research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structures of three disubstituted [13]-macro­di­lac­tones reveal effects of substitution on macrocycle conformation

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA, and bDepartment of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520, USA
*Correspondence e-mail: brandon.mercado@yale.edu, mark.peczuh@uconn.edu

Edited by J. T. Mague, Tulane University, USA (Received 20 July 2020; accepted 31 August 2020; online 8 September 2020)

The synthesis and crystal structures of three new disubstituted [13]-macro­di­lactones, namely, trans-4,8-dimethyl-1,10-dioxa­cyclo­tridec-5-ene-2,9-dione, C13H20O4, I, cis-4-(4-bromo­phen­yl)-13-methyl-1,10-dioxa­cyclo­tridec-5-ene-2,9-dione C18H21BrO4, II, and trans-11-methyl-4-phenyl-1,10-dioxa­cyclo­tridec-5-ene-2,9-dione, C18H22O4, III, are reported and their conformations are put in the context of other [13]-macrodilactone structures reported previously. Together, they show that the number, location, and relative disposition of groups attached at the termini of planar units of the [13]-macrodilactones subtly influence their aspect ratios.

1. Chemical context

Macrocyclic rings adopt particular conformations by balancing the contributions of multiple, local domain features. We have studied the synthesis, structure, and function of a specific family of macrocycles, the [13]-macrodilactones. These macrocycles, which are made more rigid by ester and alkene planar units, minimize transannular inter­actions of substit­uents at stereogenic centers along their backbone. The overall effect of the number of atoms in the ring, the planar units, and the stereogenic centers promotes the adoption of a conformation that contains an element of planar chirality.

[Scheme 1]

The modularity of macrocycles lends to their attractiveness as scaffolds for the development of new bioactive compounds (Whitty et al., 2017[Whitty, A., Viarengo, L. A. & Zhong, M. (2017). Org. Biomol. Chem. 15, 7729-7735.]; Yudin, 2015[Yudin, A. K. (2015). Chem. Sci. 6, 30-49.]; Driggers et al., 2008[Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. (2008). Nat. Rev. Drug Discov. 7, 608-624.]). Macrocycles have mini-domains of a few atoms that can influence the conformation of the ring, modulate rigidity/flexibility, and tune their physicochemical and biochemical properties (Whitty et al., 2016[Whitty, A., Zhong, M., Viarengo, L. A., Beglov, D., Hall, D. R. & Vajda, S. (2016). Drug Discovery Today, 21, 712-717.]; Larsen et al., 2015[Larsen, E. M., Wilson, M. R. & Taylor, R. E. (2015). Nat. Prod. Rep. 32, 1183-1206.]). For the [13]-macrodilactone motif exemplified by trans-4,8-dimethyl-1,10-dioxa­cyclo­tridec-5-ene-2,9-dione I in Fig. 1[link], two four-atom ester units (C13/O1/C2/C3 and C8/C9/O10/C11) are linked via a central carbon (C12) and one trans-2-butenyl moiety (atoms C4–C7). By virtue of the planarity of the multi-atom units, the ring is significantly stiffened compared to a saturated thirteen-membered ring. The conformation, which is informally referred to as the `ribbon' conformation, arises from a balance between the number of atoms that make up the ring and the nature of the planar units that reduce its flexibility. There is a planar chirality associated with the macrocycle (only the R-configured plane, pR, form is shown for I) that arises from the asymmetry around the alkene unit as it orients itself perpendicular to the mean plane of the macrocycle. The planar chirality of the [13]-macrodilactones is directly analogous to that of E-cyclo­octene (Fyvie & Peczuh, 2008a[Fyvie, W. S. & Peczuh, M. W. (2008a). Chem. Commun. pp. 4028-4030.],b[Fyvie, W. S. & Peczuh, M. W. (2008b). J. Org. Chem. 73, 3626-3629.]; Eliel & Wilen, 1994[Eliel, E. L. & Wilen, S. H. (1994). Chirality in Molecules Devoid of Chiral Centers, in Stereochemistry of Organic Compounds, pp 1172-1175. New York: John Wiley & Sons.]). Viewed from above (parallel to the alkene), the ribbon appears roughly triangular (Fig. 1[link]c, top), with a long axis and a short axis.

[Figure 1]
Figure 1
Ribbon motif of [13]-macrodilactones. (a) Structure and number of [13]-macrodilactones using compound I as an illustration. (b) Schematic of the ring showing the three planar units: two esters (brown) and alkene (blue). Key atoms at the termini of the planar units are marked with asterisks. (c) Mol­ecular structure of I from X-ray data.

Here we report on the synthesis and solid-state structural characterization of [13]-macrodilactones I, II, and III. These new structures, along with eight more previously reported [13]-macrodilactone structures, are analyzed to assess how substitution at specific atoms of the backbone influences the conformation.

2. Structural commentary

Each of the new structures has two stereogenic centers. The synthetic routes were not stereoselective, and the products were isolated as racemates. Consequently, each compound crystallized as a racemate. The stereogenic centers of compounds I, II, and III seen in Fig. 2[link] establish only the relative stereochemistry observed in the asymmetric unit for each one. The only common feature of I, II, and III is the [13]-macrodilactone core. All bond distances and angles are in the expected ranges and unexceptional. A more in depth analysis of mol­ecular aspect ratios can be found in the Database survey.

[Figure 2]
Figure 2
The mol­ecular structures of I, II, and III with 50% displacement ellipsoid probability levels. Note that the structures here are of the pS-configured planar chirality.

3. Database survey

A survey of the Cambridge Structural Database (CSD) yielded a total of 17 structures of [13]-macrodilactones, counting the three new structures reported here (Table 1[link]). Of these structures, 11 share the same fundamental ribbon conformation described earlier. Comparison of their structures in light of their substitution patterns along the macrocyclic backbone revealed subtle differences in their conformations. Aspect ratio, defined as the ratio of the C12-to-centroid of C5 and C6 (length, or long-axis) and the C2-to-C9 carbonyl carbon distance (width, or short-axis) of the macrocyclic ring, was our metric to express the changes in conformation. By virtue of the cyclic structure, compression along one axis leads to expansion along the complementary one, and vice versa, affecting the aspect. Note that structure e (Fig. 3[link]) is of the unsubstituted [13]-macrodilactone, containing no pendant groups along its backbone; it represents a reference point for comparisons amongst the other substituted macrocycles.

Table 1
Substitution patterns and refcodes for [13]-macrodilactones

Cpd. = compound identifier in Fig. 3[link], Conf. = conformer adopted in the crystal structure and Subs. = substituted positions on [13]-macrodilactone.

Entry Cpd. Conf. Subs. cis/trans Refcode Citation
1 a ribbon 11,13 trans URILEO Ma & Peczuh (2013[Ma, J. & Peczuh, M. W. (2013). J. Org. Chem. 78, 7414-7422.])
2 b ribbon 11 (mono) KOHLAV Fyvie & Peczuh (2008a[Fyvie, W. S. & Peczuh, M. W. (2008a). Chem. Commun. pp. 4028-4030.])
3 c ribbon 3 (mono) XUFKOA Magpusao, Rutledgeet al. (2015[Magpusao, A. N., Rutledge, K., Mercado, B. & Peczuh, M. W. (2015). Org. Biomol. Chem. 13, 5086-5089.])
4 ribbon D-gluco trans XOCWIW Fyvie & Peczuh (2008b[Fyvie, W. S. & Peczuh, M. W. (2008b). J. Org. Chem. 73, 3626-3629.])
5 d ribbon 3,8 trans XUFLAN Magpusao, Rutledge et al. (2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.])
6 e ribbon IJEHAI Magpusao, Rutledge et al. (2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.])
7 f ribbon 3,11 cis IJEHOW Magpusao, Rutledge et al. (2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.])
8 g ribbon 4,13 cis II This work (CCDC 1944827)
9 h ribbon 4,8 trans I This work (CCDC 1944826)
10 i ribbon 4 (mono) ECOYED Rutledge, Hamlin et al. (2017[Rutledge, K. M., Hamlin, T. A., Baldisseri, D., Bickelhaupt, F. M. & Peczuh, M. W. (2017). Chem. Asian J. 12, 2623-2633.])
11 j ribbon 3,13 trans IJEHEM Magpusao, Rutledge et al. (2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.])
10 other 4 (mono) ECOYED  
12 other 11,13 cis URILAK Ma & Peczuh (2013[Ma, J. & Peczuh, M. W. (2013). J. Org. Chem. 78, 7414-7422.])
3 c other 3 (mono) XUFKOA  
13 other 11,13 cis URILAK Ma & Peczuh (2013[Ma, J. & Peczuh, M. W. (2013). J. Org. Chem. 78, 7414-7422.])
14 other 3,11 trans IJEHUC Magpusao, Rutledge et al. (2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.])
15 k ribbon 4,11 trans III This work (CCDC 1944828)
16 other 3,8 cis XUFKUG Magpusao, Rutledge et al. (2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.])
17 other 8,11 cis IJEHIQ Magpusao, Rutledge et al. (2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.])
[Figure 3]
Figure 3
Length, width, and aspect ratios of pS-configured [13]-macrodilactones in the ribbon conformation. The inset shows the distances measured in the macrocycles. All error bars are shown to 3σ, but some are smaller than the marker chosen to represent the point. The boxes highlight data from compounds I (h), II (g), and III (k) in this report. All distances are shown in Å.

Subtle differences in the aspect ratios of the [13]-macrodilactones depicted in Fig. 3[link] were attributed to the location and number but not size of groups attached to the ring, which we found remarkable. For example, the positioning of a single substituted atom affected the aspect ratio as exemplified by b, c, and i. Trends for di-substituted [13]-macrodilactones separated into two groups. In the first group are the `symmetrical' di-substituted compounds: trans-11,13- (a), trans −3,8- (d), and trans-4,8- (h, compound I). The trend for this group largely follows that in the monosubstituted series. That is, the aspect ratio increased slightly when substitutions were made on either end of the ester units but decreased upon substitution at the allylic carbons. The second group of di-substituted macrocycles is a catch-all that collects compounds where the substituted carbons are either on the same side of the ring relative to its long-axis [cis-4,13- (g, compound II) and trans-3,13 (j)] or opposite sides [cis-3,11 (f) and trans-4,11 (k, compound III)]. These compounds pit substitutions at a site (C11/13) that stretches the long-axis with sites that either also extend (C3/C8) or compress (C4/C7) it. A clear rationale to explain relationships between these substitution patterns and their aspect ratios was not apparent. One observation was that any substitution at the allylic positions tended to compress the aspect ratios of all the [13]-macrodilactones. Aspect ratios ranged from 1.16 on the low end (q, compound III) to 1.32 (a) on the high end. That represents a 14% change in aspect ratio linked only to the number and location of substituted carbons along the backbone of the [13]-macrodilactone structure.

4. Computational analysis of conformations

To ascertain whether the solid-state structures were representative of their local minimum-energy conformations, gas-phase computational optimizations were performed on the new [13]-macrodilactones IIII and also compounds a and e in Fig. 3[link]. The pR conformers from the X-ray data were optimized via DFT using the Schrödinger Maestro application Jaguar (Bochevarov et al., 2013[Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., Rinaldo, D., Halls, M. D., Zhang, J. & Friesner, R. A. (2013). Int. J. Quantum Chem. 113, 2110-2142.]). Four different levels of theory, chosen because of their large number of basis functions and their inclusion of bromine orbitals, were used with the calculation, B3LYD-D3/CC-PVDC, M06-2X-D3/CC-PVDZ, B3LYD-D3/LACVP**, and M06-2X-D3/LACVP**. B3LYD-D3 was chosen because of its widespread use and M06-2X-D3 was chosen for its ability to accurately describe non-covalent inter­actions within the macrocycles (Grimme, 2011[Grimme, S. (2011). WIREs Comput. Mol. Sci. 1, 211-228.]). Single point energy calculations were run on both the conformer from the crystallographic data and the conformer optimized at the B3LYD-D3/CC-PVDC level of theory. RMSD values comparing the 13 non-hydrogen atoms of the macrocycle ring were calculated comparing crystallographic structure and DFT-optimized conformers (Fig. 4[link]). Values that express the average RMSD across the different DFT calculations ranged from 0.055 to 0.251 Å (Table S3 in the supporting information). The low values suggest that [13]-macrodilactones do not significantly change their conformations upon optimization.

[Figure 4]
Figure 4
Overlays of crystallographic (green) and the DFT-optimized (black) structures for compounds a, f, g (II), h (I), and k (III).

5. Supra­molecular features

The crystal structures of I, II and III were searched for non-bonded inter­actions that may influence the measurements reported in Fig. 2[link]. The program Mercury (Macrae, et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) highlighted close contacts, which are defined as less than or equal to the sum of the van der Waals radii of atom pairs (Rowland et al., 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). In I, a contact of 3.188 (4) Å between the carbonyl oxygen O17 and methyl­ene carbon C11 in the mol­ecule generated by the c-glide operation was identified. Mol­ecules associated with this contact line up along [001]. In II, a Br⋯Br contact of 3.6466 (2) Å was identified where Br1 is near the crystallographic 21 screw axis. Sequential applications of this symmetry operation generate a zigzag pattern of Br⋯Br contacts along [010]. In III, a contact of 3.386 (4) Å between C3 and the para carbon, C18, of the pendant phenyl ring is generated by the the 21 screw axis and repeats along [001]. These distances fall well within what is observed in other solid state structures and no attractive inter­actions were found in I, II, or III (see Figures S1 to S7 in the supporting information).

6. Synthesis and crystallization

As shown in Fig. 5[link], [13]-macrodilactones I, II, and III were prepared by an established synthetic route that entailed sequential acyl­ation reactions, followed by macrocyclization via ring closing metathesis (RCM) (Magpusao et al., 2015[Magpusao, A. N., Rutledge, K., Mercado, B. & Peczuh, M. W. (2015). Org. Biomol. Chem. 13, 5086-5089.], 2016[Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001-6011.]). Because the syntheses were not stereo-controlled and each of the new compounds contained two stereogenic centers, two diastereomeric products (each racemic) arose for each macrocycle. The diastereomers of I, II, and III in Fig. 4[link] are the ones that gave rise to the `ribbon' conformers presented herein. See the supporting information for additional details on the synthesis of compounds IIII. Single crystals of the compounds were prepared by slow diffusion of hexane vapor into ethyl acetate:hexa­nes solutions of the compounds.

[Figure 5]
Figure 5
Synthesis of macrocycles IIII.

General

3-Bromo-phenyl-4-pentenoic acid, 3-phenyl-4-pentenoic acid and mono­acyl­ated 3-methyl-3-hy­droxy­propyl-4-pent­en­oate were prepared as previously described (Magpusao et al., 2015[Magpusao, A. N., Rutledge, K., Mercado, B. & Peczuh, M. W. (2015). Org. Biomol. Chem. 13, 5086-5089.]). Unless stated otherwise, all acyl­ations were conducted at 273 K and allowed to warm to room temperature over 12 h. Reactions were monitored using TLC. Spots on TLC plates were visualized with UV light and p-anisaldehyde or ceric ammonium molybdate (CAM) stains. Chromatography was performed on silica gel and solvent systems were based on the Rf values. 1H NMR spectra were referenced to CDCl3 proton (δ H 7.27 ppm) and 13C NMR to the CDCl3 carbon (δ C 77.2 ppm).

1,3-Di-(3-methyl-4-penteno­yloxy)-propane

Into a 25 mL round-bottom flask were added di­cyclo­hexyl­carbodi­imide (DCC) (1.08 eq.), N,N-di­methyl­amino­pyridine (DMAP) (0.3 eq.) and di­chloro­methane (DCM) (7mL) and the solution was cooled to 273 K under nitro­gen. Then 3-methyl-4-pentenoic acid (1.0 eq.) was added and the mixture stirred at the same temperature for 30 minutes until a white suspension formed. A solution of 1,3-butane­diol (0.5 eq.) in DCM (3 mL) was then added and the mixture was stirred overnight at room temperature. After completion of the reaction, the mixture was filtered through a short pad of celite, rinsed with DCM, and solvent from the filtrates was removed under reduced pressure. The residue was then dissolved in cold ether to precipitate excess di­cyclo­hexyl urea (DCU), filtered through a pad of celite, and rinsed with additional ether. Ether from the combined filtrates was removed under reduced pressure and the residue was purified by column chromatography (10:90 EtOAc:Hex) to give a clear colorless oil (43%). Rf 0.47 (10:90 EtOAc:Hex); 1H NMR (CDCl3) 400 MHz δ 5.73 (ddd, J = 17.2, 10.2, 7.3 Hz, 2H), 4.96 (dd, J = 22.3, 17.2 Hz, 4H), 4.13 (dd, J = 6.33, 6.33 Hz, 4H), 2.65 (s, J = 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0 Hz, 2H), 2.29 (dddd or dq, J = 22.1, 14.8, 14.8, 14.8 Hz, 4H), 1.94 (dddd or dq, J = 12.5, 6.2, 6.2, 6.2 Hz, 2H), 1.03 (d, J = 6.6 Hz, 6H); 13C NMR (CDCl3) 100 MHz δ 172.4, 142.5, 113.5, 61.0, 41.4, 34.6, 28.2, 19.9; TOF HRMS (DART) m/z calculated for C15H24O4 [MH]+ calculated 269.1753, found 269.1749.

Sequential acyl­ation method

To a 25 mL round-bottom flask was added DCM (7 mL), di­cyclo­hexyl­carbodi­imide (DCC) (1.08 eq.) and N,N-di­methyl­amino­pyridine (DMAP) (0.3 eq.) and the mixture was cooled to 273 K. 4-Pentenoic acid (1.0 eq.) was added and the mixture was stirred at the same temperature for 30 min until a white suspension was observed. Then, 1,3-propane­diol or 1,3-butane­diol (1.0 eq.) in DCM (3 mL) was added and the mixture was stirred overnight at room temperature. After completion of the reaction, the mixture was filtered through a short pad of celite, rinsed with DCM and solvent from the filtrates was removed under reduced pressure. The residue was then dissolved in cold ether to precipitate excess DCU, filtered through a pad of celite, and rinsed with additional ether. The crude residue was purified by silica gel column chromatography (15:85 EtOAc:Hex) to give the mono­acyl­ated product. The same procedure, where the mono-acyl­ated alcohol was used in place of the diol, was then followed for the second acyl­ation.

1-[3-(p-Bromo­phen­yl)-4-penteno­yloxy]-1-methyl­propyl-4-pentenoate

Synthesis followed the sequential acyl­ation method above to give the compound in 70% yield as a colorless oil. Rf 0.56 (hexa­nes: EtOAc 80:20); 1H NMR (CDCl3) 400 MHz δ 7.42 (d, J = 8.31 Hz, 2H), 7.09 (d, J = 8.3 Hz, 2H), 5.93 (dddd, J = 16.8, 10.3, 6.5, 1.7 Hz, 1H), 5.8 (m, 1H), 5.01 (m, 5H), 4.02 (m, 2H), 3.81 (ddd, J = 7.5, 7.5, 7.5 Hz, 1H), 2.73 (m, 1H), 2.64 (ddd, J = 15.3, 7.9, 0 Hz, 1H) 2.38 (m, 4H), 1.81 (m, 2H), 1.17 (d, J = 6.3 Hz, 2H), 1.12 (d, J = 6.3 Hz, 1H); 13C NMR (CDCl3) 100 MHz δ 173.1, 171.2, 141.5, 139.9, 136.8, 131.8, 129.6, 120.8, 115.7, 115.4, 68.3, 60.7, 45.3, 40.4, 34.9, 33.7, 29.0, 20.1.

3-(3-Phenyl-4-penteno­yloxy)-1-methyl­propyl-4-pentenoate

The synthesis followed the sequential acyl­ation method above to give the compound in 74% yield as a yellow oil. Rf 0.22 (hexa­nes: EtOAc 95:5); 1H NMR (CDCl3) 400 MHz δ 7.32 (m, 2H), 7.21 (m, 3H), 5.98 (ddd, J = 18.2, 10.14, 7.8 Hz, 1H), 5.81 (m, 1H), 5.0 (m, 5H), 4.21 (m, 2H), 3.86 [ddd (or dt), J = 7.4, 7.4, 7.4 Hz, 1H], 2.80 (dd, J = 15.1, 8.12 Hz, 1H), 2.70 (dd, J = 15.1, 7.4 Hz, 1H), 2.40 (m, 4H), 1.78 (m, 2H) 1.21 (d, 3H, J = 5.6 Hz); 13C NMR (CDCl3) 100 MHz δ 172.6, 171.8, 142.5, 140.4, 136.8, 128.7, 127.7, 126.8, 115.7, 115.0, 67.9, 60.9, 45.7, 40.3, 34.9, 33.9, 29.0, 20.2.

General RCM Method

Under an atmosphere of nitro­gen, Grubbs' second-generation catalyst (0.10 eq.) was added to a solution of the diene in sufficient toluene so that the [diene] ≤ 10 mM. The mixture was heated to 383 K for 18 h. When the reaction was complete, the toluene was removed under reduced pressure to give a residue that was purified by column chromatography.

trans-4,8-Dimethyl-1,10-dioxa­cyclo­tridec-5-ene-2,9-dione (I)

Followed the general method of RCM in 21% overall yield (3:2 cis:trans) as a white solid. Compound I is the trans isomer; Rf 0.45 (hexa­nes: EtOAc 80:20) (higher Rf, trans); 1HNMR (CDCl3) 400 MHz δ 5.80 (dd, J = 5.9, 2.6 Hz, 2H), 4.43 (ddd, J = 11.1, 8.8, 6.8 Hz, 2H), 3.91 (dd, J = 4.0, 4.0 Hz, 1H), 3.88 (dd, J = 4.0, 4.0 Hz, 1H), 2.61 (m, 2H), 2.30 (dd, J = 13.4, 3.2 Hz, 2H), 2.11 (dd, J = 12.7, 12.7 Hz, 2H), 2.00 (dddd, J = 9.5, 9.5, 4.0, 4.0 Hz, 2H), 1.03 (d, J = 6.9 Hz, 6H); 13C NMR (CDCl3) 100 MHz δ 173.2, 134.3, 59.8, 42.5, 35.9, 25.6, 21.6; TOF HRMS (DART) m/z [M+H]+ calculated for C13H21O4, calculated 241.1440, found 241.1440.

cis-4-Phenyl-13-methyl-1,10-dioxa­cyclo­tridec-5-ene-2,9-di­one (II)

Followed the general method of RCM in overall 44% yield (2:3 cis:trans). Compound II is the cis isomer and was isolated as a white solid. m.p. 370–374 K; Rf 0.46 (hexa­nes: EtOAc 80:20) (higher Rf, cis); 1H NMR (CDCl3) 400 MHz δ 7.43 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 5.59 (ddd, J = 15.0, 8.7, 5.4 Hz, 1H), 5.44 (dd, J = 15.2, 9.0 Hz, 1H), 5.11 (m, 1H), 4.35 (ddd, J = 11.9, 11.9, 3.7 Hz, 1H), 3.95 (ddd, J = 11.3, 5.2, 2.4 Hz, 1H), 3.81 (ddd, J = 8.3, 8.3, 8.3 Hz, 1H), 2.55 (m, 2H), 2.32 (m, 4H), 2.04 (m, 1H), 1.81 (dddd or ddt, J = 14.6, 6.0, 3.3, 3.3 Hz, 1H), 1.30 (d, J = 6.2 Hz, 3H); 13C NMR (CDCl3) 100 MHz δ 174.0, 171.7, 142.2, 133.2, 132.0, 130.3, 129.0, 67.5, 60.5, 45.5, 41.5, 34.5, 33.5, 29.0, 20.7.

trans-4-Phenyl-11-methyl-1,10-dioxa­cyclo­tridec-5-ene-2,9-di­one (III)

Followed the general method of RCM in 89% overall yield 2:3 cis:trans). Compound III is the trans isomer, a yellow solid. m.p 359–362 K; Rf 0.45 (hexa­nes: EtOAc 80:20) (higher Rf, trans); 1H NMR (CDCl3) 400 MHz δ 7.33 (m, 2H), 7.24 (m, 3H), 5.59 (dd, J = 15.5, 8.5 Hz, 1H), 5.53 (ddd, J = 15.9, 8.7, 5.1 Hz, 1H), 5.14 (m, 1H), 4.35 (ddd, J = 14.9, 11.4, 3.5 Hz, 1H), 3.94 (ddd, J = 12.4, 7.3, 1.3 Hz, 1H), 3.74 (ddd, J = 11.9, 8.8, 3.8, 1H), 2.61 (dd, J = 12.9, 12.9 Hz, 1H), 2.56 (dd, J = 12.6, 4.0 Hz, 1H), 2.42 (m, 2H), 2.29 (m, 1H), 2.20 (m, 1H), 2.1 (dddd, J = 18.6, 9.5, 5.7, 4.1 Hz, 1H), 1.8 (m, 1H), 1.31 (d, J = 6.19 Hz, 3H); 13C NMR (CDCl3) 100 MHz δ 173.0, 172.9, 143.3, 134.5, 129.0, 128.9, 127.1, 126.9, 66.8, 60.6, 47.1, 41.9, 34.3, 33.4, 28.1, 20.7.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For all three structures, no evidence of disorder was found and no special restraints or constraints were required to achieve a stable refinement model. The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C—H distances = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5Ueq(C) for CH3 groups.

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C13H20O4 C18H21BrO4 C18H22O4
Mr 240.29 381.26 302.35
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Orthorhombic, Pna21
Temperature (K) 93 93 93
a, b, c (Å) 8.0547 (6), 18.7875 (14), 8.9660 (7) 15.3128 (3), 5.55594 (11), 20.5689 (4) 11.2952 (8), 20.9595 (15), 6.6840 (5)
α, β, γ (°) 90, 102.530 (6), 90 90, 95.7658 (18), 90 90, 90, 90
V3) 1324.49 (18) 1741.08 (6) 1582.4 (2)
Z 4 4 4
Radiation type Mo Kα Cu Kα Mo Kα
μ (mm−1) 0.09 3.37 0.09
Crystal size (mm) 0.18 × 0.17 × 0.16 0.20 × 0.19 × 0.10 0.32 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku Mercury275R CCD Rigaku Saturn 944+ CCD Rigaku Mercury275R CCD
Absorption correction Multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.705, 1.000 0.823, 1.000 0.815, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17742, 2341, 1835 59208, 3075, 3000 26669, 3664, 3410
Rint 0.131 0.040 0.045
(sin θ/λ)max−1) 0.595 0.596 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.230, 1.09 0.027, 0.062, 1.10 0.050, 0.128, 1.15
No. of reflections 2341 3075 3664
No. of parameters 156 209 201
No. of restraints 0 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.27 0.51, −0.52 0.26, −0.20
Absolute structure Flack x determined using 1473 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.4 (5)
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 and SHELXL2013/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CIFTAB2014/2 (Sheldrick, 2014[Sheldrick, G. M. (2014). CIFTAB2014/2. University of Göttingen, Germany.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClear-SM Expert (Rigaku, 2011). Cell refinement: CrystalClear-SM Expert (Rigaku, 2011) for (I), (III); CrysAlis PRO (Rigaku OD, 2015) for (II). Data reduction: CrystalClear-SM Expert (Rigaku, 2011) for (I), (III); CrysAlis PRO (Rigaku OD, 2015) for (II). For all structures, program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009). Software used to prepare material for publication: CIFTAB2014/2 (Sheldrick, 2014) for (I), (III); SHELXL2013/2 (Sheldrick, 2015b) for (II).

trans-4,8-Dimethyl-1,10-dioxacyclotridec-5-ene-2,9-dione (I) top
Crystal data top
C13H20O4F(000) = 520
Mr = 240.29Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0547 (6) ÅCell parameters from 687 reflections
b = 18.7875 (14) Åθ = 2.2–27.9°
c = 8.9660 (7) ŵ = 0.09 mm1
β = 102.530 (6)°T = 93 K
V = 1324.49 (18) Å3Prism, colorless
Z = 40.18 × 0.17 × 0.16 mm
Data collection top
Rigaku Mercury275R CCD
diffractometer
2341 independent reflections
Radiation source: Sealed Tube1835 reflections with I > 2σ(I)
Detector resolution: 6.8 pixels mm-1Rint = 0.131
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 99
Tmin = 0.705, Tmax = 1.000k = 2222
17742 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1386P)2 + 0.4739P]
where P = (Fo2 + 2Fc2)/3
2341 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5209 (3)0.33574 (11)0.6049 (2)0.0443 (6)
O100.8844 (3)0.38480 (10)0.5944 (2)0.0426 (6)
O140.3382 (3)0.42433 (13)0.5285 (3)0.0583 (7)
O170.9157 (3)0.31352 (11)0.4047 (2)0.0441 (6)
C20.3918 (4)0.36655 (17)0.5079 (3)0.0419 (7)
C30.3224 (4)0.32154 (16)0.3709 (3)0.0409 (7)
H3A0.20540.30640.37360.049*
H3B0.39320.27820.37400.049*
C40.3199 (4)0.36195 (15)0.2221 (3)0.0387 (7)
H40.27430.41080.23170.046*
C50.4992 (3)0.36868 (15)0.1969 (3)0.0378 (7)
H50.54690.32820.15840.045*
C60.5933 (4)0.42558 (15)0.2237 (3)0.0372 (7)
H60.54320.46650.25800.045*
C70.7736 (4)0.43256 (15)0.2055 (3)0.0384 (7)
H70.80390.38910.15260.046*
C80.8940 (4)0.43846 (15)0.3605 (3)0.0401 (7)
H8A1.00970.44940.34600.048*
H8B0.85730.47840.41790.048*
C90.8998 (3)0.37194 (15)0.4516 (3)0.0369 (7)
C110.8732 (4)0.32312 (17)0.6890 (3)0.0450 (8)
H11A0.98840.30770.74220.054*
H11B0.81740.28320.62520.054*
C120.7703 (4)0.34428 (18)0.8036 (3)0.0464 (8)
H12A0.74490.30130.85840.056*
H12B0.83870.37680.87970.056*
C130.6064 (4)0.38033 (17)0.7309 (3)0.0460 (8)
H13A0.53410.38610.80640.055*
H13B0.62930.42800.69280.055*
C150.2026 (4)0.32451 (17)0.0917 (4)0.0468 (8)
H15A0.24310.27580.08300.070*
H15B0.20100.35030.00370.070*
H15C0.08740.32310.11090.070*
C160.7922 (4)0.49735 (17)0.1094 (4)0.0498 (8)
H16A0.76280.54030.16020.075*
H16B0.71590.49280.00870.075*
H16C0.91000.50080.09740.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0427 (12)0.0569 (13)0.0360 (11)0.0046 (9)0.0147 (10)0.0001 (9)
O100.0475 (12)0.0532 (12)0.0304 (11)0.0040 (9)0.0158 (9)0.0037 (8)
O140.0538 (14)0.0732 (16)0.0481 (14)0.0204 (12)0.0117 (11)0.0121 (11)
O170.0451 (12)0.0523 (13)0.0410 (12)0.0014 (9)0.0231 (10)0.0055 (9)
C20.0361 (15)0.0590 (19)0.0358 (16)0.0042 (13)0.0194 (13)0.0013 (13)
C30.0316 (15)0.0555 (18)0.0400 (17)0.0003 (12)0.0176 (13)0.0009 (12)
C40.0322 (15)0.0514 (17)0.0364 (15)0.0003 (12)0.0161 (12)0.0003 (12)
C50.0335 (15)0.0539 (17)0.0308 (14)0.0020 (12)0.0175 (12)0.0032 (12)
C60.0385 (15)0.0481 (16)0.0297 (14)0.0040 (12)0.0179 (12)0.0002 (11)
C70.0354 (15)0.0519 (17)0.0337 (15)0.0015 (12)0.0202 (12)0.0026 (11)
C80.0352 (15)0.0516 (17)0.0391 (16)0.0020 (12)0.0205 (13)0.0053 (12)
C90.0248 (13)0.0525 (18)0.0360 (15)0.0018 (11)0.0120 (12)0.0047 (12)
C110.0493 (18)0.0552 (18)0.0341 (16)0.0086 (13)0.0170 (14)0.0017 (12)
C120.0477 (18)0.063 (2)0.0306 (15)0.0076 (14)0.0136 (14)0.0013 (13)
C130.0502 (18)0.0589 (19)0.0320 (15)0.0054 (14)0.0161 (14)0.0041 (12)
C150.0391 (17)0.0627 (19)0.0418 (17)0.0038 (14)0.0161 (14)0.0009 (14)
C160.0486 (19)0.065 (2)0.0422 (17)0.0030 (15)0.0247 (16)0.0033 (14)
Geometric parameters (Å, º) top
O1—C21.334 (4)C7—H71.0000
O1—C131.454 (4)C8—C91.488 (4)
O10—C91.335 (3)C8—H8A0.9900
O10—C111.450 (4)C8—H8B0.9900
O14—C21.197 (4)C11—C121.506 (4)
O17—C91.192 (3)C11—H11A0.9900
C2—C31.496 (4)C11—H11B0.9900
C3—C41.532 (4)C12—C131.501 (4)
C3—H3A0.9900C12—H12A0.9900
C3—H3B0.9900C12—H12B0.9900
C4—C151.508 (4)C13—H13A0.9900
C4—C51.515 (4)C13—H13B0.9900
C4—H41.0000C15—H15A0.9800
C5—C61.302 (4)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—C71.502 (4)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.516 (4)C16—H16C0.9800
C7—C161.517 (4)
C2—O1—C13115.3 (2)H8A—C8—H8B107.9
C9—O10—C11116.5 (2)O17—C9—O10123.0 (3)
O14—C2—O1123.3 (3)O17—C9—C8124.9 (3)
O14—C2—C3123.8 (3)O10—C9—C8112.1 (2)
O1—C2—C3112.9 (3)O10—C11—C12107.5 (2)
C2—C3—C4111.5 (2)O10—C11—H11A110.2
C2—C3—H3A109.3C12—C11—H11A110.2
C4—C3—H3A109.3O10—C11—H11B110.2
C2—C3—H3B109.3C12—C11—H11B110.2
C4—C3—H3B109.3H11A—C11—H11B108.5
H3A—C3—H3B108.0C13—C12—C11112.7 (2)
C15—C4—C5112.4 (2)C13—C12—H12A109.1
C15—C4—C3109.4 (2)C11—C12—H12A109.1
C5—C4—C3109.8 (2)C13—C12—H12B109.1
C15—C4—H4108.4C11—C12—H12B109.1
C5—C4—H4108.4H12A—C12—H12B107.8
C3—C4—H4108.4O1—C13—C12107.5 (2)
C6—C5—C4125.2 (2)O1—C13—H13A110.2
C6—C5—H5117.4C12—C13—H13A110.2
C4—C5—H5117.4O1—C13—H13B110.2
C5—C6—C7126.1 (3)C12—C13—H13B110.2
C5—C6—H6117.0H13A—C13—H13B108.5
C7—C6—H6117.0C4—C15—H15A109.5
C6—C7—C8110.4 (2)C4—C15—H15B109.5
C6—C7—C16110.4 (2)H15A—C15—H15B109.5
C8—C7—C16109.8 (2)C4—C15—H15C109.5
C6—C7—H7108.7H15A—C15—H15C109.5
C8—C7—H7108.7H15B—C15—H15C109.5
C16—C7—H7108.7C7—C16—H16A109.5
C9—C8—C7112.3 (2)C7—C16—H16B109.5
C9—C8—H8A109.1H16A—C16—H16B109.5
C7—C8—H8A109.1C7—C16—H16C109.5
C9—C8—H8B109.1H16A—C16—H16C109.5
C7—C8—H8B109.1H16B—C16—H16C109.5
C13—O1—C2—O146.6 (4)C6—C7—C8—C966.3 (3)
C13—O1—C2—C3173.1 (2)C16—C7—C8—C9171.8 (2)
O14—C2—C3—C453.8 (4)C11—O10—C9—O175.1 (4)
O1—C2—C3—C4125.8 (2)C11—O10—C9—C8174.7 (2)
C2—C3—C4—C15162.7 (2)C7—C8—C9—O1747.6 (4)
C2—C3—C4—C573.6 (3)C7—C8—C9—O10132.2 (2)
C15—C4—C5—C6136.5 (3)C9—O10—C11—C12151.1 (3)
C3—C4—C5—C6101.5 (3)O10—C11—C12—C1349.6 (4)
C4—C5—C6—C7177.4 (3)C2—O1—C13—C12166.3 (2)
C5—C6—C7—C8109.7 (3)C11—C12—C13—O150.5 (4)
C5—C6—C7—C16128.7 (3)
cis-4-(4-Bromophenyl)-13-methyl-1,10-dioxacyclotridec-5-ene-2,9-dione (II) top
Crystal data top
C18H21BrO4F(000) = 784
Mr = 381.26Dx = 1.454 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 15.3128 (3) ÅCell parameters from 41470 reflections
b = 5.55594 (11) Åθ = 2.1–66.6°
c = 20.5689 (4) ŵ = 3.37 mm1
β = 95.7658 (18)°T = 93 K
V = 1741.08 (6) Å3Block, colorless
Z = 40.20 × 0.19 × 0.10 mm
Data collection top
Rigaku Saturn 944+ CCD
diffractometer
3075 independent reflections
Radiation source: microfocus rotating anode3000 reflections with I > 2σ(I)
Detector resolution: 22.2 pixels mm-1Rint = 0.040
ω scansθmax = 66.8°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1818
Tmin = 0.823, Tmax = 1.000k = 66
59208 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0186P)2 + 2.082P]
where P = (Fo2 + 2Fc2)/3
3075 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.67994 (2)1.25106 (4)0.26935 (2)0.02712 (8)
O10.27479 (8)0.5670 (2)0.52299 (6)0.0222 (3)
O100.08625 (9)0.6437 (3)0.45484 (7)0.0297 (3)
O150.32471 (11)0.2793 (3)0.45930 (8)0.0361 (4)
O220.08714 (12)1.0133 (3)0.40964 (8)0.0466 (4)
C20.32629 (13)0.4847 (4)0.47904 (9)0.0246 (4)
C30.38595 (13)0.6777 (4)0.45684 (9)0.0253 (4)
H3A0.44700.64800.47590.030*
H3B0.36740.83690.47210.030*
C40.38196 (12)0.6768 (4)0.38145 (9)0.0245 (4)
H40.38630.50580.36690.029*
C50.29466 (13)0.7741 (4)0.35257 (9)0.0271 (4)
H50.28470.94220.35590.032*
C60.23075 (14)0.6403 (4)0.32272 (10)0.0311 (5)
H60.24160.47330.31770.037*
C70.14240 (14)0.7363 (4)0.29646 (10)0.0334 (5)
H7A0.12720.67400.25170.040*
H7B0.14520.91400.29400.040*
C80.07030 (13)0.6635 (5)0.33969 (10)0.0339 (5)
H8A0.01200.70110.31670.041*
H8B0.07310.48790.34780.041*
C90.08167 (14)0.7959 (4)0.40389 (11)0.0316 (5)
C110.10483 (14)0.7529 (4)0.51898 (10)0.0313 (5)
H11A0.05120.82890.53280.038*
H11B0.15060.87820.51780.038*
C120.13630 (13)0.5550 (4)0.56615 (9)0.0275 (4)
H12A0.08580.45100.57370.033*
H12B0.15820.62860.60850.033*
C130.20832 (12)0.3996 (4)0.54275 (9)0.0231 (4)
H130.18400.30310.50410.028*
C140.24961 (14)0.2320 (4)0.59525 (10)0.0290 (5)
H14A0.27940.32700.63100.043*
H14B0.29230.12750.57670.043*
H14C0.20380.13310.61200.043*
C160.45741 (12)0.8154 (4)0.35657 (9)0.0213 (4)
C170.48886 (12)1.0298 (4)0.38536 (9)0.0239 (4)
H170.46421.08880.42280.029*
C180.55561 (13)1.1589 (4)0.36022 (9)0.0240 (4)
H180.57691.30440.38030.029*
C190.59046 (12)1.0712 (4)0.30541 (9)0.0217 (4)
C200.56177 (13)0.8585 (4)0.27595 (9)0.0241 (4)
H200.58710.79980.23870.029*
C210.49528 (13)0.7323 (4)0.30178 (9)0.0239 (4)
H210.47500.58590.28180.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02422 (12)0.02824 (13)0.03034 (13)0.00158 (8)0.00974 (8)0.00148 (8)
O10.0221 (6)0.0222 (7)0.0230 (6)0.0016 (6)0.0054 (5)0.0003 (5)
O100.0267 (7)0.0356 (8)0.0258 (7)0.0019 (6)0.0033 (6)0.0008 (6)
O150.0445 (9)0.0246 (8)0.0427 (9)0.0027 (7)0.0216 (7)0.0000 (7)
O220.0656 (12)0.0349 (10)0.0395 (9)0.0091 (9)0.0059 (8)0.0002 (8)
C20.0246 (10)0.0255 (11)0.0242 (9)0.0040 (8)0.0048 (8)0.0025 (8)
C30.0221 (9)0.0291 (11)0.0250 (10)0.0001 (8)0.0035 (8)0.0038 (8)
C40.0230 (10)0.0272 (11)0.0237 (10)0.0003 (8)0.0041 (8)0.0008 (8)
C50.0228 (10)0.0340 (12)0.0245 (10)0.0015 (9)0.0030 (8)0.0028 (9)
C60.0331 (11)0.0340 (12)0.0264 (10)0.0019 (10)0.0037 (8)0.0019 (9)
C70.0300 (11)0.0421 (13)0.0268 (10)0.0016 (10)0.0027 (9)0.0007 (10)
C80.0237 (10)0.0476 (14)0.0292 (11)0.0040 (10)0.0039 (8)0.0011 (10)
C90.0222 (10)0.0410 (14)0.0315 (11)0.0060 (9)0.0026 (8)0.0016 (10)
C110.0299 (11)0.0360 (12)0.0277 (11)0.0070 (10)0.0017 (9)0.0070 (9)
C120.0235 (10)0.0353 (12)0.0241 (10)0.0010 (9)0.0047 (8)0.0027 (9)
C130.0241 (9)0.0239 (10)0.0214 (9)0.0055 (8)0.0034 (7)0.0004 (8)
C140.0356 (11)0.0287 (11)0.0225 (10)0.0013 (9)0.0023 (8)0.0034 (9)
C160.0194 (9)0.0227 (10)0.0217 (9)0.0025 (8)0.0014 (7)0.0035 (8)
C170.0234 (9)0.0260 (10)0.0230 (9)0.0023 (8)0.0065 (7)0.0018 (8)
C180.0246 (10)0.0220 (10)0.0254 (9)0.0000 (8)0.0025 (8)0.0018 (8)
C190.0181 (9)0.0245 (10)0.0226 (9)0.0021 (8)0.0024 (7)0.0043 (8)
C200.0264 (10)0.0257 (10)0.0207 (9)0.0044 (8)0.0052 (8)0.0004 (8)
C210.0270 (10)0.0221 (10)0.0223 (9)0.0002 (8)0.0013 (8)0.0006 (8)
Geometric parameters (Å, º) top
Br1—C191.9053 (19)C8—H8B0.9900
O1—C21.338 (2)C11—C121.513 (3)
O1—C131.466 (2)C11—H11A0.9900
O10—C91.343 (3)C11—H11B0.9900
O10—C111.454 (2)C12—C131.516 (3)
O15—C21.210 (3)C12—H12A0.9900
O22—C91.216 (3)C12—H12B0.9900
C2—C31.509 (3)C13—C141.515 (3)
C3—C41.546 (3)C13—H131.0000
C3—H3A0.9900C14—H14A0.9800
C3—H3B0.9900C14—H14B0.9800
C4—C51.508 (3)C14—H14C0.9800
C4—C161.519 (3)C16—C171.395 (3)
C4—H41.0000C16—C211.397 (3)
C5—C61.329 (3)C17—C181.390 (3)
C5—H50.9500C17—H170.9500
C6—C71.503 (3)C18—C191.384 (3)
C6—H60.9500C18—H180.9500
C7—C81.540 (3)C19—C201.379 (3)
C7—H7A0.9900C20—C211.385 (3)
C7—H7B0.9900C20—H200.9500
C8—C91.506 (3)C21—H210.9500
C8—H8A0.9900
C2—O1—C13116.31 (15)C12—C11—H11A110.2
C9—O10—C11115.81 (18)O10—C11—H11B110.2
O15—C2—O1123.73 (19)C12—C11—H11B110.2
O15—C2—C3124.10 (18)H11A—C11—H11B108.5
O1—C2—C3112.16 (17)C11—C12—C13113.90 (16)
C2—C3—C4109.70 (17)C11—C12—H12A108.8
C2—C3—H3A109.7C13—C12—H12A108.8
C4—C3—H3A109.7C11—C12—H12B108.8
C2—C3—H3B109.7C13—C12—H12B108.8
C4—C3—H3B109.7H12A—C12—H12B107.7
H3A—C3—H3B108.2O1—C13—C14109.62 (15)
C5—C4—C16111.08 (17)O1—C13—C12105.93 (16)
C5—C4—C3109.77 (16)C14—C13—C12112.85 (16)
C16—C4—C3112.43 (16)O1—C13—H13109.5
C5—C4—H4107.8C14—C13—H13109.5
C16—C4—H4107.8C12—C13—H13109.5
C3—C4—H4107.8C13—C14—H14A109.5
C6—C5—C4124.3 (2)C13—C14—H14B109.5
C6—C5—H5117.8H14A—C14—H14B109.5
C4—C5—H5117.8C13—C14—H14C109.5
C5—C6—C7124.2 (2)H14A—C14—H14C109.5
C5—C6—H6117.9H14B—C14—H14C109.5
C7—C6—H6117.9C17—C16—C21118.13 (18)
C6—C7—C8111.78 (18)C17—C16—C4122.13 (17)
C6—C7—H7A109.3C21—C16—C4119.71 (18)
C8—C7—H7A109.3C18—C17—C16121.21 (18)
C6—C7—H7B109.3C18—C17—H17119.4
C8—C7—H7B109.3C16—C17—H17119.4
H7A—C7—H7B107.9C19—C18—C17118.67 (19)
C9—C8—C7110.59 (18)C19—C18—H18120.7
C9—C8—H8A109.5C17—C18—H18120.7
C7—C8—H8A109.5C20—C19—C18121.85 (18)
C9—C8—H8B109.5C20—C19—Br1119.21 (14)
C7—C8—H8B109.5C18—C19—Br1118.94 (15)
H8A—C8—H8B108.1C19—C20—C21118.62 (18)
O22—C9—O10123.5 (2)C19—C20—H20120.7
O22—C9—C8124.8 (2)C21—C20—H20120.7
O10—C9—C8111.6 (2)C20—C21—C16121.52 (19)
O10—C11—C12107.42 (17)C20—C21—H21119.2
O10—C11—H11A110.2C16—C21—H21119.2
C13—O1—C2—O155.6 (3)C2—O1—C13—C12155.41 (15)
C13—O1—C2—C3174.13 (15)C11—C12—C13—O150.0 (2)
O15—C2—C3—C447.6 (3)C11—C12—C13—C14169.98 (18)
O1—C2—C3—C4132.13 (17)C5—C4—C16—C1784.5 (2)
C2—C3—C4—C571.6 (2)C3—C4—C16—C1738.9 (3)
C2—C3—C4—C16164.23 (16)C5—C4—C16—C2193.3 (2)
C16—C4—C5—C6128.0 (2)C3—C4—C16—C21143.29 (18)
C3—C4—C5—C6107.0 (2)C21—C16—C17—C180.4 (3)
C4—C5—C6—C7177.34 (19)C4—C16—C17—C18177.39 (18)
C5—C6—C7—C8105.8 (3)C16—C17—C18—C190.3 (3)
C6—C7—C8—C970.3 (3)C17—C18—C19—C201.1 (3)
C11—O10—C9—O224.3 (3)C17—C18—C19—Br1178.45 (14)
C11—O10—C9—C8174.89 (16)C18—C19—C20—C211.0 (3)
C7—C8—C9—O2254.0 (3)Br1—C19—C20—C21178.54 (14)
C7—C8—C9—O10125.2 (2)C19—C20—C21—C160.2 (3)
C9—O10—C11—C12161.83 (17)C17—C16—C21—C200.5 (3)
O10—C11—C12—C1349.7 (2)C4—C16—C21—C20177.35 (18)
C2—O1—C13—C1482.6 (2)
trans-11-Methyl-4-phenyl-1,10-dioxacyclotridec-5-ene-2,9-dione (III) top
Crystal data top
C18H22O4Dx = 1.269 Mg m3
Mr = 302.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 576 reflections
a = 11.2952 (8) Åθ = 2.6–27.5°
b = 20.9595 (15) ŵ = 0.09 mm1
c = 6.6840 (5) ÅT = 93 K
V = 1582.4 (2) Å3Prism, colorless
Z = 40.32 × 0.20 × 0.20 mm
F(000) = 648
Data collection top
Rigaku Mercury275R CCD
diffractometer
3664 independent reflections
Radiation source: Sealed Tube3410 reflections with I > 2σ(I)
Detector resolution: 6.8 pixels mm-1Rint = 0.045
ω scansθmax = 27.7°, θmin = 2.7°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1414
Tmin = 0.815, Tmax = 1.000k = 2727
26669 measured reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.8966P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.26 e Å3
3664 reflectionsΔρmin = 0.20 e Å3
201 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.012 (3)
Primary atom site location: dualAbsolute structure: Flack x determined using 1473 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.4 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15097 (18)0.56820 (10)0.5040 (3)0.0233 (4)
O100.08596 (17)0.70330 (9)0.6331 (3)0.0221 (4)
O140.13825 (19)0.55047 (11)0.1764 (4)0.0299 (5)
O150.2504 (2)0.73924 (11)0.7780 (4)0.0338 (5)
C20.1964 (2)0.55372 (12)0.3251 (5)0.0227 (6)
C30.3271 (2)0.54399 (13)0.3346 (5)0.0238 (6)
H3A0.34770.50270.27180.029*
H3B0.35280.54270.47610.029*
C40.3912 (2)0.59802 (13)0.2261 (4)0.0221 (6)
H40.35470.60310.09070.026*
C50.3778 (2)0.65980 (13)0.3371 (5)0.0217 (5)
H50.41040.66270.46790.026*
C60.3236 (2)0.71018 (13)0.2639 (5)0.0228 (5)
H60.28800.70670.13560.027*
C70.3150 (3)0.77242 (14)0.3707 (5)0.0249 (6)
H7A0.33130.80740.27510.030*
H7B0.37610.77400.47670.030*
C80.1937 (3)0.78283 (13)0.4646 (5)0.0236 (6)
H8A0.18500.82800.50580.028*
H8B0.13090.77300.36600.028*
C90.1814 (3)0.74016 (13)0.6434 (5)0.0231 (6)
C110.0719 (2)0.65729 (13)0.7937 (4)0.0227 (6)
H110.15110.63950.83090.027*
C120.0051 (3)0.60478 (14)0.7118 (5)0.0249 (6)
H12A0.00090.56790.80390.030*
H12B0.08820.61990.71060.030*
C130.0263 (2)0.58247 (14)0.5055 (5)0.0252 (6)
H13A0.02000.54390.47090.030*
H13B0.00820.61610.40630.030*
C150.5218 (2)0.58492 (13)0.1992 (4)0.0215 (5)
C160.5869 (2)0.54591 (13)0.3230 (5)0.0238 (6)
H160.54770.52300.42620.029*
C170.7081 (3)0.53929 (14)0.3008 (5)0.0261 (6)
H170.75150.51240.38850.031*
C180.7656 (2)0.57231 (13)0.1494 (5)0.0258 (6)
H180.84870.56780.13180.031*
C190.7017 (3)0.61141 (14)0.0255 (5)0.0260 (6)
H190.74110.63420.07780.031*
C200.5811 (3)0.61804 (14)0.0487 (5)0.0250 (6)
H200.53820.64540.03840.030*
C210.0176 (3)0.68939 (15)0.9724 (5)0.0283 (6)
H21A0.07120.72261.02180.043*
H21B0.00410.65781.07810.043*
H21C0.05810.70870.93400.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (9)0.0267 (10)0.0231 (10)0.0027 (8)0.0020 (8)0.0009 (8)
O100.0216 (9)0.0228 (9)0.0219 (10)0.0017 (7)0.0008 (8)0.0030 (8)
O140.0291 (11)0.0330 (11)0.0276 (11)0.0007 (9)0.0002 (10)0.0049 (9)
O150.0318 (11)0.0428 (12)0.0268 (11)0.0113 (10)0.0055 (9)0.0017 (10)
C20.0238 (13)0.0185 (12)0.0258 (14)0.0023 (10)0.0036 (12)0.0009 (11)
C30.0218 (13)0.0204 (12)0.0291 (14)0.0008 (10)0.0050 (12)0.0017 (11)
C40.0212 (12)0.0207 (12)0.0244 (14)0.0001 (10)0.0024 (11)0.0007 (10)
C50.0213 (12)0.0223 (12)0.0215 (12)0.0002 (10)0.0023 (11)0.0001 (10)
C60.0230 (12)0.0234 (12)0.0221 (13)0.0003 (10)0.0019 (11)0.0012 (11)
C70.0247 (13)0.0198 (12)0.0302 (16)0.0003 (11)0.0055 (12)0.0009 (11)
C80.0229 (13)0.0206 (12)0.0273 (14)0.0020 (10)0.0011 (11)0.0026 (11)
C90.0235 (13)0.0207 (13)0.0249 (13)0.0006 (10)0.0016 (11)0.0002 (11)
C110.0219 (12)0.0245 (13)0.0218 (14)0.0006 (10)0.0012 (11)0.0056 (11)
C120.0243 (13)0.0242 (13)0.0262 (14)0.0011 (11)0.0046 (11)0.0028 (11)
C130.0212 (13)0.0274 (13)0.0272 (15)0.0002 (10)0.0034 (12)0.0020 (12)
C150.0218 (12)0.0207 (12)0.0221 (13)0.0006 (10)0.0017 (11)0.0015 (10)
C160.0234 (13)0.0250 (13)0.0230 (13)0.0007 (10)0.0005 (12)0.0018 (11)
C170.0243 (13)0.0255 (13)0.0284 (15)0.0016 (10)0.0007 (11)0.0017 (11)
C180.0204 (12)0.0249 (13)0.0321 (15)0.0013 (10)0.0014 (12)0.0060 (12)
C190.0259 (13)0.0244 (13)0.0278 (14)0.0030 (11)0.0050 (12)0.0005 (11)
C200.0260 (13)0.0226 (12)0.0264 (14)0.0003 (11)0.0042 (11)0.0009 (11)
C210.0313 (14)0.0307 (14)0.0230 (14)0.0012 (12)0.0039 (12)0.0004 (12)
Geometric parameters (Å, º) top
O1—C21.336 (4)C11—C211.502 (4)
O1—C131.440 (3)C11—C121.506 (4)
O10—C91.328 (3)C11—H111.0000
O10—C111.452 (3)C12—C131.498 (4)
O14—C21.194 (4)C12—H12A0.9900
O15—C91.191 (4)C12—H12B0.9900
C2—C31.491 (4)C13—H13A0.9900
C3—C41.527 (4)C13—H13B0.9900
C3—H3A0.9900C15—C161.376 (4)
C3—H3B0.9900C15—C201.394 (4)
C4—C51.500 (4)C16—C171.383 (4)
C4—C151.512 (4)C16—H160.9500
C4—H41.0000C17—C181.388 (4)
C5—C61.315 (4)C17—H170.9500
C5—H50.9500C18—C191.370 (4)
C6—C71.490 (4)C18—H180.9500
C6—H60.9500C19—C201.378 (4)
C7—C81.523 (4)C19—H190.9500
C7—H7A0.9900C20—H200.9500
C7—H7B0.9900C21—H21A0.9800
C8—C91.499 (4)C21—H21B0.9800
C8—H8A0.9900C21—H21C0.9800
C8—H8B0.9900
C2—O1—C13115.4 (2)C21—C11—C12112.3 (2)
C9—O10—C11115.9 (2)O10—C11—H11109.5
O14—C2—O1123.2 (3)C21—C11—H11109.5
O14—C2—C3124.9 (3)C12—C11—H11109.5
O1—C2—C3111.9 (3)C13—C12—C11115.2 (2)
C2—C3—C4110.4 (2)C13—C12—H12A108.5
C2—C3—H3A109.6C11—C12—H12A108.5
C4—C3—H3A109.6C13—C12—H12B108.5
C2—C3—H3B109.6C11—C12—H12B108.5
C4—C3—H3B109.6H12A—C12—H12B107.5
H3A—C3—H3B108.1O1—C13—C12107.6 (2)
C5—C4—C15108.3 (2)O1—C13—H13A110.2
C5—C4—C3110.9 (2)C12—C13—H13A110.2
C15—C4—C3112.6 (2)O1—C13—H13B110.2
C5—C4—H4108.3C12—C13—H13B110.2
C15—C4—H4108.3H13A—C13—H13B108.5
C3—C4—H4108.3C16—C15—C20118.2 (3)
C6—C5—C4123.8 (3)C16—C15—C4123.9 (3)
C6—C5—H5118.1C20—C15—C4117.7 (2)
C4—C5—H5118.1C15—C16—C17121.6 (3)
C5—C6—C7123.7 (3)C15—C16—H16119.2
C5—C6—H6118.1C17—C16—H16119.2
C7—C6—H6118.1C16—C17—C18119.4 (3)
C6—C7—C8112.5 (2)C16—C17—H17120.3
C6—C7—H7A109.1C18—C17—H17120.3
C8—C7—H7A109.1C19—C18—C17119.5 (3)
C6—C7—H7B109.1C19—C18—H18120.2
C8—C7—H7B109.1C17—C18—H18120.2
H7A—C7—H7B107.8C18—C19—C20120.8 (3)
C9—C8—C7109.1 (2)C18—C19—H19119.6
C9—C8—H8A109.9C20—C19—H19119.6
C7—C8—H8A109.9C19—C20—C15120.4 (3)
C9—C8—H8B109.9C19—C20—H20119.8
C7—C8—H8B109.9C15—C20—H20119.8
H8A—C8—H8B108.3C11—C21—H21A109.5
O15—C9—O10124.1 (3)C11—C21—H21B109.5
O15—C9—C8123.5 (3)H21A—C21—H21B109.5
O10—C9—C8112.4 (3)C11—C21—H21C109.5
O10—C11—C21109.6 (2)H21A—C21—H21C109.5
O10—C11—C12106.2 (2)H21B—C21—H21C109.5
C13—O1—C2—O142.5 (4)O10—C11—C12—C1344.7 (3)
C13—O1—C2—C3176.1 (2)C21—C11—C12—C13164.5 (2)
O14—C2—C3—C467.8 (4)C2—O1—C13—C12173.5 (2)
O1—C2—C3—C4110.8 (3)C11—C12—C13—O151.2 (3)
C2—C3—C4—C568.5 (3)C5—C4—C15—C1696.9 (3)
C2—C3—C4—C15169.9 (2)C3—C4—C15—C1626.2 (4)
C15—C4—C5—C6118.9 (3)C5—C4—C15—C2078.3 (3)
C3—C4—C5—C6117.0 (3)C3—C4—C15—C20158.6 (3)
C4—C5—C6—C7177.2 (3)C20—C15—C16—C170.1 (4)
C5—C6—C7—C8102.7 (3)C4—C15—C16—C17175.1 (3)
C6—C7—C8—C972.7 (3)C15—C16—C17—C180.5 (4)
C11—O10—C9—O153.5 (4)C16—C17—C18—C190.6 (4)
C11—O10—C9—C8175.8 (2)C17—C18—C19—C200.4 (5)
C7—C8—C9—O1554.4 (4)C18—C19—C20—C150.1 (5)
C7—C8—C9—O10125.0 (3)C16—C15—C20—C190.2 (4)
C9—O10—C11—C2182.1 (3)C4—C15—C20—C19175.6 (3)
C9—O10—C11—C12156.3 (2)
Substitution patterns and refcodes for [13]-macrodilactones top
Cpd. = compound identifier in Fig. 3, Conf. = conformer adopted in the crystal structure and Subs. = substituted positions on [13]-macrodilactone.
EntryCpd.Conf.Subs.cis/transRefcodeCitation
1aribbon11,13transURILEOMa & Peczuh (2013)
2bribbon11 (mono)KOHLAVFyvie & Peczuh (2008a)
3cribbon3 (mono)XUFKOAMagpusao, Rutledge et al. (2015)
4ribbonD-glucotransXOCWIWFyvie & Peczuh (2008b)
5dribbon3,8transXUFLANMagpusao, Rutledge et al. (2016)
6eribbonIJEHAIMagpusao, Rutledge et al. (2016)
7fribbon3,11cisIJEHOWMagpusao, Rutledge et al. (2016)
8gribbon4,13cisIIThis work (CCDC 1944827)
9hribbon4,8transIThis work (CCDC 1944826)
10iribbon4 (mono)ECOYEDRutledge, Hamlin et al. (2017)
11jribbon3,13transIJEHEMMagpusao, Rutledge et al. (2016)
10other4 (mono)ECOYED
12other11,13cisURILAKMa & Peczuh (2013)
3cother3 (mono)XUFKOA
13other11,13cisURILAKMa & Peczuh (2013)
14other3,11transIJEHUCMagpusao, Rutledge et al. (2016)
15kribbon4,11transIIIThis work (CCDC 1944828)
16other3,8cisXUFKUGMagpusao, Rutledge et al. (2016)
17other8,11cisIJEHIQMagpusao, Rutledge et al. (2016)
 

Acknowledgements

The authors thank Trevor Hamlin for helpful conversations.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 0957626).

References

First citationBochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., Rinaldo, D., Halls, M. D., Zhang, J. & Friesner, R. A. (2013). Int. J. Quantum Chem. 113, 2110–2142.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDriggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. (2008). Nat. Rev. Drug Discov. 7, 608–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEliel, E. L. & Wilen, S. H. (1994). Chirality in Molecules Devoid of Chiral Centers, in Stereochemistry of Organic Compounds, pp 1172–1175. New York: John Wiley & Sons.  Google Scholar
First citationFyvie, W. S. & Peczuh, M. W. (2008a). Chem. Commun. pp. 4028–4030.  Web of Science CSD CrossRef Google Scholar
First citationFyvie, W. S. & Peczuh, M. W. (2008b). J. Org. Chem. 73, 3626–3629.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrimme, S. (2011). WIREs Comput. Mol. Sci. 1, 211–228.  Web of Science CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLarsen, E. M., Wilson, M. R. & Taylor, R. E. (2015). Nat. Prod. Rep. 32, 1183–1206.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMa, J. & Peczuh, M. W. (2013). J. Org. Chem. 78, 7414–7422.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagpusao, A. N., Rutledge, K., Mercado, B. & Peczuh, M. W. (2015). Org. Biomol. Chem. 13, 5086–5089.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMagpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). Chem. Eur. J. 22, 6001–6011.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationRutledge, K. M., Hamlin, T. A., Baldisseri, D., Bickelhaupt, F. M. & Peczuh, M. W. (2017). Chem. Asian J. 12, 2623–2633.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2014). CIFTAB2014/2. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWhitty, A., Viarengo, L. A. & Zhong, M. (2017). Org. Biomol. Chem. 15, 7729–7735.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWhitty, A., Zhong, M., Viarengo, L. A., Beglov, D., Hall, D. R. & Vajda, S. (2016). Drug Discovery Today, 21, 712–717.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYudin, A. K. (2015). Chem. Sci. 6, 30–49.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds