research communications
E)-3-[(4-methylbenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide N,N-dimethylformamide monosolvate
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dAcademy of Science of the Republic of Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biology Institute, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
In the cation of the title salt, C17H18N3S+·Br−·C3H7NO, the central thiazolidine ring adopts an with puckering parameters Q(2) = 0.310 (3) Å and φ(2) = 42.2 (6)°. In the crystal, each cation is connected to two anions by N—H⋯ Br hydrogen bonds, forming an R42(8) motif parallel to the (10) plane. van der Waals interactions between the cations, anions and N,N-dimethylformamide molecules further stabilize the in three dimensions. The most important contributions to the surface contacts are from H⋯H (55.6%), C⋯H/H⋯C (17.9%) and Br⋯H/H⋯Br (7.0%) interactions, as concluded from a Hirshfeld analysis.
Keywords: crystal structure; thiazolidine; envelope conformation; N,N-dimethylformamide; Hirshfeld surface analysis.
CCDC reference: 1837125
1. Chemical context
Sulfur and nitrogen-containing heterocyclic systems are of great interests in the fields of organic synthesis, drug design and material science (Abdelhamid et al., 2014; Pathania et al., 2019; Yin et al., 2020). In this context, thiazolidine derivatives play an important role in pharmaceutical and medicinal chemistry. Many commercially available drugs such as pioglitazone (an antidiabetic), penicillin, benzylpenicillin, ampicillin, oxacillin and amoxicillin (β-lactam antibiotics) contain a thiazolidine moiety. Studies in the field of thiazolidine chemistry have been well documented in the literature (D'hooghe & De Kimpe, 2006; Maharramov et al., 2011). Compounds incorporating thiazolidine and azomethine structural motifs have also found applications in coordination chemistry, catalysis, crystal design and material science (Asadov et al., 2016; Akbari Afkhami et al., 2017; Maharramov et al., 2018; Mahmudov et al., 2019, 2020).
As part of our ongoing structural studies (Akkurt et al., 2018a,b; Khalilov et al., 2011, 2019), we report herein the and Hirshfeld surface analysis of the title compound, (E)-3-[(4-methylbenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide N,N-dimethylformamide monosolvate.
2. Structural commentary
As shown in Fig. 1, the central thiazolidine ring (S1/N2/C1–C3) of the cation adopts an with puckering parameters (Cremer & Pople, 1975) Q(2) = 0.310 (3) Å and φ(2) = 42.2 (6)° with atom C2 as the flap. The C=N double bond [N1=C4 = 1.272 (4) Å] is in a Z configuration. The dihedral angle between the mean planes of the benzene (C5–C10) and phenyl (C12–C17) rings is 83.95 (18)° and they make dihedral angles of 16.60 (17) and 87.42 (17)°, respectively, with the mean plane of the thiazolidine ring. The N2—N1—C4—C5 bridge that links the thiazolidine and 4-methylbenzene rings has a torsion angle of −176.8 (3)°.
3. Supramolecular features
In the crystal, each cation is connected to two anions by N—H⋯Br hydrogen bonds forming an (8) motif parallel to the (10) plane, while N,N-dimethylformamide molecules are linked to the cations by C—H⋯O contacts (Table 1; Figs. 2, 3 and 4). Furthermore, van der Waals interactions between the cations, anions and N,N-dimethylformamide molecules stabilize the in three dimensions.
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was used to investigate the hydrogen bonds and intermolecular interactions in the This was performed using CrystalExplorer3.1 (Wolff et al., 2012), and comprised dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The contribution of interatomic contacts (Table 2) to the dnorm surface of the title compound is shown in Fig. 5. Fig. 6 indicates by the absence of red and blue triangles on the shape-index surface that π–π stacking interactions are not present in the crystal structure.
|
Fig. 7(a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode while those delineated into H⋯H, C⋯H/H⋯C and Br⋯H/H⋯Br contacts are given in Fig. 7b–d, respectively. The most significant intermolecular interactions are the H⋯H interactions (55.6%) (Fig. 7b). The reciprocal C⋯H/H⋯C interactions appear as two symmetrical broad wings with de + di ≃ 2.6 Å and contribute 17.9% to the Hirshfeld surface (Fig. 7c). The reciprocal Br⋯H/H⋯Br interaction with a 7.0% contribution is seen as branch of sharp symmetrical spikes at diagonal axes de + di ≃ 2.2 Å (Fig. 7d). Furthermore, there are also O⋯H/H⋯O (3.2%), S⋯H/H⋯S (4.6%), N⋯C/C⋯N (3.8%), N⋯H/H⋯N (2.9%), S⋯C/C⋯S (2.4%), C⋯C (1.5%), Br⋯C/C⋯Br (0.2%), Br⋯S/S⋯Br (0.2%), N⋯N (0.4%) and N⋯S/S⋯N (0.5%) contacts (Table 3).
|
5. Database survey
A search of the Cambridge Structural Database CSD (Version 5.40, update of August 2019; Groom et al., 2016) yielded eight hits for 2-thiazolidiniminium compounds, with four of them reporting essentially the same cation [CSD refcodes WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem'yanova et al., 1993a), YITCAF (Martem'yanova et al., 1993b) and YOPLUK (Marthi et al., 1995)]. In all cases, the 3-N atom carries a C substituent, not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01) of 3-(2-chloro-2-phenylethyl)-2-thiazolidiniminiump-toluenesulfonate. In all three structures, the most disordered fragment of these molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a) is a product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocylic N atom, while YITCAF (Martem'yanova et al., 1993b) is a product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5-chloro- and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
The other closely related compounds are UDELUN (Akkurt et al., 2018a) and ZIJQAN (Akkurt et al., 2018b). In the of UDELUN, the 3-N atom of the cation carries an N substituent, as found in the title compound. In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts also contribute to the molecular packing. In the crystal of ZIJQAN, the cations, anions and water molecules are linked into a three-dimensional network, which forms cross layers parallel to the (120) and (20) planes via O—H⋯Br, N—H⋯Br and N—H⋯N hydrogen bonds. Furthermore, C—H⋯π interactions also help in the stabilization of the molecular packing.
Furthermore, in WILBIC, the thiazolidine ring adopts a twist conformation. In one of two molecules in the
of WILBOI, the thiazolidine ring is essentially planar, in the other it adopts a twist conformation. In the two molecules in the of WILBOI01 and in YOPLUK, the thiazolidine rings exhibit a twist conformation. In YITCAF, the disordered thiazolidine ring has two components, which are planar. In YOPLUK, the thiazolidine ring is slightly puckered, with the nitrogen atom in an almost planar configuration. In the cations of UDELUN and ZIJQAN, the thiazolidine rings have an envelope conformation.6. Synthesis and crystallization
To a solution of 3-amino-5-phenylthiazolidin-2-iminium bromide (1 mmol) in ethanol (20 ml) was added 4-methylbenzaldehyde (1 mmol). The mixture was refluxed for 2 h and then cooled. The reaction product precipitated from the reaction mixture as colorless crystals, was collected by filtration, washed with cold acetone (yield 54%; m.p. 501–502 K), and recrystallized from dimethylformamide to obtain single crystals.
1H NMR (300 MHz, DMSO-d6) : 2.33 (s, 3H, CH3); 4.55 (k, 1H, CH2, 3JH–H = 6.6); 4,88 (t, 1H, CH2, 3JH–H = 8.1); 5.60 (t, 1H, CH—Ar, 3JH–H = 7.5); 7.28–7.98 (m, 9H, 9Ar—H); 8.41 (s, 1H, CH=); 10.33 (s, 2H, N+H=). 13C NMR (75 MHz, DMSO-d6): 21.27; 45.36; 55.90; 127.79; 128.69; 128.86; 129.09; 129.46; 130.21; 137.50; 141.68; 151.04; 167.50. MS (ESI), m/z: 296.40 [C17H18N3S]+ and 79.88 Br−.
7. Refinement
Crystal data, data collection and structure . All H atoms were placed geometrically (N—H = 0.90 Å and C—H = 0.93–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2 or 1.5Ueq(C, N).
details are summarized in Table 4Supporting information
CCDC reference: 1837125
https://doi.org/10.1107/S2056989020012712/jy2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020012712/jy2001Isup2.hkl
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C17H18N3S+·Br−·C3H7NO | F(000) = 928 |
Mr = 449.41 | Dx = 1.400 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4326 (6) Å | Cell parameters from 7783 reflections |
b = 31.778 (2) Å | θ = 2.6–25.5° |
c = 8.4680 (6) Å | µ = 2.04 mm−1 |
β = 110.052 (2)° | T = 296 K |
V = 2131.6 (3) Å3 | Plate, colourless |
Z = 4 | 0.18 × 0.14 × 0.10 mm |
Bruker APEXII CCD diffractometer | 2873 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.076 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 25.7°, θmin = 2.6° |
Tmin = 0.702, Tmax = 0.807 | h = −10→10 |
29638 measured reflections | k = −38→38 |
4039 independent reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0236P)2 + 1.7903P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.087 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.43 e Å−3 |
4039 reflections | Δρmin = −0.53 e Å−3 |
248 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0081 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.24500 (5) | 0.44440 (2) | 0.08820 (4) | 0.06338 (16) | |
N1 | 0.7272 (3) | 0.50622 (7) | 0.4672 (3) | 0.0454 (6) | |
N2 | 0.8146 (3) | 0.46878 (7) | 0.4775 (3) | 0.0462 (6) | |
N3 | 0.9508 (3) | 0.48154 (8) | 0.7609 (3) | 0.0542 (7) | |
H3A | 0.869458 | 0.500223 | 0.757513 | 0.065* | |
H3B | 1.029166 | 0.472122 | 0.855943 | 0.065* | |
N4 | 0.3431 (4) | 0.20008 (10) | 0.3700 (4) | 0.0690 (8) | |
O1 | 0.4488 (4) | 0.26513 (10) | 0.3557 (4) | 0.0891 (8) | |
S1 | 1.03303 (10) | 0.41267 (2) | 0.62732 (10) | 0.0505 (2) | |
C1 | 0.7900 (4) | 0.43751 (10) | 0.3435 (4) | 0.0535 (8) | |
H1A | 0.771425 | 0.451273 | 0.236395 | 0.064* | |
H1B | 0.693711 | 0.419711 | 0.333814 | 0.064* | |
C2 | 0.9532 (4) | 0.41145 (9) | 0.3953 (4) | 0.0478 (7) | |
H2A | 1.034938 | 0.425774 | 0.354929 | 0.057* | |
C3 | 0.9255 (4) | 0.45875 (9) | 0.6271 (4) | 0.0429 (7) | |
C4 | 0.6040 (4) | 0.51408 (9) | 0.3334 (4) | 0.0487 (7) | |
H4A | 0.571043 | 0.494228 | 0.247559 | 0.058* | |
C5 | 0.5142 (4) | 0.55408 (9) | 0.3137 (4) | 0.0459 (7) | |
C6 | 0.3893 (4) | 0.56328 (11) | 0.1627 (4) | 0.0628 (9) | |
H6A | 0.359656 | 0.543477 | 0.076567 | 0.075* | |
C7 | 0.3078 (5) | 0.60187 (12) | 0.1387 (5) | 0.0695 (10) | |
H7A | 0.223309 | 0.607480 | 0.036564 | 0.083* | |
C8 | 0.3491 (4) | 0.63205 (10) | 0.2626 (4) | 0.0532 (8) | |
C9 | 0.4726 (4) | 0.62221 (10) | 0.4137 (4) | 0.0521 (8) | |
H9A | 0.502433 | 0.642090 | 0.499513 | 0.063* | |
C10 | 0.5529 (4) | 0.58380 (10) | 0.4409 (4) | 0.0485 (7) | |
H10A | 0.633347 | 0.577780 | 0.545053 | 0.058* | |
C11 | 0.2619 (5) | 0.67440 (11) | 0.2337 (5) | 0.0770 (11) | |
H11A | 0.261055 | 0.685750 | 0.128290 | 0.116* | |
H11B | 0.321407 | 0.693239 | 0.322952 | 0.116* | |
H11C | 0.147992 | 0.671094 | 0.231326 | 0.116* | |
C12 | 0.9372 (4) | 0.36634 (9) | 0.3360 (4) | 0.0454 (7) | |
C13 | 1.0517 (4) | 0.35074 (10) | 0.2659 (4) | 0.0565 (8) | |
H13A | 1.132036 | 0.368508 | 0.248893 | 0.068* | |
C14 | 1.0464 (5) | 0.30867 (11) | 0.2212 (5) | 0.0709 (10) | |
H14A | 1.123460 | 0.298109 | 0.174733 | 0.085* | |
C15 | 0.9283 (5) | 0.28289 (11) | 0.2456 (5) | 0.0734 (11) | |
H15A | 0.925525 | 0.254635 | 0.216122 | 0.088* | |
C16 | 0.8144 (5) | 0.29779 (12) | 0.3122 (5) | 0.0732 (11) | |
H16A | 0.733331 | 0.279913 | 0.326952 | 0.088* | |
C17 | 0.8191 (4) | 0.33936 (11) | 0.3578 (5) | 0.0629 (9) | |
H17A | 0.741175 | 0.349390 | 0.404218 | 0.076* | |
C18 | 0.4359 (5) | 0.23379 (14) | 0.4343 (5) | 0.0757 (11) | |
H18A | 0.496399 | 0.233544 | 0.549077 | 0.091* | |
C19 | 0.2468 (6) | 0.19812 (15) | 0.1924 (6) | 0.0934 (13) | |
H19A | 0.250819 | 0.224946 | 0.141811 | 0.140* | |
H19B | 0.131711 | 0.191116 | 0.176912 | 0.140* | |
H19C | 0.293996 | 0.176990 | 0.140581 | 0.140* | |
C20 | 0.3410 (7) | 0.16367 (15) | 0.4722 (7) | 0.1129 (17) | |
H20A | 0.410879 | 0.168951 | 0.586481 | 0.169* | |
H20B | 0.383236 | 0.139639 | 0.430398 | 0.169* | |
H20C | 0.227360 | 0.158275 | 0.467287 | 0.169* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0746 (3) | 0.0552 (2) | 0.0497 (2) | 0.01350 (18) | 0.00753 (16) | −0.00653 (16) |
N1 | 0.0476 (14) | 0.0418 (14) | 0.0449 (14) | 0.0098 (11) | 0.0133 (12) | 0.0017 (11) |
N2 | 0.0505 (14) | 0.0416 (14) | 0.0405 (13) | 0.0138 (12) | 0.0077 (11) | −0.0006 (11) |
N3 | 0.0609 (17) | 0.0538 (16) | 0.0409 (14) | 0.0202 (13) | 0.0086 (12) | 0.0019 (12) |
N4 | 0.069 (2) | 0.065 (2) | 0.078 (2) | −0.0069 (16) | 0.0321 (17) | −0.0073 (17) |
O1 | 0.086 (2) | 0.079 (2) | 0.104 (2) | −0.0168 (16) | 0.0357 (17) | −0.0018 (18) |
S1 | 0.0531 (5) | 0.0452 (4) | 0.0473 (4) | 0.0140 (4) | 0.0095 (3) | 0.0008 (4) |
C1 | 0.0604 (19) | 0.0461 (19) | 0.0471 (18) | 0.0104 (15) | 0.0094 (15) | −0.0076 (14) |
C2 | 0.0498 (18) | 0.0444 (17) | 0.0476 (17) | 0.0037 (14) | 0.0147 (14) | −0.0016 (14) |
C3 | 0.0442 (16) | 0.0406 (16) | 0.0413 (17) | 0.0064 (13) | 0.0113 (13) | 0.0000 (13) |
C4 | 0.0479 (18) | 0.0434 (17) | 0.0497 (18) | 0.0040 (14) | 0.0102 (15) | −0.0016 (14) |
C5 | 0.0430 (16) | 0.0447 (17) | 0.0470 (17) | 0.0054 (14) | 0.0115 (13) | 0.0078 (14) |
C6 | 0.072 (2) | 0.056 (2) | 0.0482 (19) | 0.0137 (18) | 0.0048 (16) | 0.0026 (16) |
C7 | 0.070 (2) | 0.072 (2) | 0.054 (2) | 0.023 (2) | 0.0047 (17) | 0.0182 (19) |
C8 | 0.0527 (19) | 0.0461 (18) | 0.064 (2) | 0.0116 (15) | 0.0239 (16) | 0.0149 (16) |
C9 | 0.0494 (18) | 0.0470 (19) | 0.062 (2) | 0.0054 (15) | 0.0219 (16) | −0.0039 (15) |
C10 | 0.0431 (17) | 0.0530 (19) | 0.0463 (17) | 0.0099 (15) | 0.0112 (13) | 0.0016 (15) |
C11 | 0.084 (3) | 0.058 (2) | 0.091 (3) | 0.028 (2) | 0.032 (2) | 0.022 (2) |
C12 | 0.0468 (17) | 0.0408 (16) | 0.0432 (17) | 0.0035 (14) | 0.0086 (13) | −0.0027 (13) |
C13 | 0.0511 (19) | 0.050 (2) | 0.071 (2) | −0.0044 (16) | 0.0246 (17) | −0.0015 (17) |
C14 | 0.072 (2) | 0.054 (2) | 0.096 (3) | 0.0031 (19) | 0.042 (2) | −0.016 (2) |
C15 | 0.082 (3) | 0.044 (2) | 0.094 (3) | −0.0072 (19) | 0.030 (2) | −0.0156 (19) |
C16 | 0.068 (2) | 0.060 (2) | 0.090 (3) | −0.021 (2) | 0.025 (2) | −0.010 (2) |
C17 | 0.053 (2) | 0.065 (2) | 0.077 (2) | −0.0029 (18) | 0.0293 (18) | −0.0042 (19) |
C18 | 0.068 (2) | 0.086 (3) | 0.073 (3) | −0.008 (2) | 0.023 (2) | −0.007 (2) |
C19 | 0.089 (3) | 0.090 (3) | 0.092 (3) | −0.002 (3) | 0.018 (2) | −0.026 (3) |
C20 | 0.142 (5) | 0.082 (3) | 0.139 (5) | −0.005 (3) | 0.079 (4) | 0.021 (3) |
N1—C4 | 1.272 (4) | C8—C9 | 1.380 (4) |
N1—N2 | 1.386 (3) | C8—C11 | 1.513 (4) |
N2—C3 | 1.330 (4) | C9—C10 | 1.376 (4) |
N2—C1 | 1.468 (4) | C9—H9A | 0.9300 |
N3—C3 | 1.299 (4) | C10—H10A | 0.9300 |
N3—H3A | 0.9000 | C11—H11A | 0.9600 |
N3—H3B | 0.9000 | C11—H11B | 0.9600 |
N4—C18 | 1.328 (5) | C11—H11C | 0.9600 |
N4—C19 | 1.445 (5) | C12—C17 | 1.374 (4) |
N4—C20 | 1.448 (5) | C12—C13 | 1.387 (4) |
O1—C18 | 1.223 (5) | C13—C14 | 1.386 (5) |
S1—C3 | 1.722 (3) | C13—H13A | 0.9300 |
S1—C2 | 1.846 (3) | C14—C15 | 1.359 (5) |
C1—C2 | 1.535 (4) | C14—H14A | 0.9300 |
C1—H1A | 0.9700 | C15—C16 | 1.355 (5) |
C1—H1B | 0.9700 | C15—H15A | 0.9300 |
C2—C12 | 1.510 (4) | C16—C17 | 1.373 (5) |
C2—H2A | 0.9800 | C16—H16A | 0.9300 |
C4—C5 | 1.459 (4) | C17—H17A | 0.9300 |
C4—H4A | 0.9300 | C18—H18A | 0.9300 |
C5—C6 | 1.381 (4) | C19—H19A | 0.9600 |
C5—C10 | 1.385 (4) | C19—H19B | 0.9600 |
C6—C7 | 1.386 (5) | C19—H19C | 0.9600 |
C6—H6A | 0.9300 | C20—H20A | 0.9600 |
C7—C8 | 1.375 (5) | C20—H20B | 0.9600 |
C7—H7A | 0.9300 | C20—H20C | 0.9600 |
C4—N1—N2 | 118.6 (2) | C8—C9—H9A | 119.1 |
C3—N2—N1 | 116.8 (2) | C9—C10—C5 | 120.3 (3) |
C3—N2—C1 | 116.1 (2) | C9—C10—H10A | 119.9 |
N1—N2—C1 | 127.0 (2) | C5—C10—H10A | 119.9 |
C3—N3—H3A | 116.4 | C8—C11—H11A | 109.5 |
C3—N3—H3B | 116.4 | C8—C11—H11B | 109.5 |
H3A—N3—H3B | 124.4 | H11A—C11—H11B | 109.5 |
C18—N4—C19 | 120.2 (4) | C8—C11—H11C | 109.5 |
C18—N4—C20 | 121.7 (4) | H11A—C11—H11C | 109.5 |
C19—N4—C20 | 118.0 (4) | H11B—C11—H11C | 109.5 |
C3—S1—C2 | 90.96 (13) | C17—C12—C13 | 118.5 (3) |
N2—C1—C2 | 105.6 (2) | C17—C12—C2 | 122.3 (3) |
N2—C1—H1A | 110.6 | C13—C12—C2 | 119.1 (3) |
C2—C1—H1A | 110.6 | C14—C13—C12 | 120.0 (3) |
N2—C1—H1B | 110.6 | C14—C13—H13A | 120.0 |
C2—C1—H1B | 110.6 | C12—C13—H13A | 120.0 |
H1A—C1—H1B | 108.7 | C15—C14—C13 | 119.8 (3) |
C12—C2—C1 | 116.6 (3) | C15—C14—H14A | 120.1 |
C12—C2—S1 | 109.4 (2) | C13—C14—H14A | 120.1 |
C1—C2—S1 | 104.9 (2) | C16—C15—C14 | 120.9 (3) |
C12—C2—H2A | 108.6 | C16—C15—H15A | 119.6 |
C1—C2—H2A | 108.6 | C14—C15—H15A | 119.6 |
S1—C2—H2A | 108.6 | C15—C16—C17 | 119.8 (3) |
N3—C3—N2 | 123.2 (3) | C15—C16—H16A | 120.1 |
N3—C3—S1 | 123.0 (2) | C17—C16—H16A | 120.1 |
N2—C3—S1 | 113.8 (2) | C16—C17—C12 | 121.0 (3) |
N1—C4—C5 | 120.4 (3) | C16—C17—H17A | 119.5 |
N1—C4—H4A | 119.8 | C12—C17—H17A | 119.5 |
C5—C4—H4A | 119.8 | O1—C18—N4 | 125.7 (4) |
C6—C5—C10 | 118.5 (3) | O1—C18—H18A | 117.2 |
C6—C5—C4 | 119.4 (3) | N4—C18—H18A | 117.2 |
C10—C5—C4 | 122.0 (3) | N4—C19—H19A | 109.5 |
C5—C6—C7 | 120.4 (3) | N4—C19—H19B | 109.5 |
C5—C6—H6A | 119.8 | H19A—C19—H19B | 109.5 |
C7—C6—H6A | 119.8 | N4—C19—H19C | 109.5 |
C8—C7—C6 | 121.5 (3) | H19A—C19—H19C | 109.5 |
C8—C7—H7A | 119.3 | H19B—C19—H19C | 109.5 |
C6—C7—H7A | 119.3 | N4—C20—H20A | 109.5 |
C7—C8—C9 | 117.6 (3) | N4—C20—H20B | 109.5 |
C7—C8—C11 | 121.0 (3) | H20A—C20—H20B | 109.5 |
C9—C8—C11 | 121.5 (3) | N4—C20—H20C | 109.5 |
C10—C9—C8 | 121.8 (3) | H20A—C20—H20C | 109.5 |
C10—C9—H9A | 119.1 | H20B—C20—H20C | 109.5 |
C4—N1—N2—C3 | −170.3 (3) | C6—C7—C8—C11 | 178.7 (4) |
C4—N1—N2—C1 | 5.3 (4) | C7—C8—C9—C10 | 0.2 (5) |
C3—N2—C1—C2 | −24.2 (4) | C11—C8—C9—C10 | −179.8 (3) |
N1—N2—C1—C2 | 160.2 (3) | C8—C9—C10—C5 | 1.8 (5) |
N2—C1—C2—C12 | 150.8 (3) | C6—C5—C10—C9 | −2.6 (5) |
N2—C1—C2—S1 | 29.7 (3) | C4—C5—C10—C9 | 175.9 (3) |
C3—S1—C2—C12 | −149.7 (2) | C1—C2—C12—C17 | −50.1 (4) |
C3—S1—C2—C1 | −23.9 (2) | S1—C2—C12—C17 | 68.6 (3) |
N1—N2—C3—N3 | 1.9 (4) | C1—C2—C12—C13 | 133.7 (3) |
C1—N2—C3—N3 | −174.2 (3) | S1—C2—C12—C13 | −107.5 (3) |
N1—N2—C3—S1 | −178.1 (2) | C17—C12—C13—C14 | −0.7 (5) |
C1—N2—C3—S1 | 5.8 (4) | C2—C12—C13—C14 | 175.6 (3) |
C2—S1—C3—N3 | −168.3 (3) | C12—C13—C14—C15 | 0.3 (6) |
C2—S1—C3—N2 | 11.6 (2) | C13—C14—C15—C16 | 0.4 (6) |
N2—N1—C4—C5 | −176.8 (3) | C14—C15—C16—C17 | −0.8 (6) |
N1—C4—C5—C6 | 175.2 (3) | C15—C16—C17—C12 | 0.4 (6) |
N1—C4—C5—C10 | −3.3 (5) | C13—C12—C17—C16 | 0.3 (5) |
C10—C5—C6—C7 | 1.5 (5) | C2—C12—C17—C16 | −175.9 (3) |
C4—C5—C6—C7 | −177.0 (3) | C19—N4—C18—O1 | 0.5 (6) |
C5—C6—C7—C8 | 0.5 (6) | C20—N4—C18—O1 | 177.5 (4) |
C6—C7—C8—C9 | −1.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1i | 0.90 | 2.57 | 3.368 (3) | 148 |
N3—H3B···Br1ii | 0.90 | 2.35 | 3.243 (2) | 175 |
C16—H16A···O1 | 0.93 | 2.54 | 3.391 (6) | 153 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z+1. |
Contact | Distance | Symmetry operation |
H3B···Br1 | 2.35 | 1 + x, y, 1 + z |
N1···S1 | 3.533 (3) | 2 - x, 1 - y, 1 - z |
H3A···Br1 | 2.57 | 1 - x, 1 - y, 1 - z |
C9···H19C | 2.78 | 1 - x, 1/2 + y, 1/2 - z |
H17A···H9A | 2.47 | 1 - x, 1 - y, 1 - z |
H6A···H1A | 2.50 | 1 - x, 1 - y, -z |
H16A···O1 | 2.54 | x, y, z |
H16A···H18A | 2.55 | x, 1/2 - y, -1/2 + z |
H4A···Br1 | 3.06 | x, y, z |
H13A···Br1 | 3.08 | 1 + x, y, z |
H14A···O1 | 2.84 | 1 + x, y, z |
O1···H18A | 2.76 | x, 1/2 - y, -1/2 + z |
C20···Br1 | 3.736 (5) | x, 1/2 - y, 1/2 + z |
Contact | Percentage contribution |
H···H | 55.6 |
C···H/H···C | 17.9 |
Br···H/H···Br | 7.0 |
S···H/H···S | 4.6 |
N···C/C···N | 3.8 |
O···H/H···O | 3.2 |
N···H/H···N | 2.9 |
S···C/C···S | 2.4 |
C···C | 1.5 |
N···S/S···N | 0.5 |
N···N | 0.4 |
Br···C/C···Br | 0.2 |
Br···S/S···Br | 0.2 |
References
Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478. CrossRef Google Scholar
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290–1294. Web of Science CSD CrossRef IUCr Journals Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg., 19, 145–153. CrossRef CAS Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
D'hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513–535. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419. Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425. Google Scholar
Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27. CSD CrossRef CAS Web of Science Google Scholar
Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486–508. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia. Google Scholar
Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.