research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-methyl­benzyl­­idene)amino]-5-phenylthiazolidin-2-iminium bromide N,N-di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dAcademy of Science of the Republic of Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biology Institute, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by J. Reibenspies, Texas A & M University, USA (Received 31 August 2020; accepted 18 September 2020; online 30 September 2020)

In the cation of the title salt, C17H18N3S+·Br·C3H7NO, the central thia­zolidine ring adopts an envelope conformation with puckering parameters Q(2) = 0.310 (3) Å and φ(2) = 42.2 (6)°. In the crystal, each cation is connected to two anions by N—H⋯ Br hydrogen bonds, forming an R42(8) motif parallel to the (10[\overline{1}]) plane. van der Waals inter­actions between the cations, anions and N,N-di­methyl­formamide mol­ecules further stabilize the crystal structure in three dimensions. The most important contributions to the surface contacts are from H⋯H (55.6%), C⋯H/H⋯C (17.9%) and Br⋯H/H⋯Br (7.0%) inter­actions, as concluded from a Hirshfeld analysis.

1. Chemical context

Sulfur and nitro­gen-containing heterocyclic systems are of great inter­ests in the fields of organic synthesis, drug design and material science (Abdelhamid et al., 2014[Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474-478.]; Pathania et al., 2019[Pathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486-508.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]). In this context, thia­zolidine derivatives play an important role in pharmaceutical and medicinal chemistry. Many commercially available drugs such as pioglitazone (an anti­diabetic), penicillin, benzyl­penicillin, ampicillin, oxacillin and amoxicillin (β-lactam anti­biotics) contain a thia­zolidine moiety. Studies in the field of thia­zolidine chemistry have been well documented in the literature (D'hooghe & De Kimpe, 2006[D'hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513-535.]; Maharramov et al., 2011[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721.]). Compounds incorporating thia­zolidine and azomethine structural motifs have also found applications in coordination chemistry, catalysis, crystal design and material science (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg., 19, 145-153.]; Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]).

[Scheme 1]

As part of our ongoing structural studies (Akkurt et al., 2018a[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168-1172.],b[Akkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290-1294.]; Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.], 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]), we report herein the crystal structure and Hirshfeld surface analysis of the title compound, (E)-3-[(4-methyl­benzyl­idene)amino]-5-phenylthiazolidin-2-iminium bromide N,N-di­methyl­formamide monosolvate.

2. Structural commentary

As shown in Fig. 1[link], the central thia­zolidine ring (S1/N2/C1–C3) of the cation adopts an envelope conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q(2) = 0.310 (3) Å and φ(2) = 42.2 (6)° with atom C2 as the flap. The C=N double bond [N1=C4 = 1.272 (4) Å] is in a Z configuration. The dihedral angle between the mean planes of the benzene (C5–C10) and phenyl (C12–C17) rings is 83.95 (18)° and they make dihedral angles of 16.60 (17) and 87.42 (17)°, respectively, with the mean plane of the thia­zolidine ring. The N2—N1—C4—C5 bridge that links the thia­zolidine and 4-methyl­benzene rings has a torsion angle of −176.8 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt, showing displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, each cation is connected to two anions by N—H⋯Br hydrogen bonds forming an [R_{4}^{2}](8) motif parallel to the (10[\overline{1}]) plane, while N,N-di­methyl­formamide mol­ecules are linked to the cations by C—H⋯O contacts (Table 1[link]; Figs. 2[link], 3[link] and 4[link]). Furthermore, van der Waals inter­actions between the cations, anions and N,N-di­methyl­formamide mol­ecules stabilize the crystal structure in three dimensions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.90 2.57 3.368 (3) 148
N3—H3B⋯Br1ii 0.90 2.35 3.243 (2) 175
C16—H16A⋯O1 0.93 2.54 3.391 (6) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z+1.
[Figure 2]
Figure 2
A view of hydrogen bonds between the cations, anions and N,N-di­methyl­formamide mol­ecules of the title salt. The N—H⋯Br hydrogen bonds and C—H⋯O contacts are shown as dashed lines. Symmetry codes: (a) 1 + x, y, 1 + z; (b) 1 − x, 1 − y, 1 − z; (c) 2 − x, 1 − y, 2 − z.
[Figure 3]
Figure 3
Crystal packing for the title salt viewed along the a-axis direction. Dashed lines indicate N—H⋯Br hydrogen bonds and C—H⋯O contacts.
[Figure 4]
Figure 4
Crystal packing of the title salt viewed along the c-axis direction. Dashed lines indicate N—H⋯Br and C—H⋯O contacts.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was used to investigate the hydrogen bonds and inter­molecular inter­actions in the crystal structure. This was performed using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.]), and comprised dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The contribution of inter­atomic contacts (Table 2[link]) to the dnorm surface of the title compound is shown in Fig. 5[link]. Fig. 6[link] indicates by the absence of red and blue triangles on the shape-index surface that ππ stacking inter­actions are not present in the crystal structure.

Table 2
Summary of short inter­atomic contacts (Å) in the title salt

Contact Distance Symmetry operation
H3B⋯Br1 2.35 1 + x, y, 1 + z
N1⋯S1 3.533 (3) 2 − x, 1 − y, 1 − z
H3A⋯Br1 2.57 1 − x, 1 − y, 1 − z
C9⋯H19C 2.78 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H17A⋯H9A 2.47 1 − x, 1 − y, 1 − z
H6A⋯H1A 2.50 1 − x, 1 − y, −z
H16A⋯O1 2.54 x, y, z
H16A⋯H18A 2.55 x, [{1\over 2}] − y, −[{1\over 2}] + z
H4A⋯Br1 3.06 x, y, z
H13A⋯Br1 3.08 1 + x, y, z
H14A⋯O1 2.84 1 + x, y, z
O1⋯H18A 2.76 x, [{1\over 2}] − y, −[{1\over 2}] + z
C20⋯Br1 3.736 (5) x, [{1\over 2}] − y, [{1\over 2}] + z
[Figure 5]
Figure 5
A view of the three-dimensional Hirshfeld surface for the title salt, plotted over dnorm in the range −0.4961 to 1.2178 a.u. N—H⋯Br hydrogen bonds and C—H⋯O contacts are shown.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title salt plotted over shape-index.

Fig. 7[link](a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode while those delineated into H⋯H, C⋯H/H⋯C and Br⋯H/H⋯Br contacts are given in Fig. 7[link]b–d, respectively. The most significant inter­molecular inter­actions are the H⋯H inter­actions (55.6%) (Fig. 7[link]b). The reciprocal C⋯H/H⋯C inter­actions appear as two symmetrical broad wings with de + di ≃ 2.6 Å and contribute 17.9% to the Hirshfeld surface (Fig. 7[link]c). The reciprocal Br⋯H/H⋯Br inter­action with a 7.0% contribution is seen as branch of sharp symmetrical spikes at diagonal axes de + di ≃ 2.2 Å (Fig. 7[link]d). Furthermore, there are also O⋯H/H⋯O (3.2%), S⋯H/H⋯S (4.6%), N⋯C/C⋯N (3.8%), N⋯H/H⋯N (2.9%), S⋯C/C⋯S (2.4%), C⋯C (1.5%), Br⋯C/C⋯Br (0.2%), Br⋯S/S⋯Br (0.2%), N⋯N (0.4%) and N⋯S/S⋯N (0.5%) contacts (Table 3[link]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 55.6
C⋯H/H⋯C 17.9
Br⋯H/H⋯Br 7.0
S⋯H/H⋯S 4.6
N⋯C/C⋯N 3.8
O⋯H/H⋯O 3.2
N⋯H/H⋯N 2.9
S⋯C/C⋯S 2.4
C⋯C 1.5
N⋯S/S⋯N 0.5
N⋯N 0.4
Br⋯C/C⋯Br 0.2
Br⋯S/S⋯Br 0.2
[Figure 7]
Figure 7
A view of the two-dimensional fingerprint plots for the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) Br⋯H/H⋯Br inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database CSD (Version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded eight hits for 2-thia­zolidiniminium compounds, with four of them reporting essentially the same cation [CSD refcodes WILBIC (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI01 (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) and YOPLUK (Marthi et al., 1995[Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20-27.])]. In all cases, the 3-N atom carries a C substituent, not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) and two optically active samples (WILBOI and WILBOI01) of 3-(2-chloro-2-phenyl­eth­yl)-2-thia­zolidiniminiump-toluene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]) is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic N atom, while YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro- and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

The other closely related compounds are UDELUN (Akkurt et al., 2018a[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168-1172.]) and ZIJQAN (Akkurt et al., 2018b[Akkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290-1294.]). In the crystal structure of UDELUN, the 3-N atom of the cation carries an N substituent, as found in the title compound. In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts also contribute to the mol­ecular packing. In the crystal of ZIJQAN, the cations, anions and water mol­ecules are linked into a three-dimensional network, which forms cross layers parallel to the (120) and ([\overline{1}]20) planes via O—H⋯Br, N—H⋯Br and N—H⋯N hydrogen bonds. Furthermore, C—H⋯π inter­actions also help in the stabilization of the mol­ecular packing.

Furthermore, in WILBIC, the thia­zolidine ring adopts a twist conformation. In one of two mol­ecules in the asymmetric unit of WILBOI, the thia­zolidine ring is essentially planar, in the other it adopts a twist conformation. In the two mol­ecules in the asymmetric unit of WILBOI01 and in YOPLUK, the thia­zolidine rings exhibit a twist conformation. In YITCAF, the disordered thia­zolidine ring has two components, which are planar. In YOPLUK, the thia­zolidine ring is slightly puckered, with the nitro­gen atom in an almost planar configuration. In the cations of UDELUN and ZIJQAN, the thia­zolidine rings have an envelope conformation.

6. Synthesis and crystallization

To a solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide (1 mmol) in ethanol (20 ml) was added 4-methyl­benzaldehyde (1 mmol). The mixture was refluxed for 2 h and then cooled. The reaction product precipitated from the reaction mixture as colorless crystals, was collected by filtration, washed with cold acetone (yield 54%; m.p. 501–502 K), and recrystallized from di­methyl­formamide to obtain single crystals.

1H NMR (300 MHz, DMSO-d6) : 2.33 (s, 3H, CH3); 4.55 (k, 1H, CH2, 3JH–H = 6.6); 4,88 (t, 1H, CH2, 3JH–H = 8.1); 5.60 (t, 1H, CH—Ar, 3JH–H = 7.5); 7.28–7.98 (m, 9H, 9Ar—H); 8.41 (s, 1H, CH=); 10.33 (s, 2H, N+H=). 13C NMR (75 MHz, DMSO-d6): 21.27; 45.36; 55.90; 127.79; 128.69; 128.86; 129.09; 129.46; 130.21; 137.50; 141.68; 151.04; 167.50. MS (ESI), m/z: 296.40 [C17H18N3S]+ and 79.88 Br.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were placed geometrically (N—H = 0.90 Å and C—H = 0.93–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Table 4
Experimental details

Crystal data
Chemical formula C17H18N3S+·Br·C3H7NO
Mr 449.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.4326 (6), 31.778 (2), 8.4680 (6)
β (°) 110.052 (2)
V3) 2131.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.04
Crystal size (mm) 0.18 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.702, 0.807
No. of measured, independent and observed [I > 2σ(I)] reflections 29638, 4039, 2873
Rint 0.076
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.03
No. of reflections 4039
No. of parameters 248
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-3-[(4-Methylbenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide N,N-dimethylformamide monosolvate top
Crystal data top
C17H18N3S+·Br·C3H7NOF(000) = 928
Mr = 449.41Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4326 (6) ÅCell parameters from 7783 reflections
b = 31.778 (2) Åθ = 2.6–25.5°
c = 8.4680 (6) ŵ = 2.04 mm1
β = 110.052 (2)°T = 296 K
V = 2131.6 (3) Å3Plate, colourless
Z = 40.18 × 0.14 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2873 reflections with I > 2σ(I)
φ and ω scansRint = 0.076
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 25.7°, θmin = 2.6°
Tmin = 0.702, Tmax = 0.807h = 1010
29638 measured reflectionsk = 3838
4039 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0236P)2 + 1.7903P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.43 e Å3
4039 reflectionsΔρmin = 0.53 e Å3
248 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0081 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24500 (5)0.44440 (2)0.08820 (4)0.06338 (16)
N10.7272 (3)0.50622 (7)0.4672 (3)0.0454 (6)
N20.8146 (3)0.46878 (7)0.4775 (3)0.0462 (6)
N30.9508 (3)0.48154 (8)0.7609 (3)0.0542 (7)
H3A0.8694580.5002230.7575130.065*
H3B1.0291660.4721220.8559430.065*
N40.3431 (4)0.20008 (10)0.3700 (4)0.0690 (8)
O10.4488 (4)0.26513 (10)0.3557 (4)0.0891 (8)
S11.03303 (10)0.41267 (2)0.62732 (10)0.0505 (2)
C10.7900 (4)0.43751 (10)0.3435 (4)0.0535 (8)
H1A0.7714250.4512730.2363950.064*
H1B0.6937110.4197110.3338140.064*
C20.9532 (4)0.41145 (9)0.3953 (4)0.0478 (7)
H2A1.0349380.4257740.3549290.057*
C30.9255 (4)0.45875 (9)0.6271 (4)0.0429 (7)
C40.6040 (4)0.51408 (9)0.3334 (4)0.0487 (7)
H4A0.5710430.4942280.2475590.058*
C50.5142 (4)0.55408 (9)0.3137 (4)0.0459 (7)
C60.3893 (4)0.56328 (11)0.1627 (4)0.0628 (9)
H6A0.3596560.5434770.0765670.075*
C70.3078 (5)0.60187 (12)0.1387 (5)0.0695 (10)
H7A0.2233090.6074800.0365640.083*
C80.3491 (4)0.63205 (10)0.2626 (4)0.0532 (8)
C90.4726 (4)0.62221 (10)0.4137 (4)0.0521 (8)
H9A0.5024330.6420900.4995130.063*
C100.5529 (4)0.58380 (10)0.4409 (4)0.0485 (7)
H10A0.6333470.5777800.5450530.058*
C110.2619 (5)0.67440 (11)0.2337 (5)0.0770 (11)
H11A0.2610550.6857500.1282900.116*
H11B0.3214070.6932390.3229520.116*
H11C0.1479920.6710940.2313260.116*
C120.9372 (4)0.36634 (9)0.3360 (4)0.0454 (7)
C131.0517 (4)0.35074 (10)0.2659 (4)0.0565 (8)
H13A1.1320360.3685080.2488930.068*
C141.0464 (5)0.30867 (11)0.2212 (5)0.0709 (10)
H14A1.1234600.2981090.1747330.085*
C150.9283 (5)0.28289 (11)0.2456 (5)0.0734 (11)
H15A0.9255250.2546350.2161220.088*
C160.8144 (5)0.29779 (12)0.3122 (5)0.0732 (11)
H16A0.7333310.2799130.3269520.088*
C170.8191 (4)0.33936 (11)0.3578 (5)0.0629 (9)
H17A0.7411750.3493900.4042180.076*
C180.4359 (5)0.23379 (14)0.4343 (5)0.0757 (11)
H18A0.4963990.2335440.5490770.091*
C190.2468 (6)0.19812 (15)0.1924 (6)0.0934 (13)
H19A0.2508190.2249460.1418110.140*
H19B0.1317110.1911160.1769120.140*
H19C0.2939960.1769900.1405810.140*
C200.3410 (7)0.16367 (15)0.4722 (7)0.1129 (17)
H20A0.4108790.1689510.5864810.169*
H20B0.3832360.1396390.4303980.169*
H20C0.2273600.1582750.4672870.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0746 (3)0.0552 (2)0.0497 (2)0.01350 (18)0.00753 (16)0.00653 (16)
N10.0476 (14)0.0418 (14)0.0449 (14)0.0098 (11)0.0133 (12)0.0017 (11)
N20.0505 (14)0.0416 (14)0.0405 (13)0.0138 (12)0.0077 (11)0.0006 (11)
N30.0609 (17)0.0538 (16)0.0409 (14)0.0202 (13)0.0086 (12)0.0019 (12)
N40.069 (2)0.065 (2)0.078 (2)0.0069 (16)0.0321 (17)0.0073 (17)
O10.086 (2)0.079 (2)0.104 (2)0.0168 (16)0.0357 (17)0.0018 (18)
S10.0531 (5)0.0452 (4)0.0473 (4)0.0140 (4)0.0095 (3)0.0008 (4)
C10.0604 (19)0.0461 (19)0.0471 (18)0.0104 (15)0.0094 (15)0.0076 (14)
C20.0498 (18)0.0444 (17)0.0476 (17)0.0037 (14)0.0147 (14)0.0016 (14)
C30.0442 (16)0.0406 (16)0.0413 (17)0.0064 (13)0.0113 (13)0.0000 (13)
C40.0479 (18)0.0434 (17)0.0497 (18)0.0040 (14)0.0102 (15)0.0016 (14)
C50.0430 (16)0.0447 (17)0.0470 (17)0.0054 (14)0.0115 (13)0.0078 (14)
C60.072 (2)0.056 (2)0.0482 (19)0.0137 (18)0.0048 (16)0.0026 (16)
C70.070 (2)0.072 (2)0.054 (2)0.023 (2)0.0047 (17)0.0182 (19)
C80.0527 (19)0.0461 (18)0.064 (2)0.0116 (15)0.0239 (16)0.0149 (16)
C90.0494 (18)0.0470 (19)0.062 (2)0.0054 (15)0.0219 (16)0.0039 (15)
C100.0431 (17)0.0530 (19)0.0463 (17)0.0099 (15)0.0112 (13)0.0016 (15)
C110.084 (3)0.058 (2)0.091 (3)0.028 (2)0.032 (2)0.022 (2)
C120.0468 (17)0.0408 (16)0.0432 (17)0.0035 (14)0.0086 (13)0.0027 (13)
C130.0511 (19)0.050 (2)0.071 (2)0.0044 (16)0.0246 (17)0.0015 (17)
C140.072 (2)0.054 (2)0.096 (3)0.0031 (19)0.042 (2)0.016 (2)
C150.082 (3)0.044 (2)0.094 (3)0.0072 (19)0.030 (2)0.0156 (19)
C160.068 (2)0.060 (2)0.090 (3)0.021 (2)0.025 (2)0.010 (2)
C170.053 (2)0.065 (2)0.077 (2)0.0029 (18)0.0293 (18)0.0042 (19)
C180.068 (2)0.086 (3)0.073 (3)0.008 (2)0.023 (2)0.007 (2)
C190.089 (3)0.090 (3)0.092 (3)0.002 (3)0.018 (2)0.026 (3)
C200.142 (5)0.082 (3)0.139 (5)0.005 (3)0.079 (4)0.021 (3)
Geometric parameters (Å, º) top
N1—C41.272 (4)C8—C91.380 (4)
N1—N21.386 (3)C8—C111.513 (4)
N2—C31.330 (4)C9—C101.376 (4)
N2—C11.468 (4)C9—H9A0.9300
N3—C31.299 (4)C10—H10A0.9300
N3—H3A0.9000C11—H11A0.9600
N3—H3B0.9000C11—H11B0.9600
N4—C181.328 (5)C11—H11C0.9600
N4—C191.445 (5)C12—C171.374 (4)
N4—C201.448 (5)C12—C131.387 (4)
O1—C181.223 (5)C13—C141.386 (5)
S1—C31.722 (3)C13—H13A0.9300
S1—C21.846 (3)C14—C151.359 (5)
C1—C21.535 (4)C14—H14A0.9300
C1—H1A0.9700C15—C161.355 (5)
C1—H1B0.9700C15—H15A0.9300
C2—C121.510 (4)C16—C171.373 (5)
C2—H2A0.9800C16—H16A0.9300
C4—C51.459 (4)C17—H17A0.9300
C4—H4A0.9300C18—H18A0.9300
C5—C61.381 (4)C19—H19A0.9600
C5—C101.385 (4)C19—H19B0.9600
C6—C71.386 (5)C19—H19C0.9600
C6—H6A0.9300C20—H20A0.9600
C7—C81.375 (5)C20—H20B0.9600
C7—H7A0.9300C20—H20C0.9600
C4—N1—N2118.6 (2)C8—C9—H9A119.1
C3—N2—N1116.8 (2)C9—C10—C5120.3 (3)
C3—N2—C1116.1 (2)C9—C10—H10A119.9
N1—N2—C1127.0 (2)C5—C10—H10A119.9
C3—N3—H3A116.4C8—C11—H11A109.5
C3—N3—H3B116.4C8—C11—H11B109.5
H3A—N3—H3B124.4H11A—C11—H11B109.5
C18—N4—C19120.2 (4)C8—C11—H11C109.5
C18—N4—C20121.7 (4)H11A—C11—H11C109.5
C19—N4—C20118.0 (4)H11B—C11—H11C109.5
C3—S1—C290.96 (13)C17—C12—C13118.5 (3)
N2—C1—C2105.6 (2)C17—C12—C2122.3 (3)
N2—C1—H1A110.6C13—C12—C2119.1 (3)
C2—C1—H1A110.6C14—C13—C12120.0 (3)
N2—C1—H1B110.6C14—C13—H13A120.0
C2—C1—H1B110.6C12—C13—H13A120.0
H1A—C1—H1B108.7C15—C14—C13119.8 (3)
C12—C2—C1116.6 (3)C15—C14—H14A120.1
C12—C2—S1109.4 (2)C13—C14—H14A120.1
C1—C2—S1104.9 (2)C16—C15—C14120.9 (3)
C12—C2—H2A108.6C16—C15—H15A119.6
C1—C2—H2A108.6C14—C15—H15A119.6
S1—C2—H2A108.6C15—C16—C17119.8 (3)
N3—C3—N2123.2 (3)C15—C16—H16A120.1
N3—C3—S1123.0 (2)C17—C16—H16A120.1
N2—C3—S1113.8 (2)C16—C17—C12121.0 (3)
N1—C4—C5120.4 (3)C16—C17—H17A119.5
N1—C4—H4A119.8C12—C17—H17A119.5
C5—C4—H4A119.8O1—C18—N4125.7 (4)
C6—C5—C10118.5 (3)O1—C18—H18A117.2
C6—C5—C4119.4 (3)N4—C18—H18A117.2
C10—C5—C4122.0 (3)N4—C19—H19A109.5
C5—C6—C7120.4 (3)N4—C19—H19B109.5
C5—C6—H6A119.8H19A—C19—H19B109.5
C7—C6—H6A119.8N4—C19—H19C109.5
C8—C7—C6121.5 (3)H19A—C19—H19C109.5
C8—C7—H7A119.3H19B—C19—H19C109.5
C6—C7—H7A119.3N4—C20—H20A109.5
C7—C8—C9117.6 (3)N4—C20—H20B109.5
C7—C8—C11121.0 (3)H20A—C20—H20B109.5
C9—C8—C11121.5 (3)N4—C20—H20C109.5
C10—C9—C8121.8 (3)H20A—C20—H20C109.5
C10—C9—H9A119.1H20B—C20—H20C109.5
C4—N1—N2—C3170.3 (3)C6—C7—C8—C11178.7 (4)
C4—N1—N2—C15.3 (4)C7—C8—C9—C100.2 (5)
C3—N2—C1—C224.2 (4)C11—C8—C9—C10179.8 (3)
N1—N2—C1—C2160.2 (3)C8—C9—C10—C51.8 (5)
N2—C1—C2—C12150.8 (3)C6—C5—C10—C92.6 (5)
N2—C1—C2—S129.7 (3)C4—C5—C10—C9175.9 (3)
C3—S1—C2—C12149.7 (2)C1—C2—C12—C1750.1 (4)
C3—S1—C2—C123.9 (2)S1—C2—C12—C1768.6 (3)
N1—N2—C3—N31.9 (4)C1—C2—C12—C13133.7 (3)
C1—N2—C3—N3174.2 (3)S1—C2—C12—C13107.5 (3)
N1—N2—C3—S1178.1 (2)C17—C12—C13—C140.7 (5)
C1—N2—C3—S15.8 (4)C2—C12—C13—C14175.6 (3)
C2—S1—C3—N3168.3 (3)C12—C13—C14—C150.3 (6)
C2—S1—C3—N211.6 (2)C13—C14—C15—C160.4 (6)
N2—N1—C4—C5176.8 (3)C14—C15—C16—C170.8 (6)
N1—C4—C5—C6175.2 (3)C15—C16—C17—C120.4 (6)
N1—C4—C5—C103.3 (5)C13—C12—C17—C160.3 (5)
C10—C5—C6—C71.5 (5)C2—C12—C17—C16175.9 (3)
C4—C5—C6—C7177.0 (3)C19—N4—C18—O10.5 (6)
C5—C6—C7—C80.5 (6)C20—N4—C18—O1177.5 (4)
C6—C7—C8—C91.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br1i0.902.573.368 (3)148
N3—H3B···Br1ii0.902.353.243 (2)175
C16—H16A···O10.932.543.391 (6)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Summary of short interatomic contacts (Å) in the title salt top
ContactDistanceSymmetry operation
H3B···Br12.351 + x, y, 1 + z
N1···S13.533 (3)2 - x, 1 - y, 1 - z
H3A···Br12.571 - x, 1 - y, 1 - z
C9···H19C2.781 - x, 1/2 + y, 1/2 - z
H17A···H9A2.471 - x, 1 - y, 1 - z
H6A···H1A2.501 - x, 1 - y, -z
H16A···O12.54x, y, z
H16A···H18A2.55x, 1/2 - y, -1/2 + z
H4A···Br13.06x, y, z
H13A···Br13.081 + x, y, z
H14A···O12.841 + x, y, z
O1···H18A2.76x, 1/2 - y, -1/2 + z
C20···Br13.736 (5)x, 1/2 - y, 1/2 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H55.6
C···H/H···C17.9
Br···H/H···Br7.0
S···H/H···S4.6
N···C/C···N3.8
O···H/H···O3.2
N···H/H···N2.9
S···C/C···S2.4
C···C1.5
N···S/S···N0.5
N···N0.4
Br···C/C···Br0.2
Br···S/S···Br0.2
 

References

First citationAbdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478.  CrossRef Google Scholar
First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290–1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg., 19, 145–153.  CrossRef CAS Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationD'hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513–535.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.  Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.  Google Scholar
First citationMarthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486–508.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.  Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds