research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of monohydrate and methanol solvate compounds of {1-[(3,5-bis­{[(4,6-di­methylpyridin-2-yl)amino]methyl}-2,4,6-tri­ethylbenzyl)amino]cyclo­pentyl}methanol

crossmark logo

aTechnische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by H. Ishida, Okayama University, Japan (Received 10 September 2020; accepted 15 September 2020; online 25 September 2020)

In the title monohydrate compound, 1a, and the methanol solvate compound, 1b, the tri­ethyl­benzene derivative, C35H51N5O, has three functionalized side arms and three ethyl groups, the former being located on one side of the central benzene ring, while the latter are directed to the opposite side. Both the crystals are constructed of structurally similar dimers of 1:1 host–guest complexes held together by N—H⋯O and O—H⋯N hydrogen bonds, and in 1a additionally by O—H⋯O hydrogen bonds. The structure of 1b contains additional highly disordered solvent mol­ecules. Thus, the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] in PLATON was used to generate a modified data set, in which the contribution of the disordered mol­ecules to the structure amplitudes is eliminated. These solvent mol­ecules are not considered in the reported chemical formula.

1. Chemical context

Representatives of the class of 1,3,5-tris­ubstituted 2,4,6-tri­alkyl­benzenes have been shown to have the ability to act as artificial carbohydrate receptors. Depending on the nature of their building blocks, these compounds display different, inter­esting binding efficiencies and selectivities towards carbohydrates (Mazik, 2009[Mazik, M. (2009). Chem. Soc. Rev. 38, 935-956.], 2012[Mazik, M. (2012). RSC Adv. 2, 2630-2642.]; Stapf et al., 2020[Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900-4915.]). Our systematic studies have shown the enormous potential of this acyclic receptor architecture for versatile structural modifications, which enable the identification of inter­esting structure–activity relationships. For example, we have observed that the combination of two 2-amino­pyridine units with another recognition group provides receptors having a binding preference for β-glucoside vs β-galactoside (Mazik & Kuschel, 2008[Mazik, M. & Kuschel, M. (2008). Chem. Eur. J. 14, 2405-2419.]; Mazik & Geffert, 2011[Mazik, M. & Geffert, C. (2011). Org. Biomol. Chem. 9, 2319-2326.]; Stapf et al., 2020[Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900-4915.]).

[Scheme 1]

{1-[(3,5-Bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzyl)amino]cyclopentyl}methanol, 1, represents a tri­ethyl­benzene derivative bearing, in addition to the above-mentioned pyridinyl units, a 1-hy­droxy­methyl-cyclo­pentyl­amino group. The crystal structures of the monohydrate, 1a, and the methanol solvate, 1b, are described here.

2. Structural commentary

Compounds 1a and 1b crystallize in the space groups P21/c and P[\overline{1}], respectively. The mol­ecular structures depicted in Figs. 1[link] and 2[link] reveal similar host geometries with a fully alternating arrangement of the substituents above and below the plane of the central arene ring [ab'ab'ab' pattern, a = above, b = below (a′/b′ = Et above/below); for a discussion on the conformations of tri­ethyl­benzene-based compounds, see: Koch et al., 2017[Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817-3833.]; Schulze et al., 2017[Schulze, M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003-4016.]]. In other words, the three functionalized side arms point to one face of the central benzene ring and participate in the formation of hydrogen bonds with the guest solvent mol­ecule, while the ethyl groups are directed to the opposite side. The heterocyclic units are inclined by 62.4 (1) and 73.0 (1)° for 1a [78.9 (1) and 85.1 (1)° for 1b] with respect to the benzene ring. The cyclo­pentane rings adopt a slightly distorted envelope conformation with C33 (1a) and C31 (1b) as the flap.

[Figure 1]
Figure 1
Perspective views of the structures of the 1:1 host–guest complexes, 1a (a) and 1b (b), including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Ball-and-stick representations (side views) of the 1:1 host–guest complexes, 1a (a) and 1b (b).

3. Supra­molecular features

The crystal structures of 1a and 1b are composed of inversion-symmetric dimers of 1:1 host–guest complexes (Fig. 3[link]). The donor/acceptor properties of the solvent species have, however, a marked influence on the patterns of hydrogen-bonding inter­actions. In the crystal of 1a, the dimeric structural unit is held together by classical hydrogen bonds (N5—H5⋯O1Wi and O1W—H2W⋯N5; symmetry code as given in Table 1[link]) that contribute to the formation of a cyclic supra­molecular synthon with a graph-set motif R44(8). Within this dimeric unit, the oxygen atom of the water mol­ecules acts as a trifurcated acceptor, as it is involved in the formation of an O—H⋯O bond [d(H⋯O) = 1.83 (1) Å] and two Namine—H⋯O inter­actions [d(H⋯O) = 2.50 (1) and 2.52 (1) Å]. The H atoms of the water mol­ecule participate in an asymmetric fashion in O—H⋯N bonding [d(H⋯N) = 2.03 (1) and 1.93 (1) Å] with pyridine atom N2 and amine atom N5, respectively, of different host mol­ecules. The inter­actions between the host mol­ecules are confined to only one N—H⋯O hydrogen bond [d(H⋯O) = 2.05 (1) Å] per mol­ecule. In the crystal of 1a, the complexes are connected via C—H⋯π inter­actions [d(H⋯Cg) = 2.69 and 2.84 Å], forming a three-dimensional network. An portion of the crystal structure is displayed in Fig. 4[link]. The presence of the alcohol solvent in 1b reduces the number of hydrogen bonds within the dimeric structural unit (Table 2[link]). In this case, the complex components create a continuous pattern of hydrogen bonds in the structure: N—H⋯Osolv—H⋯N—H⋯Ohost—H⋯Npyr [d(H⋯O) = 2.01 (3) and 2.36 (3) Å; d(H⋯N) = 1.90 and 1.97 Å]. While one of the amine hydrogen atoms is excluded from hydrogen bonding, a second one contributes by the formation of an intra­molecular N—H⋯O bond. Cross-linking of the complexes via C—H⋯π and ππ inter­actions [Cg2⋯Cg2iv = 4.076 (2) Å; Cg2 is the centroid of the C14–C18/N2 ring; symmetry code: (iv) −x + 2, −y + 1, −z + 1] results in a three-dimensional supra­molecular architecture. A view of the crystal structure along the b axis reveals channel-like lattice voids in which the disordered solvent mol­ecules are accommodated (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1a[link]

Cg1 and Cg2 are the centroids of the C1–C6 and C14–C18/N2 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯N5 0.87 (1) 1.93 (1) 2.8018 (14) 175 (2)
O1W—H1W⋯N2i 0.86 (1) 2.03 (1) 2.8780 (15) 166 (2)
O1—H1A⋯O1Wi 0.87 (1) 1.83 (1) 2.6993 (14) 176 (2)
N5—H5⋯O1Wi 0.90 (1) 2.52 (1) 3.3302 (14) 151 (1)
N3—H3⋯O1i 0.89 (1) 2.05 (1) 2.9115 (15) 162 (2)
N1—H1⋯O1Wi 0.89 (1) 2.50 (1) 3.2618 (16) 145 (1)
C32—H32BCg1ii 0.99 2.69 3.666 (2) 169
C25—H25⋯Cg2iii 0.95 2.84 3.728 (2) 156
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [-x, -y, -z]; (iii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for 1b[link]

Cg1 and Cg3 are the centroids of the C1–C6 and C22–C26/N4 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1A 0.94 (3) 2.01 (3) 2.930 (3) 162 (2)
C15—H15⋯O1A 0.95 2.56 3.318 (3) 137
N5—H5⋯O1 0.90 (3) 2.36 (3) 2.823 (3) 112 (2)
O1—H1A⋯N4i 0.84 1.90 2.741 (3) 174
O1A—H1AA⋯N5i 0.84 1.97 2.798 (3) 170
C27—H27ACg1ii 0.98 2.67 3.541 (3) 148
C32—H32BCg3iii 0.98 2.69 3.614 (3) 156
Symmetry codes: (i) [-x+2, -y+1, -z+2]; (ii) [-x+1, -y+2, -z+2]; (iii) x+1, y, z.
[Figure 3]
Figure 3
Supra­molecular motifs in the crystal structures of 1a (a) and 1b (b). For the sake of clarity, H atoms of the host mol­ecules not involved in hydrogen bonding are omitted.
[Figure 4]
Figure 4
Packing diagram of 1a. Dashed lines represent hydrogen bonds. H atoms not involved in the hydrogen bonds are omitted.
[Figure 5]
Figure 5
Packing diagram of 1b viewed down the b axis. Dashed lines represent hydrogen bonds, dashed double lines ππ inter­actions. Areas occupied by disordered solvent mol­ecules are highlighted as grey ellipsoids. H atoms of the host mol­ecules not involved in the hydrogen bonds are omitted.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1,3,5-tris­ubstituted 2,4,6-tri­alkyl­benzene derivatives containing the 4,6-di­methyl­pyridin-2-yl-amino­methyl subunit resulted in five hits. They include 1,3,5-tris­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­methyl­benzene (refcode QAPVAF; Mazik et al., 2005[Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045-9052.]), which has proven to be an effective receptor for complex formation with methyl β-D-gluco­pyran­oside in the solid state, as well as the ethanol solvates of 1,3,5-tris­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­methyl­benzene (RAJYUX; Mazik et al., 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.]) and of 1,3,5-tris­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­benzene (RAJZAE; Mazik et al., 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.]). In the crystals of the ethanol solvates (Mazik et al., 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.]), the functionalized side arms of the corresponding host are arranged in an aab fashion with respect to the benzene plane. In addition to the solvates of the symmetrical tris­ubstituted trimethyl- and tri­ethyl­benzene derivatives, the crystal structures of the solvates of two tri­ethyl­benzene-based compounds containing one or two phenanthrolinyl groups (ROKJEH, ROKJEH01; Mazik & Hartmann, 2008[Mazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444-7450.]; Mazik et al., 2009[Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147-9159.]) in addition to the 2-amino­pyridine unit(s) have also been reported. In the case of 1-[N-(1,10-phenanthrolin-2-yl-carbon­yl)amino­meth­yl]-3,5-bis­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­ben­z­ene, three water mol­ecules are located in the binding pocket created by the heterocyclic units of the host (Mazik & Hartmann, 2008[Mazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444-7450.]), whereas the binding pocket of 1,3-bis­[N-(1,10-phenanthrolin-2-yl-carbon­yl)amino­meth­yl]-5-[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­benzene is filled with one ethanol and two water mol­ecules (Mazik et al., 2009[Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147-9159.]). The above-mentioned aggregates are stabilized by eight and ten hydrogen bonds, respectively.

5. Synthesis and crystallization

To a solution of 1-amino-1-cyclo­pentyl­methanol (1.48 mmol) in aceto­nitrile (20 ml) was added 1-bromo­methyl-3,5-bis­[(4,6-di­methyl­pyridin-2-yl)amino­methyl-2,4,6-tri­ethyl­benzene (0.71 mmol) dissolved in tetra­hydro­furan/aceto­nitrile (20 ml, 1:1 v/v). The reaction mixture was stirred at room temperature and under exclusion of light. The completion of the reaction was monitored by TLC. After evaporation of the solvents in vacuo and purification of the yellowish crude product via column chromatography (SiO2; chloro­form/methanol 7:1 v/v), compound 1 was obtained as a white solid. Yield: 33%; Rf = 0.26 (chloro­form/methanol 7:1 v/v); m.p. 375 K. Crystals of 1a and 1b suitable for single crystal X-ray diffraction were grown by slow evaporation of the respective solvent (aceto­nitrile in case of 1a) at ambient temperature. 1H NMR (500 MHz, CDCl3, ppm) δ = 1.23 (t+t, 9H, J = 7.3 Hz), 1.55–1.65 (m, 4H), 1.68–1.77 (m, 4H), 2.23 (s, 6H), 2.36 (s, 6H), 2.70 (q, 2H, J = 7.3 Hz), 2.82 (br, 4H), 3.46 (s, 2H), 3.74 (br, 2H), 4.36 (br, 4H), 6.13 (s, 2H), 6.33 (s, 2H). 13C NMR (125 MHz, CDCl3, ppm) δ = 16.7, 16.9, 21.1, 22.9, 23.4, 23.9, 24.2, 33.5, 40.5 (2C), 64.7, 67.7, 103.8, 113.6, 132.8 (2C), 143.8 (2C), 148.8, 156.2, 158.2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N- and O-bound H atoms in 1a were located in a difference-Fourier map and refined freely with distance restraints of N—H = 0.89 (1) Å and O—H = 0.85 (1) Å. For 1b, N-bound H atoms were refined freely, while O-bound H atoms were treated as riding with O—H = 0.84 Å. All other H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.99 Å, and with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for other H atoms. The crystal structure 1b contains highly disordered solvent mol­ecules that could not be refined to an acceptable level. Thus, the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in the PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) program was used to generate a modified data set in which the contribution of the disordered mol­ecules to the structure amplitudes is eliminated. These solvent mol­ecules are not considered in the given chemical formula. The void volume of 267.9 Å3 occupied by the disordered solvent represents 14.3% of the cell volume, and the calculated electron count was 65 per void.

Table 3
Experimental details

  1b 1b
Crystal data
Chemical formula C35H51N5O·H2O C35H51N5O·CH4O
Mr 575.82 589.85
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 13.2239 (7), 15.3576 (8), 17.1061 (8) 12.1169 (4), 13.2380 (5), 13.6258 (5)
α, β, γ (°) 90, 107.0289 (17), 90 68.373 (2), 79.379 (2), 67.392 (2)
V3) 3321.7 (3) 1873.32 (12)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 0.07
Crystal size (mm) 0.45 × 0.32 × 0.10 0.56 × 0.34 × 0.32
 
Data collection
Diffractometer Bruker X8 APEXII CCD Bruker X8 APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 28794, 7467, 5791 32191, 7654, 5160
Rint 0.034 0.022
(sin θ/λ)max−1) 0.647 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.03 0.065, 0.184, 1.21
No. of reflections 7467 7654
No. of parameters 410 410
No. of restraints 6 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.20 0.64, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

{1-[(3,5-Bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzyl)amino]cyclopentyl}methanol monohydrate (1a) top
Crystal data top
C35H51N5O·H2OF(000) = 1256
Mr = 575.82Dx = 1.151 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2239 (7) ÅCell parameters from 9674 reflections
b = 15.3576 (8) Åθ = 2.2–28.2°
c = 17.1061 (8) ŵ = 0.07 mm1
β = 107.0289 (17)°T = 100 K
V = 3321.7 (3) Å3Irregular, colourless
Z = 40.45 × 0.32 × 0.10 mm
Data collection top
Bruker X8 APEXII CCD
diffractometer
Rint = 0.034
phi and ω scansθmax = 27.4°, θmin = 2.1°
28794 measured reflectionsh = 1717
7467 independent reflectionsk = 1917
5791 reflections with I > 2σ(I)l = 2221
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.8757P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7467 reflectionsΔρmax = 0.27 e Å3
410 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21807 (7)0.54810 (6)0.00959 (6)0.0238 (2)
N10.11044 (9)0.24557 (8)0.12255 (7)0.0218 (2)
H10.0834 (13)0.2969 (7)0.1039 (10)0.036 (5)*
N20.23912 (9)0.33295 (7)0.20586 (6)0.0198 (2)
N30.33881 (9)0.29584 (8)0.05481 (7)0.0223 (3)
H30.3046 (12)0.3464 (7)0.0466 (10)0.036 (5)*
N40.44662 (8)0.20100 (7)0.00817 (7)0.0201 (2)
N50.03784 (8)0.45806 (7)0.12196 (6)0.0176 (2)
H50.0752 (11)0.4402 (10)0.0720 (6)0.024 (4)*
C10.03521 (10)0.26699 (8)0.06516 (7)0.0163 (3)
C20.00019 (10)0.21235 (8)0.01228 (7)0.0161 (3)
C30.10826 (10)0.20103 (8)0.02240 (7)0.0167 (3)
C40.18206 (10)0.24315 (8)0.08766 (7)0.0169 (3)
C50.14833 (10)0.30214 (8)0.13754 (7)0.0172 (3)
C60.03906 (10)0.31377 (8)0.12622 (7)0.0166 (3)
C70.15304 (10)0.27362 (9)0.05636 (8)0.0197 (3)
H7A0.19360.26930.00220.024*
H7B0.16820.33110.07660.024*
C80.18900 (11)0.20182 (10)0.10409 (9)0.0264 (3)
H8A0.17530.14480.08350.040*
H8B0.26490.20800.09710.040*
H8C0.14990.20660.16220.040*
C90.14599 (11)0.14569 (9)0.03707 (8)0.0223 (3)
H9A0.21490.16840.03990.027*
H9B0.09490.15120.09220.027*
C100.15839 (13)0.04917 (10)0.01346 (10)0.0335 (4)
H10A0.20870.04310.04120.050*
H10B0.18470.01730.05320.050*
H10C0.08970.02540.01330.050*
C110.22863 (10)0.35482 (9)0.20189 (8)0.0215 (3)
H11A0.19920.41350.20520.026*
H11B0.29320.36200.18450.026*
C120.25915 (12)0.31327 (10)0.28712 (8)0.0288 (3)
H12A0.19500.30080.30280.043*
H12B0.30420.35350.32680.043*
H12C0.29770.25900.28630.043*
C130.08201 (10)0.17532 (9)0.06179 (8)0.0190 (3)
H13A0.05240.12510.08400.023*
H13B0.14510.15560.04680.023*
C140.21009 (10)0.25244 (9)0.17714 (7)0.0181 (3)
C150.27565 (10)0.17971 (9)0.20134 (8)0.0206 (3)
H150.25280.12380.17960.025*
C160.37413 (11)0.19050 (9)0.25737 (9)0.0246 (3)
C170.40303 (11)0.27384 (9)0.28877 (8)0.0237 (3)
H170.46960.28320.32820.028*
C180.33386 (10)0.34256 (9)0.26202 (8)0.0205 (3)
C190.44869 (13)0.11508 (11)0.28255 (12)0.0432 (4)
H19A0.40830.06070.27500.065*
H19B0.48930.12130.34020.065*
H19C0.49720.11400.24890.065*
C200.36075 (12)0.43342 (10)0.29491 (9)0.0282 (3)
H20A0.35850.47320.24970.042*
H20B0.43190.43380.33380.042*
H20C0.30940.45230.32270.042*
C210.29964 (10)0.22967 (9)0.09957 (8)0.0201 (3)
H21A0.33870.23320.15850.024*
H21B0.31150.17110.07970.024*
C220.40895 (10)0.28164 (9)0.01095 (8)0.0191 (3)
C230.44048 (11)0.35362 (9)0.02740 (8)0.0227 (3)
H230.41120.40960.02450.027*
C240.51400 (11)0.34216 (9)0.06903 (9)0.0249 (3)
C250.55286 (11)0.25789 (9)0.07272 (9)0.0241 (3)
H250.60340.24740.10130.029*
C260.51739 (10)0.19036 (9)0.03474 (8)0.0217 (3)
C270.55221 (14)0.41751 (11)0.10917 (11)0.0386 (4)
H27A0.52400.41220.16870.058*
H27B0.62970.41710.09350.058*
H27C0.52780.47230.09140.058*
C280.55646 (13)0.09887 (10)0.03838 (10)0.0306 (3)
H28A0.59310.07870.01700.046*
H28B0.60540.09780.07170.046*
H28C0.49630.06050.06290.046*
C290.00203 (10)0.38089 (8)0.17448 (8)0.0190 (3)
H29A0.06160.35630.19140.023*
H29B0.05470.39760.22430.023*
C300.10008 (10)0.52576 (8)0.14971 (8)0.0192 (3)
C310.02821 (11)0.57698 (9)0.22365 (8)0.0239 (3)
H31A0.04430.55260.24000.029*
H31B0.02450.63910.20940.029*
C320.07871 (14)0.56730 (11)0.29311 (9)0.0360 (4)
H32A0.04880.51670.32810.043*
H32B0.06770.62040.32740.043*
C330.19561 (13)0.55366 (10)0.24928 (10)0.0341 (4)
H33A0.23080.60940.22840.041*
H33B0.23230.52650.28590.041*
C340.19394 (11)0.49275 (9)0.17924 (8)0.0230 (3)
H34A0.26130.49620.13460.028*
H34B0.18230.43170.19850.028*
C350.14183 (11)0.58756 (9)0.07718 (8)0.0218 (3)
H35A0.17430.63880.09540.026*
H35B0.08160.60840.05890.026*
O1W0.12410 (8)0.54814 (6)0.08143 (6)0.0228 (2)
H1A0.1888 (14)0.5189 (11)0.0219 (10)0.053 (6)*
H1W0.1623 (13)0.5760 (11)0.1234 (8)0.049 (6)*
H2W0.0765 (13)0.5196 (12)0.0970 (12)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (5)0.0247 (5)0.0211 (5)0.0028 (4)0.0057 (4)0.0022 (4)
N10.0216 (6)0.0227 (6)0.0174 (5)0.0049 (5)0.0001 (5)0.0022 (5)
N20.0228 (6)0.0218 (6)0.0145 (5)0.0014 (4)0.0050 (4)0.0001 (5)
N30.0219 (6)0.0215 (6)0.0262 (6)0.0011 (5)0.0114 (5)0.0022 (5)
N40.0202 (5)0.0211 (6)0.0181 (5)0.0012 (4)0.0044 (4)0.0001 (5)
N50.0225 (5)0.0153 (5)0.0154 (5)0.0005 (4)0.0063 (4)0.0017 (4)
C10.0194 (6)0.0137 (6)0.0158 (6)0.0003 (5)0.0052 (5)0.0049 (5)
C20.0203 (6)0.0123 (6)0.0143 (6)0.0016 (5)0.0031 (5)0.0026 (5)
C30.0225 (6)0.0141 (6)0.0145 (6)0.0010 (5)0.0069 (5)0.0029 (5)
C40.0181 (6)0.0172 (6)0.0150 (6)0.0002 (5)0.0045 (5)0.0045 (5)
C50.0207 (6)0.0165 (6)0.0135 (6)0.0013 (5)0.0036 (5)0.0025 (5)
C60.0213 (6)0.0145 (6)0.0145 (6)0.0000 (5)0.0060 (5)0.0016 (5)
C70.0196 (6)0.0179 (6)0.0214 (7)0.0000 (5)0.0058 (5)0.0004 (5)
C80.0254 (7)0.0261 (8)0.0303 (8)0.0017 (6)0.0121 (6)0.0027 (6)
C90.0238 (7)0.0241 (7)0.0199 (7)0.0007 (5)0.0079 (5)0.0034 (6)
C100.0371 (8)0.0227 (8)0.0425 (9)0.0041 (6)0.0144 (7)0.0069 (7)
C110.0207 (6)0.0236 (7)0.0189 (6)0.0018 (5)0.0037 (5)0.0033 (6)
C120.0301 (7)0.0345 (8)0.0177 (7)0.0014 (6)0.0004 (6)0.0021 (6)
C130.0215 (6)0.0177 (6)0.0160 (6)0.0013 (5)0.0029 (5)0.0004 (5)
C140.0196 (6)0.0229 (7)0.0126 (6)0.0000 (5)0.0059 (5)0.0015 (5)
C150.0232 (7)0.0178 (7)0.0198 (6)0.0012 (5)0.0045 (5)0.0040 (5)
C160.0238 (7)0.0239 (7)0.0235 (7)0.0014 (6)0.0028 (6)0.0058 (6)
C170.0199 (6)0.0283 (8)0.0197 (7)0.0018 (5)0.0009 (5)0.0020 (6)
C180.0229 (6)0.0239 (7)0.0153 (6)0.0018 (5)0.0068 (5)0.0001 (5)
C190.0332 (8)0.0283 (9)0.0527 (10)0.0068 (7)0.0115 (8)0.0018 (8)
C200.0313 (8)0.0271 (8)0.0244 (7)0.0014 (6)0.0052 (6)0.0053 (6)
C210.0192 (6)0.0227 (7)0.0180 (6)0.0015 (5)0.0048 (5)0.0018 (5)
C220.0169 (6)0.0230 (7)0.0160 (6)0.0008 (5)0.0024 (5)0.0014 (5)
C230.0255 (7)0.0195 (7)0.0238 (7)0.0014 (5)0.0084 (6)0.0003 (6)
C240.0278 (7)0.0245 (7)0.0241 (7)0.0009 (6)0.0101 (6)0.0014 (6)
C250.0244 (7)0.0266 (7)0.0239 (7)0.0020 (6)0.0113 (6)0.0018 (6)
C260.0232 (7)0.0229 (7)0.0183 (6)0.0009 (5)0.0048 (5)0.0025 (6)
C270.0504 (10)0.0276 (8)0.0482 (10)0.0014 (7)0.0308 (9)0.0057 (7)
C280.0370 (8)0.0240 (8)0.0341 (8)0.0038 (6)0.0158 (7)0.0005 (6)
C290.0222 (6)0.0186 (7)0.0161 (6)0.0013 (5)0.0056 (5)0.0007 (5)
C300.0229 (6)0.0160 (6)0.0200 (6)0.0002 (5)0.0081 (5)0.0019 (5)
C310.0301 (7)0.0187 (7)0.0226 (7)0.0014 (5)0.0073 (6)0.0044 (6)
C320.0512 (10)0.0353 (9)0.0255 (8)0.0077 (8)0.0172 (7)0.0105 (7)
C330.0475 (9)0.0234 (8)0.0418 (9)0.0019 (7)0.0294 (8)0.0045 (7)
C340.0253 (7)0.0215 (7)0.0252 (7)0.0002 (5)0.0119 (6)0.0005 (6)
C350.0258 (7)0.0175 (7)0.0227 (7)0.0005 (5)0.0080 (6)0.0011 (5)
O1W0.0275 (5)0.0216 (5)0.0202 (5)0.0052 (4)0.0084 (4)0.0029 (4)
Geometric parameters (Å, º) top
O1—C351.4275 (16)C15—H150.9500
O1—H1A0.874 (9)C16—C171.397 (2)
N1—C141.3779 (16)C16—C191.500 (2)
N1—C131.4685 (17)C17—C181.3837 (19)
N1—H10.885 (9)C17—H170.9500
N2—C141.3443 (17)C18—C201.5076 (19)
N2—C181.3451 (17)C19—H19A0.9800
N3—C221.3705 (17)C19—H19B0.9800
N3—C211.4558 (17)C19—H19C0.9800
N3—H30.889 (9)C20—H20A0.9800
N4—C221.3410 (17)C20—H20B0.9800
N4—C261.3578 (17)C20—H20C0.9800
N5—C291.4787 (16)C21—H21A0.9900
N5—C301.4876 (16)C21—H21B0.9900
N5—H50.896 (9)C22—C231.4093 (19)
C1—C61.4039 (17)C23—C241.3744 (19)
C1—C21.4080 (18)C23—H230.9500
C1—C71.5243 (17)C24—C251.401 (2)
C2—C31.4041 (17)C24—C271.506 (2)
C2—C131.5155 (17)C25—C261.377 (2)
C3—C41.4067 (18)C25—H250.9500
C3—C91.5177 (18)C26—C281.5046 (19)
C4—C51.4037 (18)C27—H27A0.9800
C4—C211.5219 (17)C27—H27B0.9800
C5—C61.4120 (17)C27—H27C0.9800
C5—C111.5197 (17)C28—H28A0.9800
C6—C291.5172 (18)C28—H28B0.9800
C7—C81.5284 (19)C28—H28C0.9800
C7—H7A0.9900C29—H29A0.9900
C7—H7B0.9900C29—H29B0.9900
C8—H8A0.9800C30—C351.5310 (18)
C8—H8B0.9800C30—C311.5548 (18)
C8—H8C0.9800C30—C341.5556 (18)
C9—C101.532 (2)C31—C321.531 (2)
C9—H9A0.9900C31—H31A0.9900
C9—H9B0.9900C31—H31B0.9900
C10—H10A0.9800C32—C331.522 (2)
C10—H10B0.9800C32—H32A0.9900
C10—H10C0.9800C32—H32B0.9900
C11—C121.5333 (19)C33—C341.525 (2)
C11—H11A0.9900C33—H33A0.9900
C11—H11B0.9900C33—H33B0.9900
C12—H12A0.9800C34—H34A0.9900
C12—H12B0.9800C34—H34B0.9900
C12—H12C0.9800C35—H35A0.9900
C13—H13A0.9900C35—H35B0.9900
C13—H13B0.9900O1W—H1W0.861 (9)
C14—C151.4001 (18)O1W—H2W0.871 (9)
C15—C161.3824 (18)
C35—O1—H1A112.5 (13)C16—C19—H19B109.5
C14—N1—C13122.12 (11)H19A—C19—H19B109.5
C14—N1—H1112.4 (11)C16—C19—H19C109.5
C13—N1—H1114.0 (11)H19A—C19—H19C109.5
C14—N2—C18117.94 (11)H19B—C19—H19C109.5
C22—N3—C21125.38 (12)C18—C20—H20A109.5
C22—N3—H3116.6 (11)C18—C20—H20B109.5
C21—N3—H3116.7 (11)H20A—C20—H20B109.5
C22—N4—C26116.90 (11)C18—C20—H20C109.5
C29—N5—C30118.35 (10)H20A—C20—H20C109.5
C29—N5—H5108.8 (10)H20B—C20—H20C109.5
C30—N5—H5108.4 (10)N3—C21—C4109.97 (10)
C6—C1—C2119.53 (11)N3—C21—H21A109.7
C6—C1—C7120.77 (11)C4—C21—H21A109.7
C2—C1—C7119.70 (11)N3—C21—H21B109.7
C3—C2—C1120.72 (11)C4—C21—H21B109.7
C3—C2—C13120.66 (11)H21A—C21—H21B108.2
C1—C2—C13118.17 (11)N4—C22—N3118.97 (12)
C2—C3—C4119.15 (11)N4—C22—C23122.97 (12)
C2—C3—C9120.74 (11)N3—C22—C23118.03 (12)
C4—C3—C9120.10 (11)C24—C23—C22119.43 (13)
C5—C4—C3120.60 (11)C24—C23—H23120.3
C5—C4—C21120.03 (11)C22—C23—H23120.3
C3—C4—C21119.19 (11)C23—C24—C25117.79 (13)
C4—C5—C6119.53 (11)C23—C24—C27121.36 (13)
C4—C5—C11120.33 (11)C25—C24—C27120.85 (13)
C6—C5—C11120.12 (11)C26—C25—C24119.63 (12)
C1—C6—C5120.14 (11)C26—C25—H25120.2
C1—C6—C29117.93 (11)C24—C25—H25120.2
C5—C6—C29121.78 (11)N4—C26—C25123.26 (12)
C1—C7—C8111.59 (11)N4—C26—C28115.73 (12)
C1—C7—H7A109.3C25—C26—C28121.01 (12)
C8—C7—H7A109.3C24—C27—H27A109.5
C1—C7—H7B109.3C24—C27—H27B109.5
C8—C7—H7B109.3H27A—C27—H27B109.5
H7A—C7—H7B108.0C24—C27—H27C109.5
C7—C8—H8A109.5H27A—C27—H27C109.5
C7—C8—H8B109.5H27B—C27—H27C109.5
H8A—C8—H8B109.5C26—C28—H28A109.5
C7—C8—H8C109.5C26—C28—H28B109.5
H8A—C8—H8C109.5H28A—C28—H28B109.5
H8B—C8—H8C109.5C26—C28—H28C109.5
C3—C9—C10113.32 (11)H28A—C28—H28C109.5
C3—C9—H9A108.9H28B—C28—H28C109.5
C10—C9—H9A108.9N5—C29—C6108.41 (10)
C3—C9—H9B108.9N5—C29—H29A110.0
C10—C9—H9B108.9C6—C29—H29A110.0
H9A—C9—H9B107.7N5—C29—H29B110.0
C9—C10—H10A109.5C6—C29—H29B110.0
C9—C10—H10B109.5H29A—C29—H29B108.4
H10A—C10—H10B109.5N5—C30—C35106.05 (10)
C9—C10—H10C109.5N5—C30—C31110.47 (11)
H10A—C10—H10C109.5C35—C30—C31109.58 (11)
H10B—C10—H10C109.5N5—C30—C34116.39 (11)
C5—C11—C12113.62 (11)C35—C30—C34109.43 (11)
C5—C11—H11A108.8C31—C30—C34104.86 (10)
C12—C11—H11A108.8C32—C31—C30106.29 (11)
C5—C11—H11B108.8C32—C31—H31A110.5
C12—C11—H11B108.8C30—C31—H31A110.5
H11A—C11—H11B107.7C32—C31—H31B110.5
C11—C12—H12A109.5C30—C31—H31B110.5
C11—C12—H12B109.5H31A—C31—H31B108.7
H12A—C12—H12B109.5C33—C32—C31104.00 (12)
C11—C12—H12C109.5C33—C32—H32A111.0
H12A—C12—H12C109.5C31—C32—H32A111.0
H12B—C12—H12C109.5C33—C32—H32B111.0
N1—C13—C2106.75 (10)C31—C32—H32B111.0
N1—C13—H13A110.4H32A—C32—H32B109.0
C2—C13—H13A110.4C32—C33—C34103.01 (12)
N1—C13—H13B110.4C32—C33—H33A111.2
C2—C13—H13B110.4C34—C33—H33A111.2
H13A—C13—H13B108.6C32—C33—H33B111.2
N2—C14—N1115.60 (11)C34—C33—H33B111.2
N2—C14—C15122.67 (12)H33A—C33—H33B109.1
N1—C14—C15121.72 (12)C33—C34—C30104.58 (11)
C16—C15—C14119.04 (13)C33—C34—H34A110.8
C16—C15—H15120.5C30—C34—H34A110.8
C14—C15—H15120.5C33—C34—H34B110.8
C15—C16—C17118.19 (12)C30—C34—H34B110.8
C15—C16—C19120.87 (13)H34A—C34—H34B108.9
C17—C16—C19120.93 (13)O1—C35—C30113.25 (11)
C18—C17—C16119.44 (12)O1—C35—H35A108.9
C18—C17—H17120.3C30—C35—H35A108.9
C16—C17—H17120.3O1—C35—H35B108.9
N2—C18—C17122.67 (13)C30—C35—H35B108.9
N2—C18—C20115.89 (12)H35A—C35—H35B107.7
C17—C18—C20121.45 (12)H1W—O1W—H2W107.2 (18)
C16—C19—H19A109.5
C6—C1—C2—C33.01 (18)C15—C16—C17—C181.2 (2)
C7—C1—C2—C3176.05 (11)C19—C16—C17—C18177.68 (14)
C6—C1—C2—C13169.44 (11)C14—N2—C18—C172.26 (18)
C7—C1—C2—C1311.50 (17)C14—N2—C18—C20177.50 (11)
C1—C2—C3—C41.77 (18)C16—C17—C18—N20.6 (2)
C13—C2—C3—C4174.02 (11)C16—C17—C18—C20179.14 (13)
C1—C2—C3—C9176.97 (11)C22—N3—C21—C4139.10 (13)
C13—C2—C3—C94.72 (18)C5—C4—C21—N384.62 (14)
C2—C3—C4—C55.90 (18)C3—C4—C21—N390.57 (14)
C9—C3—C4—C5172.84 (11)C26—N4—C22—N3178.80 (11)
C2—C3—C4—C21178.94 (11)C26—N4—C22—C230.68 (18)
C9—C3—C4—C212.32 (18)C21—N3—C22—N40.42 (19)
C3—C4—C5—C65.22 (18)C21—N3—C22—C23178.64 (12)
C21—C4—C5—C6179.67 (11)N4—C22—C23—C240.8 (2)
C3—C4—C5—C11173.26 (11)N3—C22—C23—C24177.36 (12)
C21—C4—C5—C111.85 (18)C22—C23—C24—C251.3 (2)
C2—C1—C6—C53.71 (18)C22—C23—C24—C27178.42 (14)
C7—C1—C6—C5175.34 (11)C23—C24—C25—C260.4 (2)
C2—C1—C6—C29171.98 (11)C27—C24—C25—C26179.31 (14)
C7—C1—C6—C298.97 (17)C22—N4—C26—C251.63 (19)
C4—C5—C6—C10.36 (18)C22—N4—C26—C28178.68 (12)
C11—C5—C6—C1178.12 (11)C24—C25—C26—N41.1 (2)
C4—C5—C6—C29175.88 (11)C24—C25—C26—C28179.23 (13)
C11—C5—C6—C292.60 (18)C30—N5—C29—C6168.54 (10)
C6—C1—C7—C893.07 (14)C1—C6—C29—N574.81 (14)
C2—C1—C7—C885.97 (14)C5—C6—C29—N5100.80 (13)
C2—C3—C9—C1088.30 (15)C29—N5—C30—C35170.13 (10)
C4—C3—C9—C1092.98 (15)C29—N5—C30—C3171.21 (14)
C4—C5—C11—C1294.72 (14)C29—N5—C30—C3448.19 (15)
C6—C5—C11—C1286.81 (15)N5—C30—C31—C32122.98 (12)
C14—N1—C13—C2148.51 (12)C35—C30—C31—C32120.53 (13)
C3—C2—C13—N195.00 (13)C34—C30—C31—C323.17 (15)
C1—C2—C13—N177.45 (14)C30—C31—C32—C3327.13 (16)
C18—N2—C14—N1177.18 (11)C31—C32—C33—C3440.92 (15)
C18—N2—C14—C152.14 (18)C32—C33—C34—C3038.95 (15)
C13—N1—C14—N2154.81 (12)N5—C30—C34—C33144.32 (12)
C13—N1—C14—C1525.87 (18)C35—C30—C34—C3395.53 (13)
N2—C14—C15—C160.36 (19)C31—C30—C34—C3321.93 (14)
N1—C14—C15—C16178.91 (12)N5—C30—C35—O167.44 (13)
C14—C15—C16—C171.31 (19)C31—C30—C35—O1173.32 (11)
C14—C15—C16—C19177.57 (14)C34—C30—C35—O158.86 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C14–C18/N2 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H2W···N50.87 (1)1.93 (1)2.8018 (14)175 (2)
O1W—H1W···N2i0.86 (1)2.03 (1)2.8780 (15)166 (2)
O1—H1A···O1Wi0.87 (1)1.83 (1)2.6993 (14)176 (2)
N5—H5···O1Wi0.90 (1)2.52 (1)3.3302 (14)151 (1)
N3—H3···O1i0.89 (1)2.05 (1)2.9115 (15)162 (2)
N1—H1···O1Wi0.89 (1)2.50 (1)3.2618 (16)145 (1)
C32—H32B···Cg1ii0.992.693.666 (2)169
C25—H25···Cg2iii0.952.843.728 (2)156
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1, y, z.
{1-[(3,5-Bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzyl)amino]cyclopentyl}methanol methanol monosolvate (1b) top
Crystal data top
C35H51N5O·CH4OZ = 2
Mr = 589.85F(000) = 644
Triclinic, P1Dx = 1.046 Mg m3
a = 12.1169 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2380 (5) ÅCell parameters from 9915 reflections
c = 13.6258 (5) Åθ = 2.8–30.5°
α = 68.373 (2)°µ = 0.07 mm1
β = 79.379 (2)°T = 100 K
γ = 67.392 (2)°Irregular, colourless
V = 1873.32 (12) Å30.56 × 0.34 × 0.32 mm
Data collection top
Bruker X8 APEXII CCD
diffractometer
Rint = 0.022
phi and ω scansθmax = 26.4°, θmin = 1.8°
32191 measured reflectionsh = 1415
7654 independent reflectionsk = 1516
5160 reflections with I > 2σ(I)l = 017
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.026P)2 + 3.8856P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
7654 reflectionsΔρmax = 0.64 e Å3
410 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.27014 (18)0.57360 (19)0.78975 (18)0.0337 (5)
H1A1.33080.51590.78680.051*
N10.8131 (3)0.6398 (2)0.68505 (19)0.0298 (6)
H10.848 (3)0.588 (3)0.750 (3)0.030 (8)*
N20.7667 (3)0.6725 (3)0.5157 (2)0.0382 (7)
N30.6133 (2)0.73074 (19)1.09127 (18)0.0208 (5)
H30.656 (3)0.667 (3)1.081 (2)0.023 (8)*
N40.53696 (19)0.61277 (18)1.23326 (17)0.0182 (4)
N51.12190 (19)0.67304 (18)0.94010 (18)0.0190 (4)
H51.110 (3)0.628 (3)0.910 (3)0.027 (8)*
C10.9042 (2)0.7808 (2)0.78008 (19)0.0159 (5)
C20.7918 (2)0.7816 (2)0.76743 (19)0.0179 (5)
C30.6984 (2)0.7982 (2)0.8449 (2)0.0186 (5)
C40.7184 (2)0.8192 (2)0.93271 (19)0.0173 (5)
C50.8303 (2)0.8189 (2)0.94606 (19)0.0164 (5)
C60.9235 (2)0.7990 (2)0.86997 (19)0.0160 (5)
C71.0021 (2)0.7657 (2)0.6940 (2)0.0207 (5)
H7A0.99170.71670.65890.025*
H7B1.08090.72520.72640.025*
C81.0008 (3)0.8814 (2)0.6114 (2)0.0287 (6)
H8A0.92350.92120.57810.043*
H8B1.06520.86770.55750.043*
H8C1.01270.92960.64560.043*
C90.5782 (2)0.7944 (2)0.8331 (2)0.0249 (6)
H9A0.54170.76560.90430.030*
H9B0.59090.73890.79600.030*
C100.4912 (3)0.9125 (3)0.7722 (3)0.0349 (7)
H10A0.47980.96860.80750.052*
H10B0.41410.90560.77010.052*
H10C0.52410.93910.69990.052*
C110.8503 (2)0.8411 (2)1.0417 (2)0.0195 (5)
H11A0.93400.79591.06220.023*
H11B0.79710.81381.10160.023*
C120.8259 (3)0.9694 (2)1.0213 (2)0.0283 (6)
H12A0.87920.99670.96280.042*
H12B0.84060.97911.08510.042*
H12C0.74251.01441.00300.042*
C130.7709 (3)0.7627 (2)0.6698 (2)0.0240 (6)
H13A0.68440.79710.65650.029*
H13B0.81400.80160.60740.029*
C140.8157 (3)0.5977 (3)0.6068 (2)0.0301 (7)
C150.8695 (3)0.4779 (3)0.6252 (3)0.0351 (7)
H150.90320.42700.69100.042*
C160.8722 (3)0.4360 (4)0.5462 (3)0.0480 (10)
C170.8216 (4)0.5129 (4)0.4515 (3)0.0548 (12)
H170.82220.48540.39600.066*
C180.7710 (3)0.6284 (4)0.4385 (3)0.0516 (11)
C190.9332 (4)0.3088 (4)0.5622 (4)0.0662 (14)
H19A0.89310.28530.52250.099*
H19B0.92890.26460.63750.099*
H19C1.01720.29360.53680.099*
C200.7149 (5)0.7156 (5)0.3377 (3)0.0755 (16)
H20A0.62930.75310.35200.113*
H20B0.72520.67630.28630.113*
H20C0.75350.77410.30890.113*
C210.6162 (2)0.8401 (2)1.0146 (2)0.0200 (5)
H21A0.62670.88791.05100.024*
H21B0.53930.88280.97910.024*
C220.5286 (2)0.7214 (2)1.17214 (19)0.0168 (5)
C230.4398 (2)0.8186 (2)1.1916 (2)0.0183 (5)
H230.43440.89451.14600.022*
C240.3604 (2)0.8028 (2)1.2778 (2)0.0206 (5)
C250.3712 (2)0.6901 (2)1.3418 (2)0.0226 (5)
H250.31850.67671.40220.027*
C260.4592 (2)0.5973 (2)1.3170 (2)0.0211 (5)
C270.2644 (3)0.9050 (2)1.3014 (2)0.0293 (6)
H27A0.29000.97261.27160.044*
H27B0.25050.88731.37810.044*
H27C0.19020.92181.26980.044*
C280.4714 (3)0.4746 (2)1.3806 (2)0.0282 (6)
H28A0.44290.44191.34060.042*
H28B0.42360.47241.44720.042*
H28C0.55560.42911.39560.042*
C291.0471 (2)0.7940 (2)0.8843 (2)0.0191 (5)
H29A1.08580.82310.81440.023*
H29B1.03980.84420.92570.023*
C301.2540 (2)0.6488 (2)0.9314 (2)0.0212 (5)
C311.2823 (2)0.7329 (2)0.9663 (2)0.0277 (6)
H31A1.36540.73110.94410.033*
H31B1.22640.81300.93670.033*
C321.2660 (3)0.6884 (3)1.0860 (3)0.0313 (7)
H32A1.18010.70991.10900.038*
H32B1.30610.71921.11940.038*
C331.3256 (3)0.5566 (3)1.1131 (2)0.0308 (6)
H33A1.28570.51591.17700.037*
H33B1.41130.53181.12610.037*
C341.3113 (2)0.5300 (2)1.0158 (2)0.0265 (6)
H34A1.25900.48301.03460.032*
H34B1.39010.48680.98890.032*
C351.3038 (2)0.6496 (2)0.8197 (2)0.0270 (6)
H35A1.27280.72920.76940.032*
H35B1.39220.62490.81700.032*
O1A0.95054 (19)0.4462 (2)0.85754 (17)0.0358 (5)
H1AA0.93300.40310.91620.054*
C1A1.0583 (3)0.4590 (3)0.8631 (2)0.0296 (6)
H1A11.06270.53080.80870.044*
H1A21.12560.39290.85150.044*
H1A31.06230.46220.93310.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0203 (10)0.0337 (12)0.0483 (13)0.0011 (9)0.0023 (9)0.0275 (11)
N10.0507 (16)0.0266 (13)0.0192 (12)0.0167 (12)0.0054 (11)0.0102 (10)
N20.0466 (16)0.0630 (19)0.0195 (12)0.0329 (15)0.0007 (11)0.0154 (12)
N30.0201 (11)0.0157 (11)0.0223 (11)0.0041 (9)0.0068 (9)0.0074 (9)
N40.0167 (10)0.0180 (10)0.0200 (11)0.0060 (8)0.0019 (8)0.0075 (9)
N50.0153 (10)0.0168 (10)0.0252 (11)0.0034 (8)0.0012 (8)0.0094 (9)
C10.0184 (12)0.0112 (11)0.0143 (11)0.0024 (9)0.0019 (9)0.0041 (9)
C20.0222 (13)0.0144 (11)0.0149 (12)0.0045 (10)0.0027 (10)0.0035 (9)
C30.0196 (12)0.0133 (11)0.0198 (12)0.0042 (9)0.0008 (10)0.0036 (10)
C40.0175 (12)0.0149 (11)0.0170 (12)0.0053 (9)0.0017 (9)0.0039 (9)
C50.0186 (12)0.0140 (11)0.0151 (11)0.0034 (9)0.0004 (9)0.0061 (9)
C60.0150 (12)0.0119 (11)0.0194 (12)0.0028 (9)0.0002 (9)0.0058 (9)
C70.0214 (13)0.0223 (13)0.0177 (12)0.0066 (10)0.0038 (10)0.0090 (10)
C80.0338 (16)0.0219 (14)0.0242 (14)0.0081 (12)0.0097 (12)0.0076 (11)
C90.0213 (13)0.0315 (15)0.0254 (14)0.0139 (11)0.0010 (11)0.0082 (12)
C100.0247 (15)0.0402 (18)0.0346 (17)0.0095 (13)0.0074 (12)0.0057 (14)
C110.0220 (13)0.0199 (13)0.0175 (12)0.0054 (10)0.0007 (10)0.0097 (10)
C120.0347 (16)0.0196 (13)0.0317 (15)0.0048 (12)0.0030 (12)0.0140 (12)
C130.0304 (15)0.0230 (13)0.0194 (13)0.0114 (11)0.0015 (11)0.0056 (11)
C140.0360 (16)0.0473 (18)0.0230 (14)0.0286 (14)0.0079 (12)0.0184 (13)
C150.0389 (17)0.0447 (18)0.0386 (17)0.0292 (15)0.0183 (14)0.0265 (15)
C160.046 (2)0.077 (3)0.056 (2)0.045 (2)0.0341 (18)0.053 (2)
C170.060 (2)0.110 (4)0.044 (2)0.065 (3)0.0349 (18)0.060 (2)
C180.051 (2)0.110 (4)0.0274 (17)0.058 (2)0.0143 (15)0.037 (2)
C190.066 (3)0.088 (3)0.089 (3)0.052 (3)0.052 (2)0.078 (3)
C200.083 (3)0.142 (5)0.030 (2)0.066 (3)0.001 (2)0.033 (3)
C210.0188 (12)0.0170 (12)0.0203 (13)0.0051 (10)0.0046 (10)0.0059 (10)
C220.0153 (12)0.0199 (12)0.0182 (12)0.0060 (10)0.0002 (9)0.0098 (10)
C230.0166 (12)0.0162 (12)0.0192 (12)0.0034 (9)0.0013 (9)0.0061 (10)
C240.0185 (12)0.0226 (13)0.0210 (13)0.0063 (10)0.0041 (10)0.0110 (11)
C250.0180 (12)0.0250 (14)0.0232 (13)0.0073 (11)0.0057 (10)0.0092 (11)
C260.0188 (13)0.0207 (13)0.0228 (13)0.0074 (10)0.0020 (10)0.0069 (11)
C270.0268 (14)0.0202 (13)0.0314 (15)0.0023 (11)0.0117 (12)0.0106 (12)
C280.0314 (15)0.0211 (14)0.0270 (14)0.0098 (12)0.0087 (12)0.0064 (11)
C290.0200 (12)0.0168 (12)0.0214 (13)0.0070 (10)0.0031 (10)0.0085 (10)
C300.0147 (12)0.0198 (13)0.0309 (14)0.0070 (10)0.0028 (10)0.0111 (11)
C310.0189 (13)0.0237 (14)0.0447 (17)0.0077 (11)0.0020 (12)0.0152 (13)
C320.0240 (14)0.0360 (16)0.0426 (18)0.0095 (12)0.0047 (13)0.0219 (14)
C330.0241 (14)0.0330 (16)0.0354 (16)0.0110 (12)0.0023 (12)0.0097 (13)
C340.0197 (13)0.0242 (14)0.0348 (16)0.0058 (11)0.0008 (11)0.0116 (12)
C350.0168 (13)0.0254 (14)0.0356 (16)0.0063 (11)0.0066 (11)0.0114 (12)
O1A0.0292 (11)0.0375 (12)0.0312 (11)0.0152 (9)0.0019 (9)0.0033 (9)
C1A0.0297 (15)0.0257 (14)0.0330 (16)0.0124 (12)0.0041 (12)0.0089 (12)
Geometric parameters (Å, º) top
O1—C351.423 (4)C16—C171.386 (6)
O1—H1A0.8400C16—C191.503 (6)
N1—C141.364 (4)C17—C181.366 (6)
N1—C131.451 (4)C17—H170.9500
N1—H10.94 (3)C18—C201.501 (6)
N2—C141.337 (4)C19—H19A0.9800
N2—C181.363 (4)C19—H19B0.9800
N3—C221.365 (3)C19—H19C0.9800
N3—C211.448 (3)C20—H20A0.9800
N3—H30.85 (3)C20—H20B0.9800
N4—C221.345 (3)C20—H20C0.9800
N4—C261.346 (3)C21—H21A0.9900
N5—C291.485 (3)C21—H21B0.9900
N5—C301.497 (3)C22—C231.402 (3)
N5—H50.90 (3)C23—C241.381 (3)
C1—C21.400 (4)C23—H230.9500
C1—C61.407 (3)C24—C251.391 (4)
C1—C71.517 (3)C24—C271.503 (3)
C2—C31.408 (3)C25—C261.388 (4)
C2—C131.522 (3)C25—H250.9500
C3—C41.404 (4)C26—C281.495 (4)
C3—C91.517 (4)C27—H27A0.9800
C4—C51.398 (3)C27—H27B0.9800
C4—C211.520 (3)C27—H27C0.9800
C5—C61.401 (3)C28—H28A0.9800
C5—C111.515 (3)C28—H28B0.9800
C6—C291.518 (3)C28—H28C0.9800
C7—C81.526 (4)C29—H29A0.9900
C7—H7A0.9900C29—H29B0.9900
C7—H7B0.9900C30—C311.525 (4)
C8—H8A0.9800C30—C351.527 (4)
C8—H8B0.9800C30—C341.549 (4)
C8—H8C0.9800C31—C321.519 (4)
C9—C101.531 (4)C31—H31A0.9900
C9—H9A0.9900C31—H31B0.9900
C9—H9B0.9900C32—C331.536 (4)
C10—H10A0.9800C32—H32A0.9900
C10—H10B0.9800C32—H32B0.9900
C10—H10C0.9800C33—C341.545 (4)
C11—C121.531 (4)C33—H33A0.9900
C11—H11A0.9900C33—H33B0.9900
C11—H11B0.9900C34—H34A0.9900
C12—H12A0.9800C34—H34B0.9900
C12—H12B0.9800C35—H35A0.9900
C12—H12C0.9800C35—H35B0.9900
C13—H13A0.9900O1A—C1A1.399 (4)
C13—H13B0.9900O1A—H1AA0.8400
C14—C151.406 (5)C1A—H1A10.9800
C15—C161.371 (4)C1A—H1A20.9800
C15—H150.9500C1A—H1A30.9800
C35—O1—H1A109.5H19A—C19—H19C109.5
C14—N1—C13122.7 (3)H19B—C19—H19C109.5
C14—N1—H1119 (2)C18—C20—H20A109.5
C13—N1—H1118 (2)C18—C20—H20B109.5
C14—N2—C18117.3 (3)H20A—C20—H20B109.5
C22—N3—C21123.8 (2)C18—C20—H20C109.5
C22—N3—H3114 (2)H20A—C20—H20C109.5
C21—N3—H3121 (2)H20B—C20—H20C109.5
C22—N4—C26118.8 (2)N3—C21—C4110.2 (2)
C29—N5—C30115.6 (2)N3—C21—H21A109.6
C29—N5—H5106 (2)C4—C21—H21A109.6
C30—N5—H5106 (2)N3—C21—H21B109.6
C2—C1—C6119.8 (2)C4—C21—H21B109.6
C2—C1—C7119.4 (2)H21A—C21—H21B108.1
C6—C1—C7120.7 (2)N4—C22—N3115.6 (2)
C1—C2—C3120.5 (2)N4—C22—C23122.0 (2)
C1—C2—C13119.7 (2)N3—C22—C23122.3 (2)
C3—C2—C13119.8 (2)C24—C23—C22119.2 (2)
C4—C3—C2118.8 (2)C24—C23—H23120.4
C4—C3—C9120.7 (2)C22—C23—H23120.4
C2—C3—C9120.5 (2)C23—C24—C25118.4 (2)
C5—C4—C3121.1 (2)C23—C24—C27120.6 (2)
C5—C4—C21120.5 (2)C25—C24—C27121.0 (2)
C3—C4—C21118.4 (2)C26—C25—C24119.8 (2)
C4—C5—C6119.6 (2)C26—C25—H25120.1
C4—C5—C11120.3 (2)C24—C25—H25120.1
C6—C5—C11120.1 (2)N4—C26—C25121.9 (2)
C5—C6—C1120.1 (2)N4—C26—C28116.3 (2)
C5—C6—C29120.7 (2)C25—C26—C28121.8 (2)
C1—C6—C29119.2 (2)C24—C27—H27A109.5
C1—C7—C8112.1 (2)C24—C27—H27B109.5
C1—C7—H7A109.2H27A—C27—H27B109.5
C8—C7—H7A109.2C24—C27—H27C109.5
C1—C7—H7B109.2H27A—C27—H27C109.5
C8—C7—H7B109.2H27B—C27—H27C109.5
H7A—C7—H7B107.9C26—C28—H28A109.5
C7—C8—H8A109.5C26—C28—H28B109.5
C7—C8—H8B109.5H28A—C28—H28B109.5
H8A—C8—H8B109.5C26—C28—H28C109.5
C7—C8—H8C109.5H28A—C28—H28C109.5
H8A—C8—H8C109.5H28B—C28—H28C109.5
H8B—C8—H8C109.5N5—C29—C6110.1 (2)
C3—C9—C10113.1 (2)N5—C29—H29A109.6
C3—C9—H9A109.0C6—C29—H29A109.6
C10—C9—H9A109.0N5—C29—H29B109.6
C3—C9—H9B109.0C6—C29—H29B109.6
C10—C9—H9B109.0H29A—C29—H29B108.1
H9A—C9—H9B107.8N5—C30—C31110.6 (2)
C9—C10—H10A109.5N5—C30—C35110.3 (2)
C9—C10—H10B109.5C31—C30—C35113.0 (2)
H10A—C10—H10B109.5N5—C30—C34107.1 (2)
C9—C10—H10C109.5C31—C30—C34103.3 (2)
H10A—C10—H10C109.5C35—C30—C34112.1 (2)
H10B—C10—H10C109.5C32—C31—C30103.5 (2)
C5—C11—C12112.6 (2)C32—C31—H31A111.1
C5—C11—H11A109.1C30—C31—H31A111.1
C12—C11—H11A109.1C32—C31—H31B111.1
C5—C11—H11B109.1C30—C31—H31B111.1
C12—C11—H11B109.1H31A—C31—H31B109.0
H11A—C11—H11B107.8C31—C32—C33103.2 (2)
C11—C12—H12A109.5C31—C32—H32A111.1
C11—C12—H12B109.5C33—C32—H32A111.1
H12A—C12—H12B109.5C31—C32—H32B111.1
C11—C12—H12C109.5C33—C32—H32B111.1
H12A—C12—H12C109.5H32A—C32—H32B109.1
H12B—C12—H12C109.5C32—C33—C34105.5 (2)
N1—C13—C2109.9 (2)C32—C33—H33A110.6
N1—C13—H13A109.7C34—C33—H33A110.6
C2—C13—H13A109.7C32—C33—H33B110.6
N1—C13—H13B109.7C34—C33—H33B110.6
C2—C13—H13B109.7H33A—C33—H33B108.8
H13A—C13—H13B108.2C33—C34—C30106.2 (2)
N2—C14—N1118.4 (3)C33—C34—H34A110.5
N2—C14—C15122.8 (3)C30—C34—H34A110.5
N1—C14—C15118.8 (3)C33—C34—H34B110.5
C16—C15—C14118.6 (4)C30—C34—H34B110.5
C16—C15—H15120.7H34A—C34—H34B108.7
C14—C15—H15120.7O1—C35—C30110.5 (2)
C15—C16—C17119.0 (4)O1—C35—H35A109.5
C15—C16—C19119.8 (4)C30—C35—H35A109.5
C17—C16—C19121.2 (3)O1—C35—H35B109.5
C18—C17—C16119.6 (3)C30—C35—H35B109.5
C18—C17—H17120.2H35A—C35—H35B108.1
C16—C17—H17120.2C1A—O1A—H1AA109.5
N2—C18—C17122.7 (4)O1A—C1A—H1A1109.5
N2—C18—C20115.5 (4)O1A—C1A—H1A2109.5
C17—C18—C20121.8 (4)H1A1—C1A—H1A2109.5
C16—C19—H19A109.5O1A—C1A—H1A3109.5
C16—C19—H19B109.5H1A1—C1A—H1A3109.5
H19A—C19—H19B109.5H1A2—C1A—H1A3109.5
C16—C19—H19C109.5
C6—C1—C2—C31.2 (4)C15—C16—C17—C180.4 (5)
C7—C1—C2—C3178.5 (2)C19—C16—C17—C18177.6 (3)
C6—C1—C2—C13179.5 (2)C14—N2—C18—C170.6 (5)
C7—C1—C2—C132.3 (3)C14—N2—C18—C20180.0 (3)
C1—C2—C3—C42.8 (4)C16—C17—C18—N20.6 (5)
C13—C2—C3—C4177.9 (2)C16—C17—C18—C20180.0 (3)
C1—C2—C3—C9177.7 (2)C22—N3—C21—C4177.5 (2)
C13—C2—C3—C91.6 (4)C5—C4—C21—N393.1 (3)
C2—C3—C4—C52.7 (4)C3—C4—C21—N385.7 (3)
C9—C3—C4—C5177.8 (2)C26—N4—C22—N3177.4 (2)
C2—C3—C4—C21178.5 (2)C26—N4—C22—C231.5 (4)
C9—C3—C4—C211.0 (3)C21—N3—C22—N4177.4 (2)
C3—C4—C5—C61.0 (4)C21—N3—C22—C233.7 (4)
C21—C4—C5—C6179.7 (2)N4—C22—C23—C241.8 (4)
C3—C4—C5—C11179.6 (2)N3—C22—C23—C24177.0 (2)
C21—C4—C5—C110.9 (3)C22—C23—C24—C250.5 (4)
C4—C5—C6—C10.7 (4)C22—C23—C24—C27179.7 (3)
C11—C5—C6—C1178.7 (2)C23—C24—C25—C260.9 (4)
C4—C5—C6—C29177.8 (2)C27—C24—C25—C26178.8 (3)
C11—C5—C6—C292.8 (3)C22—N4—C26—C250.0 (4)
C2—C1—C6—C50.6 (3)C22—N4—C26—C28178.8 (2)
C7—C1—C6—C5176.6 (2)C24—C25—C26—N41.3 (4)
C2—C1—C6—C29178.0 (2)C24—C25—C26—C28177.5 (3)
C7—C1—C6—C294.8 (3)C30—N5—C29—C6162.4 (2)
C2—C1—C7—C889.8 (3)C5—C6—C29—N590.9 (3)
C6—C1—C7—C887.4 (3)C1—C6—C29—N587.6 (3)
C4—C3—C9—C1090.5 (3)C29—N5—C30—C3154.1 (3)
C2—C3—C9—C1089.0 (3)C29—N5—C30—C3571.7 (3)
C4—C5—C11—C1291.6 (3)C29—N5—C30—C34166.1 (2)
C6—C5—C11—C1287.8 (3)N5—C30—C31—C3275.2 (3)
C14—N1—C13—C2173.9 (3)C35—C30—C31—C32160.5 (2)
C1—C2—C13—N183.0 (3)C34—C30—C31—C3239.2 (3)
C3—C2—C13—N196.2 (3)C30—C31—C32—C3342.6 (3)
C18—N2—C14—N1179.7 (3)C31—C32—C33—C3429.1 (3)
C18—N2—C14—C150.4 (4)C32—C33—C34—C305.1 (3)
C13—N1—C14—N26.6 (4)N5—C30—C34—C3396.1 (2)
C13—N1—C14—C15173.5 (3)C31—C30—C34—C3320.7 (3)
N2—C14—C15—C160.3 (4)C35—C30—C34—C33142.8 (2)
N1—C14—C15—C16179.8 (3)N5—C30—C35—O152.9 (3)
C14—C15—C16—C170.3 (4)C31—C30—C35—O1177.4 (2)
C14—C15—C16—C19177.8 (3)C34—C30—C35—O166.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C22–C26/N4 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.94 (3)2.01 (3)2.930 (3)162 (2)
C15—H15···O1A0.952.563.318 (3)137
N5—H5···O10.90 (3)2.36 (3)2.823 (3)112 (2)
O1—H1A···N4i0.841.902.741 (3)174
O1A—H1AA···N5i0.841.972.798 (3)170
C27—H27A···Cg1ii0.982.673.541 (3)148
C32—H32B···Cg3iii0.982.693.614 (3)156
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x+1, y, z.
 

Acknowledgements

Open-access funding was provided by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazik, M. (2009). Chem. Soc. Rev. 38, 935–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M. (2012). RSC Adv. 2, 2630–2642.  Web of Science CrossRef CAS Google Scholar
First citationMazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Geffert, C. (2011). Org. Biomol. Chem. 9, 2319–2326.  CrossRef CAS PubMed Google Scholar
First citationMazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444–7450.  CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147–9159.  CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Kuschel, M. (2008). Chem. Eur. J. 14, 2405–2419.  CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchulze, M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003–4016.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900–4915.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds