research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­[4-(naphthalen-1-yl)phen­yl]amine

CROSSMARK_Color_square_no_text.svg

aKansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan, bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan, cOkayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan, and dOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: myano@kansai-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 10 September 2020; accepted 14 September 2020; online 18 September 2020)

In the title mol­ecule, C48H33N, the central N atom shows no pyramidalization, so that the N atom and the three C atoms bound to the N atom lie almost in the same plane. The three para-phenyl­ene rings bonded to the N atom are in a propeller form. All of the naphthalene ring systems are slightly bent. In the crystal, mol­ecules form an inversion dimer, through two pairs of C—H⋯π inter­actions, which further inter­acts with the adjacent dimer via another two pairs of C—H⋯π inter­actions, forming a column structure along the a axis. There are no significant inter­actions between these column structures.

1. Chemical context

Tri­aryl­amines (TAAs) having various substituents at their para-positions are widely known to give the corresponding stable cation radicals upon chemical or electrochemical one electron oxidation (Seo et al., 1966[Seo, E. T., Nelson, R. F., Fritsch, J. M., Marcoux, L. S., Leedy, D. W. & Adams, R. N. (1966). J. Am. Chem. Soc. 88, 3498-3503.]). π-Extended TAAs with extra aromatic rings at the periphery have received considerable attention as key components in the fields of organic electroluminescence devices. Among them, the title compound was first synthesized by Kwon et al. (2010[Kwon, J., Kim, M. K., Hong, J.-P., Lee, W., Noh, S., Lee, C., Lee, S. & Hong, J.-I. (2010). Org. Electron. 11, 1288-1295.]) as a hole-transporting material in organic light-emitting diodes. Recently, phospho­rescent organic light-emitting diodes were also reported by using the title compound as the hole-transporting material (Krucaite et al., 2019[Krucaite, G., Volyniuk, D., Simokaitiene, J., Grigalevicius, S., Lin, C., Shao, C.-M. & Chang, C.-H. (2019). Dyes Pigments, 162, 196-202.]). Until now, no crystal structure of this compound has been reported. We report herein the crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The three naphthalene ring systems are slightly bent, with r.m.s. deviations of 0.038 (2), 0.055 (2) and 0.044 (2) Å, respectively, for the C8–C17, C24–C33 and C40–C49 ring systems. The C atoms at the 1-, 3- and 7-positions show the largest deviations from the mean planes [1-positions: −0.0464 (16) Å for C8, 0.0766 (18) Å for C24, and 0.0518 (17) Å for C40; 3-positions: 0.0468 (19) Å for C10, −0.068 (2) Å for C26, and −0.056 (2) Å for C42; 7-positions: 0.041 (2) Å for C15, −0.067 (2) Å for C31, and −0.051 (2) Å for C47]. In all cases, the C atoms at the 3- and 7-positions deviate from the mean plane to the same side, while the C atoms at 1-positions deviate to the opposite side. The central N1 atom shows no pyramidalization, with a deviation from the plane of the bonded C atoms (C2, C18 and C34) of 0.0402 (14) Å. The three para-phenyl­ene rings are bonded to the N atom in propeller-wise, which is a common arrangement for Ph3N fragments. The torsion angles C3—C2—N1—C34, C19—C18—N1—C2 and C35—C34—N1—C18 are −35.0 (2), −60.6 (2) and −30.3 (2)°, respectively. The para-phenyl­ene ring and the mean plane of the neighboring naphthalene ring system are inclined to each other by 54.66 (7)° for (C2–C7)/(C8–C17), 48.80 (7)° for (C18–C23)/(C24–C33) and 56.21 (7)° for (C34–C39)/(C40–C49).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, each mol­ecule inter­acts with two others via four inter­molecular C—H⋯π inter­actions (Table 1[link]). The mol­ecules are linked by complementary C—H⋯π inter­actions [C9—H9⋯Cg1i and C20—H20⋯Cg2i; Cg1 and Cg2 are the centroids of the C24–C28/C33 and C2–C7 rings, respectively; symmetry code: (i) −x + 1, −y, −z + 2], forming an inversion dimer (Fig. 2[link]). The other inversion dimer is formed by complementary C—H⋯π inter­actions [C23—H23⋯Cg2ii and C47—H47⋯Cg3ii; Cg3 is the centroid of the C12–C17 ring; symmetry code: (ii) −x, −y, −z + 2] (Fig. 3[link]). As a result, the mol­ecules form a column structure by inter­molecular C—H⋯π inter­actions along [100], and there is no significant inter­action between the column structures (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the rings C24–C28/C33, C2–C7 and C12–C17, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg1i 0.95 2.65 3.5309 (19) 154
C20—H20⋯Cg2i 0.95 2.91 3.8029 (19) 156
C23—H23⋯Cg2ii 0.95 2.71 3.6165 (18) 159
C47—H47⋯Cg3ii 0.95 2.99 3.660 (2) 129
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+2.
[Figure 2]
Figure 2
A centrosymmetric dimer of the title compound. The C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in the inter­actions have been omitted for clarity. [Symmetry code: (i) −x + 1, −y, −z + 2.]
[Figure 3]
Figure 3
Another centrosymmetric dimer of the title compound. The C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in the inter­actions have been omitted for clarity. [Symmetry code: (ii) −x, −y, −z + 2.]
[Figure 4]
Figure 4
A packing diagram of the title compound viewed along the b axis, showing the column structure. The C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing tri­phenyl­amines yielded 4384 hits (including 3640 hits for non-polymeric compounds). Limiting the search to non-polymeric tri­phenyl­amines with the same aromatic ring at the three para-positions, there were 19 hits (16 compounds), which included eleven hits (nine compounds) with heteroaromatic rings and eight hits (seven compounds) with phenyl rings. The seven compounds with phenyl rings at the three para-position of the tri­phenyl­amine skeleton include tris­(biphenyl-4-yl)amine [WEHLIE (Inada et al., 1994[Inada, H., Ohnishi, K., Nomura, S., Higuchi, A., Nakano, H. & Shirota, Y. (1994). J. Mater. Chem. 4, 171-177.]); WEHLIE01 (Nieger et al., 2017[Nieger, M., Polamo, M., Meli, A. & Bräse, S. (2017). Private Communication (refcode WEHLIE01). CCDC, Cambridge, England.])] and its radical cation perchlorate salt (BPHAMP10; Brown et al., 1977[Brown, G. M., Freeman, G. R. & Walter, R. I. (1977). J. Am. Chem. Soc. 99, 6910-6915.]), tris­[4-(2,3,4,5,6-penta­phenyl­phen­yl)phen­yl]amine (PULSAR; Gagnon et al., 2010[Gagnon, E., Maris, T. & Wuest, J. D. (2010). Org. Lett. 12, 404-407.]), tri[4-(4-formyl­phen­yl)phen­yl]amine (DEHYUN; Fang et al., 2017[Fang, M., Yang, J., Liao, Q., Gong, Y., Xie, Z., Chi, Z., Peng, Q., Li, Q. & Li, Z. (2017). J. Mater. Chem. C5, 9879-9885.]), tri[4-(3-formyl­phen­yl)phen­yl]amine (MADJAF; Mondal et al., 2016[Mondal, B., Acharyya, K., Howlader, P. & Mukherjee, P. S. (2016). J. Am. Chem. Soc. 138, 1709-1716.]), tris­[4′-(4,6-di­amino­triazin-2-yl)biphenyl-4-yl]amine (MUNNER; Feng et al., 2020[Feng, S., Shang, Y., Wang, Z., Kang, Z., Wang, R., Jiang, J., Fan, L., Fan, W., Liu, Z., Kong, G., Feng, Y., Hu, S., Guo, H. & Sun, D. (2020). Angew. Chem. Int. Ed. 59, 3840-3845.]) and tri[4-(4-meth­oxy­carbonyl­phen­yl)phen­yl]amine (XAXKIT; Zhang et al., 2017[Zhang, Y., Feng, Y.-Q., Wang, J.-H., Han, G., Li, M.-Y., Xiao, Y. & Feng, Z.-D. (2017). RSC Adv. 7, 35672-35680.]). It is notable that there is only one reported example where the three polycyclic aromatic groups on the periphery of the tripenyl­amine skeleton are the same, viz. tris­[4-(quinolin-2-yl)phen­yl]amine (BEFCEX; Hariharan et al., 2016[Hariharan, P. S., Mothi, E. M., Moon, D. & Anthony, S. P. (2016). Appl. Mater. Interfaces, 8, 33034-33042.]).

5. Synthesis and crystallization

The title compound was prepared by a modification of the previously reported Suzuki–Miyaura coupling reaction (Kwon et al., 2010[Kwon, J., Kim, M. K., Hong, J.-P., Lee, W., Noh, S., Lee, C., Lee, S. & Hong, J.-I. (2010). Org. Electron. 11, 1288-1295.]). Tris(4-bromo­phen­yl)amine (2.00 g, 4.15 mmol), 1-naphthyl­boronic acid (3.57 g, 20.7 mmol), tetra­kis­(tri­phenyl­phosphine)palladium(0) (240 mg, 0.21 mmol), K2CO3 (2.87 g, 20.7 mmol), toluene (42 mL) and water (10.4 mL) were placed in a 100 mL round-bottom flask. After the solution was purged with nitro­gen for 10 minutes, it was heated at 373 K under nitro­gen for 24 h. The reaction mixture was extracted with ethyl acetate. After drying over anhydrous Na2SO4, the organic layer was evaporated. The residue was redissolved in a small amount of ethyl acetate. The addition of a large amount of methanol gave the pure product as a white precipitate (845 mg, 1.35 mmol, 33%). Colorless single crystals suitable for X-ray diffraction were obtained by means of the vapor diffusion method from chloro­form as a rich solvent and n-hexane as a poor solvent after standing for one week.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in geometrically calculated positions (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). One outlier (011) was omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C48H33N
Mr 623.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.0952 (4), 13.0135 (6), 13.5643 (5)
α, β, γ (°) 74.429 (5), 75.671 (5), 78.309 (6)
V3) 1645.39 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.50 × 0.40 × 0.25
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.689, 0.982
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 16018, 7480, 5597
Rint 0.030
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.04
No. of reflections 7480
No. of parameters 442
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.19
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare, et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare, et al., 1994); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), publCIF (Westrip, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).

Tris[4-(naphthalen-1-yl)phenyl]amine top
Crystal data top
C48H33NZ = 2
Mr = 623.80F(000) = 656.00
Triclinic, P1Dx = 1.259 Mg m3
a = 10.0952 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.0135 (6) ÅCell parameters from 12529 reflections
c = 13.5643 (5) Åθ = 2.1–27.5°
α = 74.429 (5)°µ = 0.07 mm1
β = 75.671 (5)°T = 173 K
γ = 78.309 (6)°Block, colorless
V = 1645.39 (13) Å30.50 × 0.40 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5597 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.030
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.689, Tmax = 0.982k = 1616
16018 measured reflectionsl = 1717
7480 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.6997P]
where P = (Fo2 + 2Fc2)/3
7480 reflections(Δ/σ)max < 0.001
442 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.19 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14801 (14)0.09044 (10)1.02472 (10)0.0266 (3)
C20.16313 (15)0.00593 (12)1.10268 (12)0.0232 (3)
C30.13832 (16)0.00538 (12)1.20859 (12)0.0259 (3)
H30.11240.06121.22950.031*
C40.15124 (16)0.10144 (12)1.28352 (12)0.0260 (3)
H40.13340.09921.35510.031*
C50.18977 (15)0.20126 (12)1.25653 (12)0.0240 (3)
C60.21653 (16)0.20035 (12)1.15008 (12)0.0248 (3)
H60.24360.26681.12910.030*
C70.20467 (15)0.10512 (12)1.07433 (12)0.0248 (3)
H70.22490.10731.00260.030*
C80.21175 (16)0.30334 (12)1.33678 (12)0.0259 (3)
C90.29701 (17)0.30985 (13)1.40386 (13)0.0311 (4)
H90.33430.24761.40160.037*
C100.33033 (19)0.40671 (14)1.47592 (14)0.0357 (4)
H100.38970.40921.52120.043*
C110.27776 (19)0.49663 (14)1.48081 (14)0.0358 (4)
H110.30290.56201.52830.043*
C120.18616 (18)0.49406 (13)1.41617 (13)0.0305 (4)
C130.12495 (19)0.58567 (14)1.42374 (15)0.0371 (4)
H130.14930.65151.47090.045*
C140.0320 (2)0.58075 (15)1.36455 (15)0.0413 (4)
H140.00710.64311.37000.050*
C150.00617 (19)0.48328 (15)1.29518 (15)0.0386 (4)
H150.07240.47991.25500.046*
C160.05106 (17)0.39365 (14)1.28512 (13)0.0316 (4)
H160.02410.32871.23780.038*
C170.15007 (16)0.39574 (13)1.34394 (12)0.0269 (3)
C180.23208 (16)0.09424 (11)0.92230 (12)0.0242 (3)
C190.37499 (17)0.07939 (12)0.90874 (13)0.0281 (3)
H190.41650.06950.96690.034*
C200.45771 (17)0.07890 (13)0.81001 (13)0.0291 (4)
H200.55540.06700.80190.035*
C210.39922 (17)0.09568 (12)0.72244 (13)0.0275 (3)
C220.25551 (17)0.11267 (13)0.73763 (13)0.0296 (4)
H220.21330.12560.67930.036*
C230.17291 (16)0.11113 (13)0.83621 (13)0.0278 (3)
H230.07520.12170.84480.033*
C240.48684 (17)0.10367 (13)0.61483 (13)0.0291 (4)
C250.45260 (18)0.18906 (13)0.53581 (13)0.0321 (4)
H250.36860.23630.54930.039*
C260.5382 (2)0.20880 (16)0.43537 (14)0.0430 (5)
H260.51120.26790.38210.052*
C270.6607 (2)0.14220 (16)0.41495 (14)0.0415 (4)
H270.72100.15740.34850.050*
C280.69744 (18)0.05122 (14)0.49235 (13)0.0330 (4)
C290.8225 (2)0.02024 (16)0.47202 (15)0.0416 (4)
H290.88470.00360.40670.050*
C300.8555 (2)0.11158 (16)0.54362 (16)0.0423 (5)
H300.93980.15800.52860.051*
C310.76354 (19)0.13658 (15)0.64002 (15)0.0381 (4)
H310.78410.20220.68870.046*
C320.64506 (18)0.06841 (13)0.66525 (13)0.0307 (4)
H320.58620.08610.73200.037*
C330.60871 (17)0.02880 (13)0.59287 (13)0.0297 (4)
C340.04483 (15)0.17917 (12)1.04198 (12)0.0236 (3)
C350.06416 (16)0.28295 (12)0.98293 (12)0.0265 (3)
H350.14710.29370.93240.032*
C360.03641 (17)0.37021 (12)0.99736 (13)0.0275 (3)
H360.02240.43980.95510.033*
C370.15856 (16)0.35813 (12)1.07296 (12)0.0257 (3)
C380.17683 (16)0.25404 (12)1.13011 (12)0.0264 (3)
H380.25950.24331.18090.032*
C390.07832 (16)0.16580 (12)1.11521 (12)0.0256 (3)
H390.09460.09571.15500.031*
C400.26129 (16)0.45250 (12)1.09758 (13)0.0270 (3)
C410.29800 (18)0.46387 (14)1.19948 (14)0.0330 (4)
H410.26140.40971.25240.040*
C420.38881 (19)0.55428 (15)1.22681 (15)0.0376 (4)
H420.41330.56011.29760.045*
C430.44133 (18)0.63313 (14)1.15188 (15)0.0358 (4)
H430.49940.69511.17050.043*
C440.41071 (16)0.62406 (12)1.04683 (14)0.0298 (4)
C450.46871 (18)0.70263 (14)0.96833 (15)0.0372 (4)
H450.52550.76570.98540.045*
C460.44480 (19)0.68960 (14)0.86875 (15)0.0398 (4)
H460.48530.74320.81740.048*
C470.36022 (19)0.59692 (15)0.84179 (14)0.0376 (4)
H470.34530.58740.77270.045*
C480.29959 (17)0.52080 (13)0.91465 (13)0.0314 (4)
H480.24160.45920.89510.038*
C490.32131 (16)0.53158 (12)1.01890 (13)0.0264 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0254 (7)0.0233 (6)0.0238 (7)0.0055 (5)0.0008 (5)0.0039 (5)
C20.0173 (7)0.0223 (7)0.0265 (8)0.0025 (6)0.0038 (6)0.0045 (6)
C30.0246 (8)0.0248 (7)0.0278 (8)0.0040 (6)0.0067 (6)0.0094 (7)
C40.0226 (8)0.0300 (8)0.0245 (8)0.0012 (6)0.0045 (6)0.0089 (7)
C50.0189 (7)0.0241 (7)0.0267 (8)0.0006 (6)0.0044 (6)0.0044 (6)
C60.0221 (8)0.0218 (7)0.0295 (8)0.0011 (6)0.0037 (6)0.0088 (6)
C70.0207 (8)0.0273 (8)0.0249 (8)0.0016 (6)0.0034 (6)0.0086 (6)
C80.0230 (8)0.0259 (8)0.0251 (8)0.0009 (6)0.0020 (6)0.0059 (6)
C90.0313 (9)0.0282 (8)0.0326 (9)0.0022 (7)0.0089 (7)0.0044 (7)
C100.0348 (10)0.0369 (9)0.0336 (9)0.0018 (7)0.0142 (8)0.0040 (8)
C110.0374 (10)0.0282 (8)0.0344 (9)0.0032 (7)0.0084 (8)0.0004 (7)
C120.0311 (9)0.0267 (8)0.0284 (8)0.0009 (6)0.0001 (7)0.0066 (7)
C130.0388 (10)0.0272 (8)0.0387 (10)0.0022 (7)0.0010 (8)0.0049 (8)
C140.0409 (11)0.0342 (9)0.0480 (11)0.0125 (8)0.0020 (9)0.0132 (9)
C150.0339 (10)0.0446 (10)0.0394 (10)0.0102 (8)0.0057 (8)0.0116 (9)
C160.0278 (9)0.0338 (9)0.0305 (9)0.0041 (7)0.0028 (7)0.0060 (7)
C170.0240 (8)0.0276 (8)0.0252 (8)0.0001 (6)0.0002 (6)0.0070 (7)
C180.0234 (8)0.0184 (7)0.0266 (8)0.0018 (6)0.0006 (6)0.0057 (6)
C190.0260 (8)0.0273 (8)0.0283 (8)0.0021 (6)0.0069 (7)0.0050 (7)
C200.0208 (8)0.0284 (8)0.0348 (9)0.0005 (6)0.0019 (6)0.0081 (7)
C210.0283 (8)0.0236 (7)0.0288 (8)0.0029 (6)0.0013 (7)0.0078 (7)
C220.0283 (9)0.0318 (8)0.0294 (8)0.0035 (7)0.0065 (7)0.0084 (7)
C230.0205 (8)0.0295 (8)0.0320 (9)0.0011 (6)0.0028 (6)0.0088 (7)
C240.0309 (9)0.0284 (8)0.0291 (8)0.0077 (7)0.0050 (7)0.0068 (7)
C250.0335 (9)0.0310 (8)0.0309 (9)0.0045 (7)0.0072 (7)0.0048 (7)
C260.0542 (12)0.0436 (10)0.0297 (9)0.0134 (9)0.0123 (9)0.0021 (8)
C270.0475 (12)0.0501 (11)0.0246 (9)0.0151 (9)0.0010 (8)0.0046 (8)
C280.0348 (10)0.0396 (9)0.0274 (8)0.0123 (7)0.0004 (7)0.0128 (8)
C290.0372 (11)0.0522 (11)0.0377 (10)0.0112 (9)0.0036 (8)0.0210 (9)
C300.0321 (10)0.0448 (11)0.0517 (12)0.0020 (8)0.0002 (8)0.0250 (10)
C310.0381 (10)0.0336 (9)0.0439 (10)0.0026 (7)0.0057 (8)0.0155 (8)
C320.0321 (9)0.0269 (8)0.0318 (9)0.0053 (7)0.0017 (7)0.0081 (7)
C330.0304 (9)0.0315 (8)0.0287 (8)0.0088 (7)0.0016 (7)0.0104 (7)
C340.0210 (8)0.0227 (7)0.0255 (8)0.0038 (6)0.0050 (6)0.0076 (6)
C350.0223 (8)0.0261 (8)0.0285 (8)0.0016 (6)0.0000 (6)0.0081 (7)
C360.0280 (8)0.0208 (7)0.0314 (8)0.0021 (6)0.0031 (7)0.0058 (7)
C370.0243 (8)0.0247 (7)0.0271 (8)0.0040 (6)0.0060 (6)0.0092 (6)
C380.0208 (8)0.0286 (8)0.0252 (8)0.0020 (6)0.0017 (6)0.0055 (7)
C390.0251 (8)0.0219 (7)0.0262 (8)0.0013 (6)0.0054 (6)0.0028 (6)
C400.0226 (8)0.0243 (7)0.0323 (9)0.0020 (6)0.0034 (6)0.0096 (7)
C410.0295 (9)0.0340 (9)0.0332 (9)0.0047 (7)0.0065 (7)0.0109 (7)
C420.0333 (10)0.0438 (10)0.0365 (10)0.0040 (8)0.0034 (8)0.0212 (8)
C430.0266 (9)0.0318 (9)0.0481 (11)0.0052 (7)0.0023 (8)0.0199 (8)
C440.0206 (8)0.0247 (8)0.0412 (10)0.0000 (6)0.0018 (7)0.0094 (7)
C450.0274 (9)0.0256 (8)0.0499 (11)0.0035 (7)0.0020 (8)0.0046 (8)
C460.0298 (9)0.0335 (9)0.0434 (11)0.0003 (7)0.0063 (8)0.0077 (8)
C470.0336 (10)0.0413 (10)0.0320 (9)0.0039 (8)0.0035 (7)0.0024 (8)
C480.0285 (9)0.0288 (8)0.0331 (9)0.0007 (7)0.0027 (7)0.0075 (7)
C490.0207 (8)0.0233 (7)0.0324 (9)0.0009 (6)0.0017 (6)0.0070 (7)
Geometric parameters (Å, º) top
N1—C21.4159 (19)C25—C261.410 (2)
N1—C341.4179 (18)C25—H250.9500
N1—C181.4315 (19)C26—C271.372 (3)
C2—C31.398 (2)C26—H260.9500
C2—C71.399 (2)C27—C281.410 (3)
C3—C41.389 (2)C27—H270.9500
C3—H30.9500C28—C291.423 (3)
C4—C51.397 (2)C28—C331.426 (2)
C4—H40.9500C29—C301.359 (3)
C5—C61.399 (2)C29—H290.9500
C5—C81.491 (2)C30—C311.404 (3)
C6—C71.387 (2)C30—H300.9500
C6—H60.9500C31—C321.366 (2)
C7—H70.9500C31—H310.9500
C8—C91.376 (2)C32—C331.422 (2)
C8—C171.433 (2)C32—H320.9500
C9—C101.410 (2)C34—C391.395 (2)
C9—H90.9500C34—C351.397 (2)
C10—C111.359 (3)C35—C361.383 (2)
C10—H100.9500C35—H350.9500
C11—C121.414 (3)C36—C371.401 (2)
C11—H110.9500C36—H360.9500
C12—C131.419 (2)C37—C381.392 (2)
C12—C171.430 (2)C37—C401.493 (2)
C13—C141.360 (3)C38—C391.382 (2)
C13—H130.9500C38—H380.9500
C14—C151.408 (3)C39—H390.9500
C14—H140.9500C40—C411.380 (2)
C15—C161.364 (3)C40—C491.429 (2)
C15—H150.9500C41—C421.411 (2)
C16—C171.417 (2)C41—H410.9500
C16—H160.9500C42—C431.361 (3)
C18—C231.387 (2)C42—H420.9500
C18—C191.388 (2)C43—C441.413 (3)
C19—C201.393 (2)C43—H430.9500
C19—H190.9500C44—C451.415 (2)
C20—C211.401 (2)C44—C491.429 (2)
C20—H200.9500C45—C461.363 (3)
C21—C221.394 (2)C45—H450.9500
C21—C241.497 (2)C46—C471.408 (3)
C22—C231.387 (2)C46—H460.9500
C22—H220.9500C47—C481.364 (2)
C23—H230.9500C47—H470.9500
C24—C251.375 (2)C48—C491.417 (2)
C24—C331.428 (2)C48—H480.9500
C2—N1—C34122.34 (13)C26—C25—H25118.9
C2—N1—C18118.41 (12)C27—C26—C25119.68 (17)
C34—N1—C18119.01 (12)C27—C26—H26120.2
C3—C2—C7118.28 (14)C25—C26—H26120.2
C3—C2—N1121.81 (14)C26—C27—C28120.15 (17)
C7—C2—N1119.91 (14)C26—C27—H27119.9
C4—C3—C2120.50 (14)C28—C27—H27119.9
C4—C3—H3119.8C27—C28—C29121.05 (16)
C2—C3—H3119.8C27—C28—C33120.29 (16)
C3—C4—C5121.84 (15)C29—C28—C33118.65 (16)
C3—C4—H4119.1C30—C29—C28121.74 (17)
C5—C4—H4119.1C30—C29—H29119.1
C4—C5—C6116.98 (14)C28—C29—H29119.1
C4—C5—C8121.42 (14)C29—C30—C31119.25 (18)
C6—C5—C8121.44 (14)C29—C30—H30120.4
C7—C6—C5121.86 (14)C31—C30—H30120.4
C7—C6—H6119.1C32—C31—C30121.33 (18)
C5—C6—H6119.1C32—C31—H31119.3
C6—C7—C2120.52 (14)C30—C31—H31119.3
C6—C7—H7119.7C31—C32—C33120.81 (16)
C2—C7—H7119.7C31—C32—H32119.6
C9—C8—C17119.14 (14)C33—C32—H32119.6
C9—C8—C5118.90 (15)C32—C33—C28118.03 (15)
C17—C8—C5121.93 (14)C32—C33—C24123.46 (15)
C8—C9—C10121.53 (16)C28—C33—C24118.49 (15)
C8—C9—H9119.2C39—C34—C35118.44 (13)
C10—C9—H9119.2C39—C34—N1121.76 (14)
C11—C10—C9120.23 (17)C35—C34—N1119.78 (14)
C11—C10—H10119.9C36—C35—C34120.59 (14)
C9—C10—H10119.9C36—C35—H35119.7
C10—C11—C12120.84 (16)C34—C35—H35119.7
C10—C11—H11119.6C35—C36—C37121.41 (14)
C12—C11—H11119.6C35—C36—H36119.3
C11—C12—C13121.65 (16)C37—C36—H36119.3
C11—C12—C17119.32 (15)C38—C37—C36117.18 (14)
C13—C12—C17118.99 (16)C38—C37—C40120.52 (14)
C14—C13—C12121.10 (17)C36—C37—C40122.16 (14)
C14—C13—H13119.4C39—C38—C37122.02 (14)
C12—C13—H13119.4C39—C38—H38119.0
C13—C14—C15120.00 (17)C37—C38—H38119.0
C13—C14—H14120.0C38—C39—C34120.31 (14)
C15—C14—H14120.0C38—C39—H39119.8
C16—C15—C14120.66 (18)C34—C39—H39119.8
C16—C15—H15119.7C41—C40—C49119.25 (14)
C14—C15—H15119.7C41—C40—C37118.67 (14)
C15—C16—C17121.18 (16)C49—C40—C37122.08 (14)
C15—C16—H16119.4C40—C41—C42121.39 (16)
C17—C16—H16119.4C40—C41—H41119.3
C16—C17—C12118.04 (15)C42—C41—H41119.3
C16—C17—C8123.11 (15)C43—C42—C41120.07 (17)
C12—C17—C8118.82 (15)C43—C42—H42120.0
C23—C18—C19119.28 (14)C41—C42—H42120.0
C23—C18—N1120.95 (14)C42—C43—C44120.94 (15)
C19—C18—N1119.77 (14)C42—C43—H43119.5
C18—C19—C20120.17 (15)C44—C43—H43119.5
C18—C19—H19119.9C43—C44—C45122.04 (15)
C20—C19—H19119.9C43—C44—C49119.32 (15)
C19—C20—C21121.09 (15)C45—C44—C49118.62 (16)
C19—C20—H20119.5C46—C45—C44121.35 (16)
C21—C20—H20119.5C46—C45—H45119.3
C22—C21—C20117.70 (15)C44—C45—H45119.3
C22—C21—C24120.65 (15)C45—C46—C47120.13 (17)
C20—C21—C24121.49 (15)C45—C46—H46119.9
C23—C22—C21121.31 (16)C47—C46—H46119.9
C23—C22—H22119.3C48—C47—C46120.19 (18)
C21—C22—H22119.3C48—C47—H47119.9
C18—C23—C22120.43 (15)C46—C47—H47119.9
C18—C23—H23119.8C47—C48—C49121.42 (16)
C22—C23—H23119.8C47—C48—H48119.3
C25—C24—C33119.01 (15)C49—C48—H48119.3
C25—C24—C21118.78 (15)C48—C49—C44118.24 (15)
C33—C24—C21122.12 (14)C48—C49—C40122.85 (14)
C24—C25—C26122.10 (17)C44—C49—C40118.88 (15)
C24—C25—H25118.9
C34—N1—C2—C335.0 (2)C24—C25—C26—C270.8 (3)
C18—N1—C2—C3150.63 (15)C25—C26—C27—C283.3 (3)
C34—N1—C2—C7145.32 (15)C26—C27—C28—C29178.57 (18)
C18—N1—C2—C729.0 (2)C26—C27—C28—C331.1 (3)
C7—C2—C3—C41.7 (2)C27—C28—C29—C30176.10 (19)
N1—C2—C3—C4178.66 (14)C33—C28—C29—C303.5 (3)
C2—C3—C4—C50.4 (2)C28—C29—C30—C310.3 (3)
C3—C4—C5—C60.7 (2)C29—C30—C31—C323.2 (3)
C3—C4—C5—C8176.20 (15)C30—C31—C32—C332.1 (3)
C4—C5—C6—C70.4 (2)C31—C32—C33—C281.8 (3)
C8—C5—C6—C7175.91 (14)C31—C32—C33—C24179.57 (17)
C5—C6—C7—C20.9 (2)C27—C28—C33—C32175.11 (17)
C3—C2—C7—C62.0 (2)C29—C28—C33—C324.5 (2)
N1—C2—C7—C6178.37 (14)C27—C28—C33—C243.6 (2)
C4—C5—C8—C951.0 (2)C29—C28—C33—C24176.78 (16)
C6—C5—C8—C9124.33 (17)C25—C24—C33—C32172.66 (16)
C4—C5—C8—C17130.98 (17)C21—C24—C33—C3210.7 (3)
C6—C5—C8—C1753.7 (2)C25—C24—C33—C286.0 (2)
C17—C8—C9—C103.1 (2)C21—C24—C33—C28170.65 (15)
C5—C8—C9—C10175.02 (15)C2—N1—C34—C3926.1 (2)
C8—C9—C10—C110.2 (3)C18—N1—C34—C39148.20 (15)
C9—C10—C11—C121.8 (3)C2—N1—C34—C35155.43 (15)
C10—C11—C12—C13176.88 (17)C18—N1—C34—C3530.3 (2)
C10—C11—C12—C170.8 (3)C39—C34—C35—C360.3 (2)
C11—C12—C13—C14176.91 (17)N1—C34—C35—C36178.83 (15)
C17—C12—C13—C140.8 (3)C34—C35—C36—C371.7 (3)
C12—C13—C14—C150.7 (3)C35—C36—C37—C382.5 (2)
C13—C14—C15—C161.2 (3)C35—C36—C37—C40173.31 (15)
C14—C15—C16—C170.1 (3)C36—C37—C38—C391.3 (2)
C15—C16—C17—C121.4 (2)C40—C37—C38—C39174.58 (16)
C15—C16—C17—C8179.29 (16)C37—C38—C39—C340.7 (2)
C11—C12—C17—C16175.91 (15)C35—C34—C39—C381.5 (2)
C13—C12—C17—C161.8 (2)N1—C34—C39—C38179.98 (15)
C11—C12—C17—C82.1 (2)C38—C37—C40—C4151.8 (2)
C13—C12—C17—C8179.79 (15)C36—C37—C40—C41123.81 (18)
C9—C8—C17—C16173.91 (15)C38—C37—C40—C49128.84 (17)
C5—C8—C17—C168.0 (2)C36—C37—C40—C4955.5 (2)
C9—C8—C17—C124.0 (2)C49—C40—C41—C422.8 (3)
C5—C8—C17—C12174.10 (14)C37—C40—C41—C42176.55 (16)
C2—N1—C18—C23118.54 (16)C40—C41—C42—C430.6 (3)
C34—N1—C18—C2356.0 (2)C41—C42—C43—C442.6 (3)
C2—N1—C18—C1960.6 (2)C42—C43—C44—C45177.23 (17)
C34—N1—C18—C19124.90 (16)C42—C43—C44—C491.1 (3)
C23—C18—C19—C201.6 (2)C43—C44—C45—C46176.00 (17)
N1—C18—C19—C20177.57 (14)C49—C44—C45—C462.4 (3)
C18—C19—C20—C211.5 (2)C44—C45—C46—C470.4 (3)
C19—C20—C21—C220.1 (2)C45—C46—C47—C481.3 (3)
C19—C20—C21—C24175.28 (15)C46—C47—C48—C491.0 (3)
C20—C21—C22—C231.1 (2)C47—C48—C49—C440.9 (2)
C24—C21—C22—C23176.59 (15)C47—C48—C49—C40178.92 (16)
C19—C18—C23—C220.3 (2)C43—C44—C49—C48175.83 (16)
N1—C18—C23—C22178.81 (14)C45—C44—C49—C482.6 (2)
C21—C22—C23—C181.1 (2)C43—C44—C49—C402.2 (2)
C22—C21—C24—C2545.1 (2)C45—C44—C49—C40179.36 (15)
C20—C21—C24—C25130.13 (17)C41—C40—C49—C48173.82 (16)
C22—C21—C24—C33138.26 (17)C37—C40—C49—C486.8 (2)
C20—C21—C24—C3346.5 (2)C41—C40—C49—C444.1 (2)
C33—C24—C25—C263.9 (3)C37—C40—C49—C44175.20 (15)
C21—C24—C25—C26172.84 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the rings C24–C28/C33, C2–C7 and C12–C17, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.952.653.5309 (19)154
C20—H20···Cg2i0.952.913.8029 (19)156
C23—H23···Cg2ii0.952.713.6165 (18)159
C47—H47···Cg3ii0.952.993.660 (2)129
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrown, G. M., Freeman, G. R. & Walter, R. I. (1977). J. Am. Chem. Soc. 99, 6910–6915.  CSD CrossRef CAS Web of Science Google Scholar
First citationFang, M., Yang, J., Liao, Q., Gong, Y., Xie, Z., Chi, Z., Peng, Q., Li, Q. & Li, Z. (2017). J. Mater. Chem. C5, 9879–9885.  Google Scholar
First citationFeng, S., Shang, Y., Wang, Z., Kang, Z., Wang, R., Jiang, J., Fan, L., Fan, W., Liu, Z., Kong, G., Feng, Y., Hu, S., Guo, H. & Sun, D. (2020). Angew. Chem. Int. Ed. 59, 3840–3845.  CSD CrossRef CAS Google Scholar
First citationGagnon, E., Maris, T. & Wuest, J. D. (2010). Org. Lett. 12, 404–407.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHariharan, P. S., Mothi, E. M., Moon, D. & Anthony, S. P. (2016). Appl. Mater. Interfaces, 8, 33034–33042.  CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationInada, H., Ohnishi, K., Nomura, S., Higuchi, A., Nakano, H. & Shirota, Y. (1994). J. Mater. Chem. 4, 171–177.  CSD CrossRef CAS Web of Science Google Scholar
First citationKrucaite, G., Volyniuk, D., Simokaitiene, J., Grigalevicius, S., Lin, C., Shao, C.-M. & Chang, C.-H. (2019). Dyes Pigments, 162, 196–202.  CrossRef CAS Google Scholar
First citationKwon, J., Kim, M. K., Hong, J.-P., Lee, W., Noh, S., Lee, C., Lee, S. & Hong, J.-I. (2010). Org. Electron. 11, 1288–1295.  CrossRef CAS Google Scholar
First citationMondal, B., Acharyya, K., Howlader, P. & Mukherjee, P. S. (2016). J. Am. Chem. Soc. 138, 1709–1716.  CSD CrossRef CAS PubMed Google Scholar
First citationNieger, M., Polamo, M., Meli, A. & Bräse, S. (2017). Private Communication (refcode WEHLIE01). CCDC, Cambridge, England.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSeo, E. T., Nelson, R. F., Fritsch, J. M., Marcoux, L. S., Leedy, D. W. & Adams, R. N. (1966). J. Am. Chem. Soc. 88, 3498–3503.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Feng, Y.-Q., Wang, J.-H., Han, G., Li, M.-Y., Xiao, Y. & Feng, Z.-D. (2017). RSC Adv. 7, 35672–35680.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds