.0582 (2)0.0942 (3)0.44851 (9)0.0270 (6)
H440.0779700.0405110.4709400.032*
C450.0181 (2)0.2004 (3)0.45698 (8)0.0251 (6)
H450.0491000.2195490.4853440.030*
C460.04883 (19)0.2774 (3)0.42492 (8)0.0224 (6)
H460.1011190.3485340.4314450.027*
C470.00390 (19)0.2526 (3)0.38229 (8)0.0197 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0293 (4)0.0315 (4)0.0332 (4)0.0064 (3)0.0033 (3)0.0046 (3)
Cl20.0444 (5)0.0794 (6)0.0306 (4)0.0072 (5)0.0134 (3)0.0107 (4)
C480.0236 (14)0.0201 (13)0.0271 (14)0.0005 (11)0.0013 (11)0.0024 (11)
C490.0308 (16)0.0329 (15)0.0242 (14)0.0011 (13)0.0055 (12)0.0021 (12)
C500.0237 (16)0.0461 (18)0.0400 (17)0.0019 (14)0.0084 (13)0.0111 (15)
C510.0247 (16)0.0341 (16)0.0491 (19)0.0065 (13)0.0049 (14)0.0022 (14)
C520.0336 (17)0.0318 (16)0.0348 (16)0.0027 (14)0.0001 (13)0.0051 (13)
C530.0285 (15)0.0280 (15)0.0261 (14)0.0018 (12)0.0050 (12)0.0011 (12)
O10.0310 (11)0.0256 (10)0.0199 (9)0.0065 (8)0.0056 (8)0.0014 (8)
O20.0384 (12)0.0408 (12)0.0223 (10)0.0112 (10)0.0008 (9)0.0044 (9)
N10.0253 (12)0.0217 (11)0.0183 (11)0.0013 (10)0.0034 (9)0.0008 (9)
N20.0234 (12)0.0219 (11)0.0229 (11)0.0033 (9)0.0070 (9)0.0010 (9)
C10.0205 (13)0.0176 (12)0.0180 (12)0.0020 (10)0.0051 (10)0.0012 (10)
C20.0178 (13)0.0199 (12)0.0145 (11)0.0048 (10)0.0005 (10)0.0005 (10)
C30.0250 (14)0.0224 (13)0.0174 (12)0.0040 (11)0.0029 (11)0.0021 (10)
C40.0277 (15)0.0210 (13)0.0254 (14)0.0003 (12)0.0022 (11)0.0007 (11)
C50.0307 (16)0.0274 (14)0.0243 (14)0.0057 (13)0.0037 (12)0.0096 (11)
C60.0235 (15)0.0335 (15)0.0215 (13)0.0043 (12)0.0049 (11)0.0082 (12)
C70.0179 (13)0.0279 (14)0.0157 (12)0.0054 (11)0.0007 (10)0.0010 (10)
C80.0165 (13)0.0296 (14)0.0171 (12)0.0036 (11)0.0010 (10)0.0032 (11)
C90.0220 (14)0.0409 (16)0.0201 (13)0.0004 (13)0.0058 (11)0.0009 (12)
C100.0266 (15)0.0431 (17)0.0260 (14)0.0038 (13)0.0075 (12)0.0091 (13)
C110.0270 (15)0.0269 (15)0.0356 (15)0.0006 (12)0.0044 (13)0.0106 (12)
C120.0242 (14)0.0223 (13)0.0274 (14)0.0034 (11)0.0055 (11)0.0043 (11)
C130.0187 (13)0.0242 (13)0.0171 (12)0.0058 (11)0.0015 (10)0.0049 (10)
C140.0252 (14)0.0128 (11)0.0185 (12)0.0045 (10)0.0047 (10)0.0014 (10)
C150.0203 (14)0.0215 (13)0.0238 (13)0.0022 (11)0.0037 (11)0.0011 (11)
C160.0220 (14)0.0228 (13)0.0213 (13)0.0001 (11)0.0080 (11)0.0011 (10)
C170.0213 (14)0.0178 (12)0.0187 (12)0.0014 (11)0.0021 (10)0.0018 (10)
C180.0151 (13)0.0229 (13)0.0225 (13)0.0024 (11)0.0004 (10)0.0001 (10)
C190.0233 (14)0.0200 (13)0.0212 (13)0.0021 (11)0.0067 (11)0.0003 (10)
C200.0215 (14)0.0197 (12)0.0214 (12)0.0023 (11)0.0060 (10)0.0018 (10)
C210.0211 (13)0.0192 (12)0.0193 (12)0.0022 (11)0.0037 (10)0.0015 (10)
C220.0210 (14)0.0171 (12)0.0225 (13)0.0032 (11)0.0046 (11)0.0020 (10)
C230.0295 (15)0.0212 (13)0.0207 (13)0.0042 (12)0.0091 (11)0.0003 (10)
C240.0279 (15)0.0263 (14)0.0175 (12)0.0076 (12)0.0034 (11)0.0037 (11)
C250.0220 (14)0.0221 (13)0.0240 (13)0.0047 (11)0.0042 (11)0.0051 (11)
C260.0247 (15)0.0276 (14)0.0272 (14)0.0028 (12)0.0016 (12)0.0082 (12)
C270.0224 (15)0.0267 (14)0.0387 (16)0.0046 (12)0.0001 (12)0.0099 (13)
C280.0336 (17)0.0250 (14)0.0368 (16)0.0035 (13)0.0120 (13)0.0006 (12)
C290.0285 (15)0.0240 (14)0.0239 (13)0.0012 (12)0.0050 (11)0.0002 (11)
C300.0179 (13)0.0189 (12)0.0240 (13)0.0034 (11)0.0037 (10)0.0028 (10)
C310.0210 (13)0.0174 (12)0.0156 (12)0.0007 (10)0.0044 (10)0.0041 (10)
C320.0255 (14)0.0177 (12)0.0145 (11)0.0022 (11)0.0056 (10)0.0029 (10)
C330.0208 (13)0.0226 (13)0.0169 (12)0.0014 (11)0.0034 (10)0.0038 (10)
C340.0229 (14)0.0242 (13)0.0157 (12)0.0050 (11)0.0081 (10)0.0055 (10)
C350.0262 (14)0.0197 (13)0.0224 (13)0.0015 (11)0.0086 (11)0.0003 (11)
C360.0210 (14)0.0218 (13)0.0204 (13)0.0003 (11)0.0041 (10)0.0013 (10)
C370.0217 (14)0.0218 (13)0.0209 (13)0.0007 (11)0.0047 (11)0.0031 (10)
C380.0190 (13)0.0171 (12)0.0256 (13)0.0008 (11)0.0040 (10)0.0011 (10)
C390.0236 (14)0.0264 (14)0.0241 (13)0.0006 (12)0.0012 (11)0.0029 (11)
C400.0294 (16)0.0337 (16)0.0267 (14)0.0056 (13)0.0061 (12)0.0005 (12)
C410.0228 (15)0.0262 (14)0.0358 (16)0.0067 (12)0.0020 (12)0.0009 (12)
C420.0186 (13)0.0202 (13)0.0287 (14)0.0032 (11)0.0035 (11)0.0007 (11)
C430.0200 (14)0.0207 (13)0.0384 (16)0.0029 (11)0.0071 (12)0.0008 (12)
C440.0282 (15)0.0239 (14)0.0312 (15)0.0008 (12)0.0116 (12)0.0045 (12)
C450.0244 (14)0.0265 (14)0.0247 (14)0.0032 (12)0.0051 (11)0.0003 (11)
C460.0178 (13)0.0215 (13)0.0285 (14)0.0008 (11)0.0057 (11)0.0027 (11)
C470.0150 (13)0.0190 (12)0.0254 (13)0.0017 (10)0.0044 (10)0.0021 (10)
Geometric parameters (Å, º) top
Cl1—C481.730 (3)C18—H180.9500
Cl2—C491.736 (3)C18—C191.392 (4)
C48—C491.387 (4)C19—H190.9500
C48—C531.380 (4)C20—H200.9500
C49—C501.382 (4)C20—C211.451 (3)
C50—H500.9500C21—C221.399 (3)
C50—C511.383 (4)C21—C301.441 (4)
C51—H510.9500C22—C231.409 (4)
C51—C521.380 (4)C23—H230.9500
C52—H520.9500C23—C241.356 (4)
C52—C531.385 (4)C24—H240.9500
C53—H530.9500C24—C251.418 (4)
O1—H10.87 (3)C25—C261.411 (4)
O1—C221.349 (3)C25—C301.430 (4)
O2—H21.00 (4)C26—H260.9500
O2—C391.351 (3)C26—C271.361 (4)
N1—C171.422 (3)C27—H270.9500
N1—C201.298 (3)C27—C281.403 (4)
N2—C341.424 (3)C28—H280.9500
N2—C371.292 (3)C28—C291.368 (4)
C1—C21.537 (3)C29—H290.9500
C1—C131.542 (3)C29—C301.418 (4)
C1—C141.541 (3)C31—C321.394 (4)
C1—C311.531 (3)C31—C361.400 (3)
C2—C31.384 (4)C32—H320.9500
C2—C71.401 (3)C32—C331.386 (4)
C3—H30.9500C33—H330.9500
C3—C41.395 (4)C33—C341.386 (4)
C4—H40.9500C34—C351.395 (4)
C4—C51.390 (4)C35—H350.9500
C5—H50.9500C35—C361.385 (4)
C5—C61.384 (4)C36—H360.9500
C6—H60.9500C37—H370.9500
C6—C71.388 (4)C37—C381.447 (4)
C7—C81.464 (4)C38—C391.397 (4)
C8—C91.399 (4)C38—C471.445 (4)
C8—C131.403 (4)C39—C401.409 (4)
C9—H90.9500C40—H400.9500
C9—C101.380 (4)C40—C411.358 (4)
C10—H100.9500C41—H410.9500
C10—C111.388 (4)C41—C421.425 (4)
C11—H110.9500C42—C431.411 (4)
C11—C121.387 (4)C42—C471.420 (4)
C12—H120.9500C43—H430.9500
C12—C131.383 (4)C43—C441.366 (4)
C14—C151.400 (3)C44—H440.9500
C14—C191.384 (4)C44—C451.399 (4)
C15—H150.9500C45—H450.9500
C15—C161.388 (4)C45—C461.373 (4)
C16—H160.9500C46—H460.9500
C16—C171.383 (4)C46—C471.416 (4)
C17—C181.392 (4)
C49—C48—Cl1120.7 (2)N1—C20—C21121.6 (2)
C53—C48—Cl1118.9 (2)C21—C20—H20119.2
C53—C48—C49120.4 (3)C22—C21—C20119.2 (2)
C48—C49—Cl2120.8 (2)C22—C21—C30118.9 (2)
C50—C49—Cl2119.7 (2)C30—C21—C20121.6 (2)
C50—C49—C48119.5 (3)O1—C22—C21121.8 (2)
C49—C50—H50119.9O1—C22—C23117.1 (2)
C49—C50—C51120.2 (3)C21—C22—C23121.1 (2)
C51—C50—H50119.9C22—C23—H23119.9
C50—C51—H51119.9C24—C23—C22120.1 (2)
C52—C51—C50120.1 (3)C24—C23—H23119.9
C52—C51—H51119.9C23—C24—H24119.0
C51—C52—H52120.0C23—C24—C25122.0 (2)
C51—C52—C53120.0 (3)C25—C24—H24119.0
C53—C52—H52120.0C24—C25—C30118.6 (2)
C48—C53—C52119.8 (3)C26—C25—C24121.6 (2)
C48—C53—H53120.1C26—C25—C30119.8 (2)
C52—C53—H53120.1C25—C26—H26119.4
C22—O1—H1109 (2)C27—C26—C25121.3 (3)
C39—O2—H2104.5 (19)C27—C26—H26119.4
C20—N1—C17120.8 (2)C26—C27—H27120.3
C37—N2—C34119.3 (2)C26—C27—C28119.4 (3)
C2—C1—C13100.94 (19)C28—C27—H27120.3
C2—C1—C14107.63 (19)C27—C28—H28119.5
C14—C1—C13113.3 (2)C29—C28—C27121.0 (3)
C31—C1—C2113.5 (2)C29—C28—H28119.5
C31—C1—C13111.35 (19)C28—C29—H29119.3
C31—C1—C14109.93 (19)C28—C29—C30121.4 (3)
C3—C2—C1129.0 (2)C30—C29—H29119.3
C3—C2—C7120.4 (2)C25—C30—C21119.2 (2)
C7—C2—C1110.6 (2)C29—C30—C21123.8 (2)
C2—C3—H3120.6C29—C30—C25117.0 (2)
C2—C3—C4118.8 (2)C32—C31—C1123.3 (2)
C4—C3—H3120.6C32—C31—C36117.2 (2)
C3—C4—H4119.7C36—C31—C1119.5 (2)
C5—C4—C3120.6 (3)C31—C32—H32119.3
C5—C4—H4119.7C33—C32—C31121.5 (2)
C4—C5—H5119.7C33—C32—H32119.3
C6—C5—C4120.7 (2)C32—C33—H33119.8
C6—C5—H5119.7C34—C33—C32120.5 (2)
C5—C6—H6120.5C34—C33—H33119.8
C5—C6—C7119.0 (2)C33—C34—N2118.9 (2)
C7—C6—H6120.5C33—C34—C35119.1 (2)
C2—C7—C8109.0 (2)C35—C34—N2121.9 (2)
C6—C7—C2120.6 (2)C34—C35—H35120.1
C6—C7—C8130.4 (2)C36—C35—C34119.8 (2)
C9—C8—C7130.8 (2)C36—C35—H35120.1
C9—C8—C13120.3 (2)C31—C36—H36119.1
C13—C8—C7108.9 (2)C35—C36—C31121.9 (2)
C8—C9—H9120.5C35—C36—H36119.1
C10—C9—C8119.0 (3)N2—C37—H37119.0
C10—C9—H9120.5N2—C37—C38121.9 (2)
C9—C10—H10119.8C38—C37—H37119.0
C9—C10—C11120.4 (3)C39—C38—C37120.0 (2)
C11—C10—H10119.8C39—C38—C47118.6 (2)
C10—C11—H11119.5C47—C38—C37121.1 (2)
C10—C11—C12121.0 (3)O2—C39—C38121.9 (2)
C12—C11—H11119.5O2—C39—C40116.9 (2)
C11—C12—H12120.4C38—C39—C40121.1 (2)
C13—C12—C11119.2 (3)C39—C40—H40119.7
C13—C12—H12120.4C41—C40—C39120.7 (2)
C8—C13—C1110.5 (2)C41—C40—H40119.7
C12—C13—C1129.5 (2)C40—C41—H41119.6
C12—C13—C8120.0 (2)C40—C41—C42120.9 (3)
C15—C14—C1119.2 (2)C42—C41—H41119.6
C19—C14—C1122.6 (2)C43—C42—C41120.4 (2)
C19—C14—C15118.1 (2)C43—C42—C47120.3 (2)
C14—C15—H15119.6C47—C42—C41119.4 (2)
C16—C15—C14120.7 (2)C42—C43—H43119.7
C16—C15—H15119.6C44—C43—C42120.7 (2)
C15—C16—H16119.7C44—C43—H43119.7
C17—C16—C15120.6 (2)C43—C44—H44120.2
C17—C16—H16119.7C43—C44—C45119.6 (2)
C16—C17—N1118.3 (2)C45—C44—H44120.2
C16—C17—C18119.2 (2)C44—C45—H45119.5
C18—C17—N1122.4 (2)C46—C45—C44121.0 (2)
C17—C18—H18120.0C46—C45—H45119.5
C17—C18—C19120.0 (2)C45—C46—H46119.4
C19—C18—H18120.0C45—C46—C47121.1 (2)
C14—C19—C18121.4 (2)C47—C46—H46119.4
C14—C19—H19119.3C42—C47—C38119.2 (2)
C18—C19—H19119.3C46—C47—C38123.5 (2)
N1—C20—H20119.2C46—C47—C42117.3 (2)
Cl1—C48—C49—Cl21.1 (3)C15—C16—C17—C183.0 (4)
Cl1—C48—C49—C50179.7 (2)C16—C17—C18—C191.8 (4)
Cl1—C48—C53—C52178.5 (2)C17—N1—C20—C21174.0 (2)
Cl2—C49—C50—C51177.9 (2)C17—C18—C19—C140.7 (4)
C48—C49—C50—C510.7 (5)C19—C14—C15—C160.7 (4)
C49—C48—C53—C521.4 (4)C20—N1—C17—C16136.1 (3)
C49—C50—C51—C520.4 (5)C20—N1—C17—C1847.7 (3)
C50—C51—C52—C530.9 (5)C20—C21—C22—O15.1 (4)
C51—C52—C53—C481.7 (4)C20—C21—C22—C23172.9 (2)
C53—C48—C49—Cl2178.8 (2)C20—C21—C30—C25170.8 (2)
C53—C48—C49—C500.2 (4)C20—C21—C30—C298.7 (4)
O1—C22—C23—C24177.0 (2)C21—C22—C23—C241.1 (4)
O2—C39—C40—C41178.3 (3)C22—C21—C30—C253.2 (4)
N1—C17—C18—C19177.9 (2)C22—C21—C30—C29177.3 (2)
N1—C20—C21—C227.6 (4)C22—C23—C24—C251.4 (4)
N1—C20—C21—C30178.4 (2)C23—C24—C25—C26179.9 (2)
N2—C34—C35—C36178.1 (2)C23—C24—C25—C300.6 (4)
N2—C37—C38—C395.0 (4)C24—C25—C26—C27179.4 (3)
N2—C37—C38—C47178.7 (2)C24—C25—C30—C212.9 (4)
C1—C2—C3—C4179.5 (2)C24—C25—C30—C29177.6 (2)
C1—C2—C7—C6179.8 (2)C25—C26—C27—C282.0 (4)
C1—C2—C7—C80.0 (3)C26—C25—C30—C21177.6 (2)
C1—C14—C15—C16175.1 (2)C26—C25—C30—C291.9 (4)
C1—C14—C19—C18173.7 (2)C26—C27—C28—C292.2 (4)
C1—C31—C32—C33179.0 (2)C27—C28—C29—C300.2 (4)
C1—C31—C36—C35179.6 (2)C28—C29—C30—C21177.7 (2)
C2—C1—C13—C80.7 (3)C28—C29—C30—C251.8 (4)
C2—C1—C13—C12178.8 (3)C30—C21—C22—O1179.2 (2)
C2—C1—C14—C1586.6 (3)C30—C21—C22—C231.2 (4)
C2—C1—C14—C1989.0 (3)C30—C25—C26—C270.1 (4)
C2—C1—C31—C323.0 (3)C31—C1—C2—C361.9 (3)
C2—C1—C31—C36175.3 (2)C31—C1—C2—C7119.6 (2)
C2—C3—C4—C50.2 (4)C31—C1—C13—C8121.5 (2)
C2—C7—C8—C9179.5 (3)C31—C1—C13—C1258.1 (3)
C2—C7—C8—C130.5 (3)C31—C1—C14—C1537.4 (3)
C3—C2—C7—C61.7 (4)C31—C1—C14—C19147.0 (2)
C3—C2—C7—C8178.5 (2)C31—C32—C33—C340.1 (4)
C3—C4—C5—C60.5 (4)C32—C31—C36—C351.2 (3)
C4—C5—C6—C70.1 (4)C32—C33—C34—N2177.7 (2)
C5—C6—C7—C21.0 (4)C32—C33—C34—C350.0 (3)
C5—C6—C7—C8179.3 (3)C33—C34—C35—C360.5 (4)
C6—C7—C8—C90.7 (5)C34—N2—C37—C38172.8 (2)
C6—C7—C8—C13179.2 (3)C34—C35—C36—C311.1 (4)
C7—C2—C3—C41.2 (4)C36—C31—C32—C330.7 (3)
C7—C8—C9—C10179.4 (3)C37—N2—C34—C33139.8 (2)
C7—C8—C13—C10.8 (3)C37—N2—C34—C3542.6 (3)
C7—C8—C13—C12178.8 (2)C37—C38—C39—O26.4 (4)
C8—C9—C10—C110.4 (4)C37—C38—C39—C40171.8 (2)
C9—C8—C13—C1179.2 (2)C37—C38—C47—C42170.6 (2)
C9—C8—C13—C121.1 (4)C37—C38—C47—C468.2 (4)
C9—C10—C11—C120.8 (4)C38—C39—C40—C410.0 (4)
C10—C11—C12—C130.2 (4)C39—C38—C47—C423.3 (4)
C11—C12—C13—C1179.7 (2)C39—C38—C47—C46177.9 (2)
C11—C12—C13—C80.8 (4)C39—C40—C41—C421.0 (4)
C13—C1—C2—C3178.8 (2)C40—C41—C42—C43179.0 (3)
C13—C1—C2—C70.4 (3)C40—C41—C42—C470.2 (4)
C13—C1—C14—C15162.7 (2)C41—C42—C43—C44179.4 (3)
C13—C1—C14—C1921.7 (3)C41—C42—C47—C382.3 (4)
C13—C1—C31—C32110.1 (3)C41—C42—C47—C46178.8 (2)
C13—C1—C31—C3671.6 (3)C42—C43—C44—C450.1 (4)
C13—C8—C9—C100.5 (4)C43—C42—C47—C38176.9 (2)
C14—C1—C2—C359.9 (3)C43—C42—C47—C462.0 (4)
C14—C1—C2—C7118.5 (2)C43—C44—C45—C461.1 (4)
C14—C1—C13—C8114.0 (2)C44—C45—C46—C470.4 (4)
C14—C1—C13—C1266.4 (3)C45—C46—C47—C38177.8 (2)
C14—C1—C31—C32123.5 (2)C45—C46—C47—C421.1 (4)
C14—C1—C31—C3654.7 (3)C47—C38—C39—O2179.7 (2)
C14—C15—C16—C171.7 (4)C47—C38—C39—C402.1 (4)
C15—C14—C19—C182.0 (4)C47—C42—C43—C441.4 (4)
C15—C16—C17—N1179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (3)1.75 (3)2.526 (3)148 (3)
O2—H2···N21.00 (4)1.63 (4)2.558 (3)152 (3)
C3—H3···O1i0.952.583.461 (3)155
C35—H35···O1ii0.952.443.389 (3)178
C28—H28···Cl1iii0.952.863.770 (3)161
C45—H45···Cl1ii0.952.863.457 (3)122
C46—H46···Cl1ii0.952.883.465 (3)121
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1.
 

Acknowledgements

The X-ray diffraction studies were performed at the Shared Equipment Center of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding information

This work was performed under the support of the FRCCP RAS State task AAAA-A19–119012990175-9. We acknowledge the RUDN University Program 5–100 and the Ministry of Science and Higher Education of the Russian Federation [grant No. 075–03-2020–223 (FSSF-2020–0017)].

References

First citationBlagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o2908–o2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442–2446.  CrossRef CAS Web of Science Google Scholar
First citationDevi, J., Yadav, M., Kumar, D., Naik, L. S. & Jindal, D. K. (2019). Appl. Organomet. Chem. 33, e4693.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElhusseiny, A. F. M., Hassan, H. H. A., Hussien, H., El-Dissouky, A., Palmer, R. A. & Cockcroft, J. K. (2015). Transition Met. Chem. 40, 643–655.  Web of Science CSD CrossRef CAS Google Scholar
First citationElmali, A., Özbey, S., Kendi, E., Kabak, M. & Elerman, Y. (1995). Acta Cryst. C51, 1878–1880.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFilimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Compd, 50, 444–457.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, Y., Sun, J.-J., Wang, G.-L. & Yan, C.-G. (2015). J. Mol. Struct. 1083, 300–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationKundu, A., Hariharan, P. S., Prabakaran, K., Moon, D. & Anthony, S. P. (2015). RSC Adv. 5, 98618–98625.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, T.-J., Qin, X.-Q., Zhao, W.-X., Huang, X.-Q. & Wei, G.-D. (2008). Acta Cryst. E64, o1520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinkin, V. I., Tsukanov, A. V., Dubonosov, A. D. & Bren, V. A. (2011). J. Mol. Struct. 998, 179–191.  Web of Science CrossRef CAS Google Scholar
First citationPopović, Z., Roje, V., Pavlović, G., Matković-Čalogović, D. & Giester, G. (2001). J. Mol. Struct. 597, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSliwa, M., Mouton, N., Ruckebusch, C., Aloïse, S., Poizat, O., Buntinx, G., Métivier, R., Nakatani, K., Masuhara, H. & Asahi, T. (2009). J. Phys. Chem. C, 113, 11959–11968.  Web of Science CrossRef CAS Google Scholar
First citationSliwa, M., Mouton, N., Ruckebusch, C., Poisson, L., Idrissi, A., Aloïse, S., Potier, L., Dubois, J., Poizat, O. & Buntinx, G. (2010). Photochem. Photobiol. Sci. 9, 661–669.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, Q., Lu, H., Pang, F., Huang, J., Nie, F. & Chen, F. X. (2016). RSC Adv. 6, 56827–56830.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilliams, D. R. (1972). Chem. Rev. 72, 203–213.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds