research communications
Synthesis and characterization of a tert-butyl ester-substituted titanocene dichloride: t-BuOOCCp2TiCl2
aDepartment of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA, and bDepartment of Chemistry, Hunter Laboratories, Clemson University, Clemson, SC 29634, USA
*Correspondence e-mail: paul.wagenknecht@furman.edu
Bis[η5-(tert-butoxycarbonyl)cyclopentadienyl]dichloridotitanium(IV), [Ti(C10H13O2)2Cl2], was synthesized from LiCpCOOt-Bu using TiCl4, and was characterized by single-crystal X-ray diffraction and 1H NMR spectroscopy. The distorted tetrahedral geometry about the central titanium atom is relatively unchanged compared to Cp2TiCl2. The complex exhibits elongation of the titanium–cyclopentadienyl centroid distances [2.074 (3) and 2.070 (3) Å] and a contraction of the titanium–chlorine bond lengths [2.3222 (10) Å and 2.3423 (10) Å] relative to Cp2TiCl2. The dihedral angle formed by the planes of the Cp rings [52.56 (13)°] is smaller than seen in Cp2TiCl2. Both ester groups extend from the same side of the Cp rings, and occur on the same side of the complex as the chlorido ligands. The complex may serve as a convenient synthon for titanocene complexes with carboxylate anchoring groups for binding to metal oxide substrates.
Keywords: crystal structure; titanocene; carboxylate anchoring group; metallocene.
CCDC reference: 2025817
1. Chemical context
Molecules exhibiting charge-separated excited states have been shown to be useful in et al., 2013), dye-sensitized photoelectrochemical cells (Hammarström, 2015; Kalyanasundaram & Grätzel, 1998) and dye-sensitized solar cells (DSSCs) (Ji et al., 2018; Kalyanasundaram & Grätzel, 1998). One architecture used in compounds of this type is the Donor–π bridge–Acceptor (D–π–A) architecture, where absorption of a photon results in the transfer of charge from an electron-rich donor portion of the molecule to an electron-poor acceptor portion through a conjugated π-linkage (Ji et al., 2018). Alkynyl titanocenes utilizing titanocene acceptors and ferrocenyl or arylamine donors are promising candidates for sensitizers in DSSCs (Turlington et al., 2016; Pienkos et al., 2016, 2018; Livshits et al., 2019). In photovoltaic technologies, the sensitizer must be attached to a semiconductor substrate, commonly TiO2, using an anchoring group exhibiting a high binding affinity for the substrate (Zhang & Cole, 2015; Kalyanasundaram & Grätzel, 1998). The most common anchoring group used with TiO2 semiconductors is the carboxylate, chosen for its strong binding and conjugated π-electron system (Galoppini, 2004). Anchoring groups with conjugated π systems allow for improved device efficiency in DSSCs compared to anchoring groups with aliphatic or unconjugated linkages (Zhang & Cole, 2015). In alkynyl titanocene sensitizers, the alkynyl–titanium bond is sensitive to acid hydrolysis. As a result, the carboxylate anchor must be masked with a protecting group to avoid carboxylic acid intermediates. Our research group has focused primarily on the tert-butyl protecting group, because t-butyl are relatively stable and have well documented deprotection strategies under mild conditions (Jung & Lyster, 1977; Theodorou et al., 2018; Shaw et al., 2008). Herein, we report the synthesis, crystallization, and structural analysis of a t-butyl ester substituted titanocene dichloride that will serve as a convenient synthon for D–π–A titanocenes with carboxylate anchoring groups.
(Prier2. Structural commentary
While many titanocene and metallocene compounds have been characterized by X-ray diffraction, structures of ester-substituted t-butyl ester-substituted complex t-BuOOCCp2TiCl2 (Fig. 1). Though the data pool is small, our findings follow trends seen in previously reported structures. In the of both vanadium and titanium, the addition of the ester shortens the metal–chlorine bond length by 0.02-0.04 Å [2.3222 (10) and 2.3423 (10) Å in the present titanocene] compared to the parent Cp2VCl2 (Tzavellas et al., 1996) and Cp2TiCl2 (Clearfield et al., 1975) complexes. A similar M—Cl bond contraction was not observed in the recent report of a titanocene with a bulky alkyl substituent appended to the Cp ring, (CpC(CH3)2CH2CH(CH3)2)2TiCl2 (Ceballos-Torres et al., 2019), suggesting that the change is likely due to the interplay of the electron-withdrawing nature of the ester and the π-donor character of the chlorido ligand. Furthermore, substitution at the Cp ring results in a slight elongation of the titanium–cyclopentadiene centroid distance [2.070 (3) and 2.074 (3) Å] by 0.011 to 0.015 Å in the ester-substituted titanocene here and as much as 0.016 Å in the alkyl substituted titanocene (Ceballos-Torres et al., 2019). However, this trend is not noticeable between ester-substituted and unsubstituted vanadocene dichloride (Klepalová et al., 2013; Tzavellas et al., 1996). Substitution of at the Cp ring has little effect on the bond angles formed about the central metal in both titanium and vanadium compounds, with a centroid—Ti—centroid angle of 129.90 (12)° and a Cl—Ti—Cl angle of 95.23 (4)° observed here. In titanocenes, substitution at the Cp ring results in a decrease of the dihedral angle formed between the planes of the two Cp rings. This angle is 58.5° in titanocene dichloride (Clearfield et al., 1975), but is 52.56 (13)° in this titanocene and 52.2° in the alkyl substituted titanocene (Ceballos-Torres et al., 2019). This trend is not observed between substituted and unsubstituted vanadocene dichloride, where the dihedral angle is approximately 48° for both (Tzavellas et al., 1996; Klepalová et al., 2013). The dihedral angle formed between the and their associated Cp rings differs more in the titanocene than in other ester-substituted In t-BuOOCCp2TiCl2, these two angles are 8.2 (6)° and 15.7 (3)°. In the other ester substituted the angles differ by less than a degree (18.37 and 18.37° in PhOOCCp2VCl2 and 10.78 and 11.36° in PhOOCCp2NbCl2) (Klepalová et al., 2013). The appended in t-BuOOCCp2TiCl2 extend from the same sides of both Cp rings, and occur on the same side of the complex as the chlorido ligands (Fig. 2). This is a similar arrangement to what occurs in EtOOCCp2NbBr2 and MeOOCCp2NbBr2·CH2Cl2, but differs from PhOOCCp2VCl2, PhOOCCp2NbCl2, and MeOOCCp2NbBr2, where the substituting are on opposing sides of their respective Cp rings, and also do not overlap with the halides (Klepalova et al., 2013).
are comparatively rare. Here we present the structure of the3. Supramolecular features
Intermolecular contact geometries are shown in Table 1. Neighboring molecules are connected along the c-axis direction via C9—H9⋯O1, C8—H8⋯Cl1, and C4—H4⋯Cl1 interactions to form chains (Fig. 3). Both Cp groups are angled toward the neighboring chlorine atom to enable these interactions. Neighboring molecules along the a-axis are connected in a dimerized fashion via C7—H7⋯Cl1 interactions. The resulting packing diagram is shown in Fig. 4.
4. Database survey
A CSD search revealed nearly 200 hits for metallocene dichloride complexes, where the two cyclopentadiene ligands were monosubstituted (CSD Version 5.41, Update 2, May 2020; Groom et al., 2016). Of these, only two, CSD entries CICPIP (vanadium) and CICPOV (niobium) are substituted by a protected carboxylate (Klepalová et al., 2013). Both of these utilize a phenyl-protecting group, and the carboxylate carbon is bound to the Cp ring, similar to the tert-butyl-protected titanocene of the present study. Methyl- and ethyl-protected carboxylate-substituted Cp ligands are reported in the niobium dibromide complexes CICPUB, CICQAI, and CICQEM (Klepalová et al., 2013).
5. Synthesis and crystallization
Lithium tert-butyl ester cyclopentadienide (Shaw et al., 2008) (2.0278 g, 11.78 mmol, 1 eq) was dissolved by the addition of THF (15 mL) under an argon atmosphere. The reaction solution was chilled to 195 K and 1 M TiCl4 solution in toluene (6 ml, 6 mmol, 0.5 eq) was added via syringe. The solution changed from pale yellow to red–brown. After 5 minutes, the reaction was allowed to gradually warm to room temperature and stirred overnight. Solid impurities were filtered from the reaction mixture and the solvent was removed from the filtrate. Pentane (5 mL) was added, the mixture was filtered, and the solid impurities were washed with pentane and toluene. The solvent was removed from the filtrate and the resulting red porous solid was dissolved in CH2Cl2 (3 mL), and pentane (50 mL) was added to the solution. The solution was filtered, and the filtrate immediately began to form a precipitate in the filter flask. The resulting suspension was filtered yielding a red–orange powder (0.2823 g, 5.3% yield). 1H NMR (400 MHz, C6D6) δ 6.95 (2H), 6.04 (2H), 1.42 (9H).
Single crystals suitable for X-ray analysis were grown by slow evaporation of a hexanes solution of the crude product, following the removal of solid impurities. The mixture was chilled to 243 K to encourage further crystallization.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in calculated positions using riding models, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, and C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl hydrogen atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2025817
https://doi.org/10.1107/S2056989020011834/pk2643sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020011834/pk2643Isup3.hkl
Data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ti(C10H13O2)2Cl2] | F(000) = 1872 |
Mr = 449.21 | Dx = 1.382 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 29.3802 (19) Å | Cell parameters from 8394 reflections |
b = 10.8106 (7) Å | θ = 2.5–27.5° |
c = 13.6002 (9) Å | µ = 0.67 mm−1 |
β = 91.214 (3)° | T = 100 K |
V = 4318.7 (5) Å3 | Column, orange |
Z = 8 | 0.21 × 0.04 × 0.04 mm |
Bruker D8 Venture Photon 2 diffractometer | 3053 reflections with I > 2σ(I) |
Radiation source: Incoatec IµS | Rint = 0.057 |
φ and ω scans | θmax = 25.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −35→35 |
Tmin = 0.923, Tmax = 1.000 | k = −13→13 |
18758 measured reflections | l = −16→16 |
4007 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + 22.4903P] where P = (Fo2 + 2Fc2)/3 |
4007 reflections | (Δ/σ)max = 0.001 |
250 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.39985 (2) | 0.57278 (5) | 0.53051 (4) | 0.01683 (15) | |
Cl1 | 0.44127 (3) | 0.55491 (8) | 0.38592 (6) | 0.0260 (2) | |
Cl2 | 0.33931 (3) | 0.67945 (8) | 0.45795 (7) | 0.0306 (2) | |
O1 | 0.32753 (8) | 0.3882 (2) | 0.32835 (17) | 0.0271 (6) | |
O2 | 0.27453 (7) | 0.4207 (2) | 0.44453 (16) | 0.0209 (5) | |
O3 | 0.49135 (8) | 0.8281 (2) | 0.41841 (17) | 0.0225 (5) | |
O4 | 0.42031 (7) | 0.9091 (2) | 0.43313 (16) | 0.0189 (5) | |
C1 | 0.34941 (11) | 0.4018 (3) | 0.4973 (2) | 0.0198 (7) | |
C2 | 0.39394 (11) | 0.3550 (3) | 0.4942 (3) | 0.0224 (7) | |
H2 | 0.408032 | 0.320221 | 0.438385 | 0.027* | |
C3 | 0.41406 (12) | 0.3689 (3) | 0.5889 (3) | 0.0249 (8) | |
H3 | 0.444351 | 0.347138 | 0.607694 | 0.030* | |
C4 | 0.38100 (12) | 0.4210 (3) | 0.6508 (3) | 0.0258 (8) | |
H4 | 0.384986 | 0.438050 | 0.718950 | 0.031* | |
C5 | 0.34166 (12) | 0.4429 (3) | 0.5947 (2) | 0.0213 (7) | |
H5 | 0.314378 | 0.479004 | 0.617586 | 0.026* | |
C6 | 0.44378 (11) | 0.7612 (3) | 0.5464 (2) | 0.0178 (7) | |
C7 | 0.47120 (11) | 0.6638 (3) | 0.5840 (2) | 0.0213 (7) | |
H7 | 0.499233 | 0.636551 | 0.558028 | 0.026* | |
C8 | 0.44979 (12) | 0.6147 (3) | 0.6661 (2) | 0.0224 (8) | |
H8 | 0.460880 | 0.548674 | 0.705931 | 0.027* | |
C9 | 0.40869 (12) | 0.6805 (3) | 0.6796 (2) | 0.0230 (7) | |
H9 | 0.387053 | 0.665144 | 0.729112 | 0.028* | |
C10 | 0.40562 (12) | 0.7728 (3) | 0.6066 (2) | 0.0196 (7) | |
H10 | 0.381985 | 0.832252 | 0.599266 | 0.024* | |
C11 | 0.31673 (11) | 0.4038 (3) | 0.4130 (2) | 0.0204 (7) | |
C12 | 0.23511 (11) | 0.4317 (3) | 0.3749 (2) | 0.0225 (7) | |
C13 | 0.24101 (13) | 0.5488 (4) | 0.3142 (3) | 0.0320 (9) | |
H13A | 0.244351 | 0.620112 | 0.358322 | 0.048* | |
H13B | 0.214238 | 0.560587 | 0.271051 | 0.048* | |
H13C | 0.268247 | 0.541147 | 0.274311 | 0.048* | |
C14 | 0.23064 (13) | 0.3153 (4) | 0.3134 (3) | 0.0340 (9) | |
H14A | 0.255778 | 0.311161 | 0.267262 | 0.051* | |
H14B | 0.201607 | 0.316717 | 0.276553 | 0.051* | |
H14C | 0.231637 | 0.242684 | 0.356518 | 0.051* | |
C15 | 0.19555 (12) | 0.4444 (4) | 0.4438 (3) | 0.0360 (10) | |
H15A | 0.194513 | 0.371980 | 0.487035 | 0.054* | |
H15B | 0.167056 | 0.450003 | 0.405259 | 0.054* | |
H15C | 0.199488 | 0.519323 | 0.483578 | 0.054* | |
C16 | 0.45507 (11) | 0.8354 (3) | 0.4583 (2) | 0.0194 (7) | |
C17 | 0.42166 (11) | 0.9853 (3) | 0.3432 (2) | 0.0195 (7) | |
C18 | 0.45974 (11) | 1.0803 (3) | 0.3530 (3) | 0.0229 (7) | |
H18A | 0.457586 | 1.122955 | 0.416323 | 0.034* | |
H18B | 0.456899 | 1.140675 | 0.299477 | 0.034* | |
H18C | 0.489240 | 1.038412 | 0.349535 | 0.034* | |
C19 | 0.42567 (12) | 0.9024 (3) | 0.2540 (2) | 0.0261 (8) | |
H19A | 0.455422 | 0.861398 | 0.255688 | 0.039* | |
H19B | 0.422678 | 0.952354 | 0.194043 | 0.039* | |
H19C | 0.401518 | 0.839944 | 0.254504 | 0.039* | |
C20 | 0.37525 (11) | 1.0482 (3) | 0.3442 (3) | 0.0249 (8) | |
H20A | 0.351282 | 0.985237 | 0.344936 | 0.037* | |
H20B | 0.371433 | 1.099788 | 0.285353 | 0.037* | |
H20C | 0.373206 | 1.100149 | 0.403042 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0185 (3) | 0.0171 (3) | 0.0147 (3) | −0.0010 (2) | −0.0016 (2) | 0.0002 (2) |
Cl1 | 0.0363 (5) | 0.0266 (5) | 0.0153 (4) | −0.0001 (4) | 0.0043 (4) | −0.0021 (3) |
Cl2 | 0.0258 (5) | 0.0207 (4) | 0.0448 (6) | −0.0005 (4) | −0.0140 (4) | 0.0035 (4) |
O1 | 0.0229 (13) | 0.0381 (15) | 0.0205 (13) | −0.0010 (11) | 0.0017 (11) | −0.0086 (11) |
O2 | 0.0158 (12) | 0.0252 (13) | 0.0217 (12) | −0.0017 (10) | 0.0014 (10) | 0.0020 (10) |
O3 | 0.0187 (12) | 0.0261 (13) | 0.0227 (12) | 0.0010 (10) | 0.0046 (10) | 0.0040 (10) |
O4 | 0.0189 (12) | 0.0203 (12) | 0.0174 (11) | −0.0005 (9) | 0.0000 (9) | 0.0033 (9) |
C1 | 0.0230 (17) | 0.0133 (16) | 0.0230 (17) | −0.0040 (13) | 0.0005 (14) | 0.0014 (13) |
C2 | 0.0239 (18) | 0.0147 (16) | 0.0288 (19) | 0.0003 (14) | 0.0032 (15) | −0.0022 (14) |
C3 | 0.0271 (19) | 0.0163 (17) | 0.0309 (19) | −0.0023 (14) | −0.0047 (16) | 0.0086 (15) |
C4 | 0.031 (2) | 0.0252 (19) | 0.0208 (17) | −0.0079 (16) | −0.0035 (15) | 0.0067 (15) |
C5 | 0.0246 (18) | 0.0190 (17) | 0.0204 (17) | −0.0033 (14) | 0.0014 (14) | 0.0055 (14) |
C6 | 0.0196 (17) | 0.0192 (17) | 0.0145 (15) | −0.0056 (13) | −0.0012 (13) | −0.0012 (13) |
C7 | 0.0165 (17) | 0.0283 (19) | 0.0187 (17) | −0.0089 (14) | −0.0064 (14) | 0.0032 (14) |
C8 | 0.0256 (18) | 0.0264 (19) | 0.0150 (16) | −0.0097 (15) | −0.0039 (14) | 0.0011 (14) |
C9 | 0.0262 (18) | 0.0268 (18) | 0.0159 (16) | −0.0079 (15) | 0.0009 (14) | −0.0040 (14) |
C10 | 0.0256 (18) | 0.0169 (17) | 0.0164 (16) | −0.0043 (14) | 0.0032 (14) | −0.0054 (13) |
C11 | 0.0220 (18) | 0.0162 (16) | 0.0230 (18) | −0.0051 (14) | 0.0015 (15) | −0.0022 (14) |
C12 | 0.0149 (16) | 0.0302 (19) | 0.0223 (17) | −0.0018 (14) | −0.0017 (14) | −0.0001 (15) |
C13 | 0.025 (2) | 0.037 (2) | 0.034 (2) | −0.0052 (17) | −0.0070 (17) | 0.0057 (18) |
C14 | 0.028 (2) | 0.031 (2) | 0.043 (2) | −0.0076 (17) | −0.0038 (18) | −0.0079 (18) |
C15 | 0.0198 (19) | 0.044 (2) | 0.044 (2) | 0.0008 (17) | 0.0000 (18) | 0.000 (2) |
C16 | 0.0194 (17) | 0.0187 (17) | 0.0200 (17) | −0.0021 (13) | −0.0020 (14) | 0.0008 (14) |
C17 | 0.0219 (17) | 0.0231 (17) | 0.0135 (16) | −0.0003 (14) | 0.0012 (14) | 0.0057 (13) |
C18 | 0.0211 (17) | 0.0216 (18) | 0.0258 (18) | −0.0040 (14) | 0.0000 (15) | 0.0051 (15) |
C19 | 0.0289 (19) | 0.031 (2) | 0.0183 (17) | −0.0029 (16) | −0.0023 (15) | −0.0005 (15) |
C20 | 0.0214 (18) | 0.0267 (19) | 0.0265 (19) | 0.0006 (15) | 0.0018 (15) | 0.0053 (15) |
Ti1—Cl2 | 2.3222 (10) | C7—C8 | 1.397 (5) |
Ti1—Cl1 | 2.3423 (10) | C7—H7 | 0.9500 |
Ti1—C9 | 2.348 (3) | C8—C9 | 1.417 (5) |
Ti1—C8 | 2.376 (3) | C8—H8 | 0.9500 |
Ti1—C3 | 2.377 (3) | C9—C10 | 1.409 (5) |
Ti1—C4 | 2.391 (3) | C9—H9 | 0.9500 |
Ti1—C5 | 2.392 (3) | C10—H10 | 0.9500 |
Ti1—C10 | 2.401 (3) | C12—C15 | 1.514 (5) |
Ti1—C1 | 2.406 (3) | C12—C14 | 1.516 (5) |
Ti1—C2 | 2.411 (3) | C12—C13 | 1.523 (5) |
Ti1—C7 | 2.414 (3) | C13—H13A | 0.9800 |
Ti1—C6 | 2.419 (3) | C13—H13B | 0.9800 |
O1—C11 | 1.212 (4) | C13—H13C | 0.9800 |
O2—C11 | 1.333 (4) | C14—H14A | 0.9800 |
O2—C12 | 1.485 (4) | C14—H14B | 0.9800 |
O3—C16 | 1.209 (4) | C14—H14C | 0.9800 |
O4—C16 | 1.334 (4) | C15—H15A | 0.9800 |
O4—C17 | 1.476 (4) | C15—H15B | 0.9800 |
C1—C2 | 1.404 (5) | C15—H15C | 0.9800 |
C1—C5 | 1.420 (5) | C17—C19 | 1.515 (5) |
C1—C11 | 1.480 (5) | C17—C18 | 1.522 (4) |
C2—C3 | 1.414 (5) | C17—C20 | 1.524 (5) |
C2—H2 | 0.9500 | C18—H18A | 0.9800 |
C3—C4 | 1.415 (5) | C18—H18B | 0.9800 |
C3—H3 | 0.9500 | C18—H18C | 0.9800 |
C4—C5 | 1.392 (5) | C19—H19A | 0.9800 |
C4—H4 | 0.9500 | C19—H19B | 0.9800 |
C5—H5 | 0.9500 | C19—H19C | 0.9800 |
C6—C10 | 1.407 (5) | C20—H20A | 0.9800 |
C6—C7 | 1.415 (5) | C20—H20B | 0.9800 |
C6—C16 | 1.485 (4) | C20—H20C | 0.9800 |
Cl2—Ti1—Cl1 | 95.23 (4) | Ti1—C4—H4 | 120.6 |
Cl2—Ti1—C9 | 100.97 (9) | C4—C5—C1 | 108.1 (3) |
Cl1—Ti1—C9 | 135.73 (9) | C4—C5—Ti1 | 73.0 (2) |
Cl2—Ti1—C8 | 133.62 (10) | C1—C5—Ti1 | 73.32 (19) |
Cl1—Ti1—C8 | 110.13 (9) | C4—C5—H5 | 126.0 |
C9—Ti1—C8 | 34.90 (12) | C1—C5—H5 | 126.0 |
Cl2—Ti1—C3 | 136.89 (9) | Ti1—C5—H5 | 119.5 |
Cl1—Ti1—C3 | 96.52 (10) | C10—C6—C7 | 108.1 (3) |
C9—Ti1—C3 | 98.96 (12) | C10—C6—C16 | 128.0 (3) |
C8—Ti1—C3 | 79.42 (12) | C7—C6—C16 | 123.9 (3) |
Cl2—Ti1—C4 | 116.44 (9) | C10—C6—Ti1 | 72.34 (18) |
Cl1—Ti1—C4 | 130.53 (10) | C7—C6—Ti1 | 72.78 (18) |
C9—Ti1—C4 | 76.84 (12) | C16—C6—Ti1 | 120.7 (2) |
C8—Ti1—C4 | 75.41 (12) | C8—C7—C6 | 108.0 (3) |
C3—Ti1—C4 | 34.53 (12) | C8—C7—Ti1 | 71.54 (18) |
Cl2—Ti1—C5 | 84.24 (9) | C6—C7—Ti1 | 73.17 (18) |
Cl1—Ti1—C5 | 130.25 (9) | C8—C7—H7 | 126.0 |
C9—Ti1—C5 | 92.44 (12) | C6—C7—H7 | 126.0 |
C8—Ti1—C5 | 105.26 (11) | Ti1—C7—H7 | 121.0 |
C3—Ti1—C5 | 57.00 (12) | C7—C8—C9 | 108.2 (3) |
C4—Ti1—C5 | 33.83 (11) | C7—C8—Ti1 | 74.55 (18) |
Cl2—Ti1—C10 | 77.43 (9) | C9—C8—Ti1 | 71.50 (18) |
Cl1—Ti1—C10 | 113.76 (8) | C7—C8—H8 | 125.9 |
C9—Ti1—C10 | 34.50 (11) | C9—C8—H8 | 125.9 |
C8—Ti1—C10 | 57.10 (12) | Ti1—C8—H8 | 119.9 |
C3—Ti1—C10 | 132.89 (12) | C10—C9—C8 | 107.8 (3) |
C4—Ti1—C10 | 109.79 (12) | C10—C9—Ti1 | 74.81 (18) |
C5—Ti1—C10 | 114.57 (12) | C8—C9—Ti1 | 73.60 (19) |
Cl2—Ti1—C1 | 80.71 (8) | C10—C9—H9 | 126.1 |
Cl1—Ti1—C1 | 96.20 (9) | C8—C9—H9 | 126.1 |
C9—Ti1—C1 | 126.83 (12) | Ti1—C9—H9 | 117.5 |
C8—Ti1—C1 | 131.31 (12) | C6—C10—C9 | 107.9 (3) |
C3—Ti1—C1 | 56.87 (12) | C6—C10—Ti1 | 73.71 (18) |
C4—Ti1—C1 | 56.65 (11) | C9—C10—Ti1 | 70.69 (18) |
C5—Ti1—C1 | 34.43 (11) | C6—C10—H10 | 126.1 |
C10—Ti1—C1 | 144.11 (12) | C9—C10—H10 | 126.1 |
Cl2—Ti1—C2 | 110.28 (9) | Ti1—C10—H10 | 121.3 |
Cl1—Ti1—C2 | 77.53 (9) | O1—C11—O2 | 126.1 (3) |
C9—Ti1—C2 | 131.86 (12) | O1—C11—C1 | 123.7 (3) |
C8—Ti1—C2 | 112.71 (12) | O2—C11—C1 | 110.2 (3) |
C3—Ti1—C2 | 34.35 (12) | O2—C12—C15 | 102.2 (3) |
C4—Ti1—C2 | 56.84 (12) | O2—C12—C14 | 110.1 (3) |
C5—Ti1—C2 | 56.80 (12) | C15—C12—C14 | 111.0 (3) |
C10—Ti1—C2 | 166.30 (12) | O2—C12—C13 | 108.4 (3) |
C1—Ti1—C2 | 33.89 (11) | C15—C12—C13 | 111.0 (3) |
Cl2—Ti1—C7 | 125.31 (9) | C14—C12—C13 | 113.6 (3) |
Cl1—Ti1—C7 | 79.83 (9) | C12—C13—H13A | 109.5 |
C9—Ti1—C7 | 57.19 (12) | C12—C13—H13B | 109.5 |
C8—Ti1—C7 | 33.92 (11) | H13A—C13—H13B | 109.5 |
C3—Ti1—C7 | 97.59 (12) | C12—C13—H13C | 109.5 |
C4—Ti1—C7 | 106.61 (11) | H13A—C13—H13C | 109.5 |
C5—Ti1—C7 | 138.78 (11) | H13B—C13—H13C | 109.5 |
C10—Ti1—C7 | 56.64 (12) | C12—C14—H14A | 109.5 |
C1—Ti1—C7 | 153.80 (12) | C12—C14—H14B | 109.5 |
C2—Ti1—C7 | 121.21 (12) | H14A—C14—H14B | 109.5 |
Cl2—Ti1—C6 | 91.27 (8) | C12—C14—H14C | 109.5 |
Cl1—Ti1—C6 | 81.89 (8) | H14A—C14—H14C | 109.5 |
C9—Ti1—C6 | 57.05 (11) | H14B—C14—H14C | 109.5 |
C8—Ti1—C6 | 56.65 (11) | C12—C15—H15A | 109.5 |
C3—Ti1—C6 | 131.42 (12) | C12—C15—H15B | 109.5 |
C4—Ti1—C6 | 130.38 (11) | H15A—C15—H15B | 109.5 |
C5—Ti1—C6 | 147.78 (12) | C12—C15—H15C | 109.5 |
C10—Ti1—C6 | 33.95 (11) | H15A—C15—H15C | 109.5 |
C1—Ti1—C6 | 171.57 (11) | H15B—C15—H15C | 109.5 |
C2—Ti1—C6 | 151.26 (12) | O3—C16—O4 | 126.9 (3) |
C7—Ti1—C6 | 34.05 (11) | O3—C16—C6 | 122.8 (3) |
C11—O2—C12 | 121.6 (3) | O4—C16—C6 | 110.3 (3) |
C16—O4—C17 | 120.8 (3) | O4—C17—C19 | 109.7 (3) |
C2—C1—C5 | 108.0 (3) | O4—C17—C18 | 109.7 (3) |
C2—C1—C11 | 124.8 (3) | C19—C17—C18 | 113.6 (3) |
C5—C1—C11 | 127.2 (3) | O4—C17—C20 | 101.6 (3) |
C2—C1—Ti1 | 73.25 (19) | C19—C17—C20 | 110.9 (3) |
C5—C1—Ti1 | 72.25 (18) | C18—C17—C20 | 110.8 (3) |
C11—C1—Ti1 | 121.4 (2) | C17—C18—H18A | 109.5 |
C1—C2—C3 | 107.8 (3) | C17—C18—H18B | 109.5 |
C1—C2—Ti1 | 72.85 (19) | H18A—C18—H18B | 109.5 |
C3—C2—Ti1 | 71.51 (19) | C17—C18—H18C | 109.5 |
C1—C2—H2 | 126.1 | H18A—C18—H18C | 109.5 |
C3—C2—H2 | 126.1 | H18B—C18—H18C | 109.5 |
Ti1—C2—H2 | 121.3 | C17—C19—H19A | 109.5 |
C2—C3—C4 | 107.7 (3) | C17—C19—H19B | 109.5 |
C2—C3—Ti1 | 74.14 (19) | H19A—C19—H19B | 109.5 |
C4—C3—Ti1 | 73.3 (2) | C17—C19—H19C | 109.5 |
C2—C3—H3 | 126.1 | H19A—C19—H19C | 109.5 |
C4—C3—H3 | 126.1 | H19B—C19—H19C | 109.5 |
Ti1—C3—H3 | 118.4 | C17—C20—H20A | 109.5 |
C5—C4—C3 | 108.3 (3) | C17—C20—H20B | 109.5 |
C5—C4—Ti1 | 73.13 (19) | H20A—C20—H20B | 109.5 |
C3—C4—Ti1 | 72.21 (19) | C17—C20—H20C | 109.5 |
C5—C4—H4 | 125.8 | H20A—C20—H20C | 109.5 |
C3—C4—H4 | 125.8 | H20B—C20—H20C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···Cl1i | 0.95 | 2.78 | 3.632 (4) | 149 |
C7—H7···Cl1ii | 0.95 | 2.80 | 3.511 (4) | 132 |
C8—H8···Cl1i | 0.95 | 2.76 | 3.521 (3) | 137 |
C9—H9···O1i | 0.95 | 2.30 | 3.245 (4) | 170 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
Funding information
Funding for this research was provided by: National Science Foundation (grant No. CHE-1362516; award No. OIA-1655740).
References
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). SADABS. Madison, Wisconsin, USA. Google Scholar
Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ceballos-Torres, J., Gómez-Ruiz, S., Fajardo, M., Pinar, A. B. & Prashar, S. (2019). J. Organomet. Chem. 899, 120890. Google Scholar
Clearfield, A., Warner, D. K., Saldarriaga-Molina, C. H., Ropal, R. & Bernal, I. (1975). Can. J. Chem. 53, 1622–1629. CSD CrossRef CAS Web of Science Google Scholar
Galoppini, E. (2004). Coord. Chem. Rev. 248, 1283–1297. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hammarström, L. (2015). Acc. Chem. Res. 48, 840–850. Web of Science PubMed Google Scholar
Ji, J.-M., Zhou, H. & Kim, H. K. (2018). J. Mater. Chem. A, 6, 14518–14545. Web of Science CrossRef CAS Google Scholar
Jung, M. F. & Lyster, M. A. (1977). J. Am. Chem. Soc. 99, 968–969. CrossRef CAS Web of Science Google Scholar
Kalyanasundaram, K. & Grätzel, M. (1998). Coord. Chem. Rev. 177, 347–414. Web of Science CrossRef CAS Google Scholar
Klepalová, I., Honzíček, J., Vinklárek, J., Padělková, Z., Šebestová, L. & Řezáčová, M. (2013). Inorg. Chim. Acta, 402, 109–115. Google Scholar
Livshits, M. Y., Turlington, M. D., Trindle, C. O., Wang, L., Altun, Z., Wagenknecht, P. S. & Rack, J. J. (2019). Inorg. Chem. 58, 15320–15329. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pienkos, J., Agakidou, D. A., Trindle, C. O., Herwald, W. D., Altun, Z. & Wagenknecht, P. S. (2016). Organometallics, 35, 2575–2578. Web of Science CrossRef CAS Google Scholar
Pienkos, J. A., Webster, A. B., Piechota, E. J., Agakidou, D. A., McMillen, C. D., Pritchett, D. Y., Meyer, G. J. & Wagenknecht, P. S. (2018). Dalton Trans. 47, 10953–10964. Web of Science CSD CrossRef CAS PubMed Google Scholar
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322–5363. Web of Science CrossRef CAS PubMed Google Scholar
Shaw, A. P., Guan, H. & Norton, J. R. (2008). J. Organomet. Chem. 693, 1382–1388. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Theodorou, V., Alagiannis, M., Ntemou, N., Brentas, A., Voulgari, P., Polychronidou, V., Gogou, M., Giannelos, M. & Skobridis, K. (2018). Arkivoc, 2018, 308–319. Web of Science CrossRef Google Scholar
Turlington, M. D., Pienkos, J. A., Carlton, E. S., Wroblewski, K. N., Myers, A. R., Trindle, C. O., Altun, Z., Rack, J. J. & Wagenknecht, P. S. (2016). Inorg. Chem. 55, 2200–2211. Web of Science CrossRef CAS PubMed Google Scholar
Tzavellas, N., Klouras, N. & Raptopoulou, C. P. (1996). Z. Anorg. Allg. Chem. 622, 898–902. CSD CrossRef CAS Web of Science Google Scholar
Zhang, L. & Cole, J. M. (2015). Appl. Mater. Interfaces, 7, 3427–3455. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.