research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-chloro-4-hy­dr­oxy-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ate: structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aSSI Institute for Single Crystals' National Academy of Science of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine, bDepartment of Inorganic Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine, and cNational University of Pharmacy, 4 Valentynivska St, Kharkiv 61168, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

Edited by S. Parkin, University of Kentucky, USA (Received 11 August 2020; accepted 15 September 2020; online 18 September 2020)

The title compound, C10H8ClNO5S, which has potential analgesic activity, crystallizes in space group P21/n. The benzo­thia­zine ring system adopts an inter­mediate form between sofa and twist-boat conformations. The coplanarity of the ester substituent to the bicyclic fragment is stabilized by an O—H⋯O intra­molecular hydrogen bond. In the crystal, hydrogen bonds of type N—H⋯O(SO2) link the mol­ecules into zigzag chains extending along the b-axis direction. Neighbouring chains are linked by both O—H⋯Cl and C—H⋯Cl inter­actions. A Hirshfeld surface analysis was used to compare different types of inter­molecular inter­actions, giving contributions of O⋯H/H⋯O = 42.0%, C⋯H/H⋯C = 17.3%, Cl⋯H/H⋯Cl = 14.2%, H⋯H = 11.1%.

1. Chemical context

Alkyl 4-hy­droxy-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carbox­yl­ates are known to be highly active analgesics (Ukrainets et al., 2013[Ukrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Chem. Heterocycl. Compd. 49, 1378-1383.]). The influence of substituents at the cyclic nitro­gen atom on the biological properties of these substances has been studied in detail (Ukrainets et al., 2013[Ukrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Chem. Heterocycl. Compd. 49, 1378-1383.], 2017[Ukrainets, I. V., Petrushova, L. A., Sim, G. & Grinevich, L. A. (2017). Pharm. Chem. J. 51, 482-485.]). Continuing our research in this direction, we have synthesized and studied a new compound of this class with a substituent on the benzene part of the mol­ecule. The biological properties of benzo­thia­zine derivatives are known to depend on their mol­ecular structure (Ukrainets et al., 2019a[Ukrainets, I. V., Hamza, G. M., Burian, A. A., Voloshchuk, N. I., Malchenko, O. V., Shishkina, S. V., Danylova, I. A. & Sim, G. (2019a). Sci. Pharm. 87, 10, https://doi.org/10.3390/scipharm87020010.],b[Ukrainets, I. V., Burian, A. A., Hamza, G. M., Voloshchuk, N. I., Malchenko, O. V., Shishkina, S. V., Sidorenko, L. V., Burian, K. O. & Sim, G. (2019b). Sci. Pharm. 87, 12, https://doi.org/10.3390/scipharm87020012.]). In addition, such mol­ecules can form polymorphic modifications possessing different biological activity, as was shown in our previous studies (Ukrainets et al., 2016a[Ukrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016a). Acta Cryst. C72, 411-415.], 2018[Ukrainets, I. V., Burian, A. A., Baumer, V. N., Shishkina, S. V., Sidorenko, L. V., Tugaibei, I. A., Voloshchuk, N. I. & Bondarenko, P. S. (2018). Sci. Pharm. 86, 21, https://doi.org/10.3390/scipharm86020021]). Therefore, the mol­ecular and crystal structure study as well as a Hirshfeld surface analysis were performed for the title compound, 1.

[Scheme 1]

2. Structural commentary

The di­hydro­thia­zine ring in mol­ecule 1 adopts a conformation that is inter­mediate between a sofa and twist-boat (Fig. 1[link]) with puckering parameters S = 0.53, Θ = 35.1°, Ψ = 11.3° (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]). The S1 and C8 atoms deviate by 0.81 (1) and 0.22 (1) Å, respectively, from the mean-square plane of the remaining atoms in the ring. The Cremer–Pople ring puckering parameters for the di­hydro­thia­zine ring are: Q = 0.457 (4) Å, Θ = 111.6 (5)°, Ψ = 192.1 (6)°. The ester substit­uent is essentially coplanar to the C7—C8 endocyclic double bond [the C7—C8—C9—O2 torsion angle is 3.0 (7)°] as a result of the stabilizing influence of the O1—H1O⋯O2 intra­molecular hydrogen bond (Table 1[link]). This hydrogen bond can be specified as S(6) in terms of graph-set theory since the six atoms comprise a intra­molecular hydrogen-bonded motif. The formation of the O—H⋯O hydrogen bond causes some elongation of the C9—O2 and C7—C8 bonds as compared with typical values of 1.210 Å (Csp2=O bond) and 1.326 Å (Csp2—Csp2 bond), respectively (Bürgi & Dunitz, 1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]). The C7—O1 bond is shortened to 1.320 (6) Å (the typical length for a Csp2—O bond is 1.362 Å) for the same reason. The methyl group is located in an anti-periplanar position to the C8—C9 bond [the C10—O3—C9—C8 torsion angle is −178.4 (4)°]. The noticeable steric repulsion between chlorine and the hydroxyl group [the Cl1⋯O1 distance is 2.793 (4) Å as compared to the van der Waals radii sum (Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) of 3.19 Å] results in twisting of the Cl1—C5—C6—C7 and C5—C6—C7—O1 torsion angles up to 14.7 (7) and 14.5 (7)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2 0.84 1.76 2.509 (5) 148
N1—H1N⋯O4i 0.88 2.07 2.841 (5) 145
O1—H1O⋯Cl1ii 0.84 2.87 3.203 (4) 106
C10—H10C⋯Cl1iii 0.98 2.84 3.399 (5) 117
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of compound 1. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, mol­ecules of 1 form zigzag chains in the [010] direction (Fig. 2[link]) as a result of the formation of N1—H⋯O4i hydrogen bonds about the 21 screw axis parallel to b [symmetry code: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; the N⋯O distance is 2.841 (5) Å, the N—H⋯O angle is 145.1° (Table 1[link])]. The crystal structure fragment formed by this hydrogen bond may be described as C(4) in terms of graph-set theory. Neighbouring zigzag chains are connected by weaker O—H⋯Clii inter­actions (Table 1[link]) in the [001] direction [symmetry code: (ii) [{3\over 2}] − x, y − [{1\over 2}], [{3\over 2}] − z]. As a result, the hydrogen-bonded layers parallel to the bc plane may be considered as secondary structural motifs. There are weak C—H⋯Cliii inter­actions [symmetry code: (iii) x − [{1\over 2}], −y − [{1\over 2}], z − [{1\over 2}]] between mol­ecules of neighbouring layers. In addition, stacking inter­actions between inversion-related (2 − x, 1 − y, 1 − z) benzene rings of mol­ecules belonging to neighbouring layers are found. The distance between ring planes is 3.246 (2) Å. The stacking inter­actions are characterized by a centroid-to-centroid distance of 3.872 (2) Å, with a lateral shift of the benzene rings of 2.111 (2) Å.

[Figure 2]
Figure 2
A chain of mol­ecules of 1 bound by N—H⋯O hydrogen bonds about the 21-screw axis parallel to the b axis.

4. Hirshfeld surface analysis

Hirshfeld surface analysis and 2D fingerprint plots are useful tools to investigate the different types of intra- and inter­molecular inter­actions in a crystal (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface of the title compound was obtained using a standard (high) surface resolution, mapped over dnorm. The areas coloured red on the dnorm surfaces correspond to contacts that are shorter than the van der Waals radii sum of the closest atoms (Fig. 3[link]). In this way, red spots on the Hirshfeld surface indicate atoms participating in hydrogen bonds or other short contacts. Such red spots are observed at the hydrogen atom of the NH group, one of the oxygen atoms of the SO2 group, and the chlorine atom. Smaller red spots are also present at one of the hydrogen atoms of the methyl group.

[Figure 3]
Figure 3
Hirshfeld surface of a mol­ecule of 1 mapped over dnorm, with transparency to show the conformation.

All of the hydrogen bonds and short contacts of the title compound are evident in the two-dimensional fingerprint plot presented in Fig. 4[link]a. The pair of very sharp spikes indicates the presence of strong hydrogen bonds in the crystal of 1. The main contribution (42.0%) to these spikes is provided by O⋯H/H⋯O inter­actions (Fig. 4[link]b). The contributions of C⋯H/H⋯C (17.3%) and Cl⋯H/H⋯Cl (14.2%) (Fig. 4[link]c,d) inter­actions are similar, but the presence of sharp spikes in the fingerprint plot delineated Cl⋯H/H⋯Cl inter­actions suggests that these contacts are stronger. Surprisingly, the contribution of H⋯H inter­actions (11.1%) (Fig. 4[link]e) is very small, which is unusual for mol­ecular crystals.

[Figure 4]
Figure 4
Two-dimensional Hirshfeld fingerprint plot of (a) all contacts for compound 1 and those delineated into (b) O⋯H/ H⋯O (42.0%), (c) C⋯H/H⋯C (17.3%), (d) Cl⋯H/H⋯Cl (14.2%), (e) H⋯H (11.1%) contacts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the benzo­thia­zine fragment revealed only ten hits [refcodes AKIJIP, AKIJIP01 (Ukrainets et al., 2016a[Ukrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016a). Acta Cryst. C72, 411-415.]), CABBEP (Lei et al., 2016[Lei, K., Hua, X.-W., Tao, Y.-Y., Liu, Y., Liu, N., Ma, Y., Li, Y.-H., Xu, X.-H. & Kong, C.-H. (2016). Bioorg. Med. Chem. 24, 92-103.]), IJUJAA (Ukrainets et al., 2015b[Ukrainets, I. V., Petrushova, L. A., Sim, G. & Bereznyakova, N. L. (2015b). Chem. Heterocycl. Compd, 51, 97-101.]), LANNUM (Ukrainets et al., 2016b[Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Sim, G. & Kryvanych, O. V. (2016b). Sci. Pharm. 84, 523-535.]), LOGHEW (Ukrainets et al., 2014[Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014). Chem. Heterocycl. Compd, 1, 114-122.]), MINJAW (Shishkina et al., 2013[Shishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698.]), NODGUK (Ukrainets et al., 2013[Ukrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Chem. Heterocycl. Compd. 49, 1378-1383.]), UWUCIA (Ukrainets et al., 2015a[Ukrainets, I. V., Petrushova, L. A. & Bereznyakova, N. L. (2015a). Pharm. Chem. J. 49, 519-522.]) and XEKPUB (Ukrainets et al., 2017[Ukrainets, I. V., Petrushova, L. A., Sim, G. & Grinevich, L. A. (2017). Pharm. Chem. J. 51, 482-485.])]. In all these structures, the conformation of the benzo­thia­zine rings as well as the redistribution of the electron density as a result of the formation of the O—H⋯O intra­molecular hydrogen bond are similar.

The title compound may be considered as a structural analogue of methyl 4-hy­droxy-2,2-dioxo-1-methyl-1H-2,1-benzo­thia­zine-3-carboxyl­ate (Ukrainets et al., 2013[Ukrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Chem. Heterocycl. Compd. 49, 1378-1383.]), which is substituted by chlorine on the benzene ring of the mol­ecule and de­alkyl­ated at the cyclic nitro­gen atom.

6. Synthesis and crystallization

Methyl (chloro­sulfon­yl)acetate (1.90 g, 0.011 mol) was added dropwise under stirring to a solution of methyl 6-chloro­anthranilate (1.85 g, 0.010 mol) and tri­ethyl­amine (1.54 mL, 0.011 mol) in CH2Cl2 (20 mL) and the mixture was cooled (268 to 273 K) (Fig. 5[link]). After 10 h, water (50 mL) was added to the reaction mixture, which was acidified up to pH = 4 with 1 N HCl and mixed thoroughly. The organic layer was separated, dried over anhydrous CaCl2, and distilled (at reduced pressure at the end). A solution of sodium methyl­ate in anhydrous methanol [from metallic sodium (0.69 g, 0.030 mol) and absolute methanol (20 mL)] was added, the mixture was boiled and stored for 15 h at room temperature. The reaction mixture was diluted with cold water and acidified with 1 N HCl to pH = 4. The solid methyl 5-chloro-4-hy­droxy-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ate was filtered, washed with water, and dried in air. Yield 2.43g (84%); colourless crystals; m.p. 464–466 K.

[Figure 5]
Figure 5
The synthesis of compound 1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All of the hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, O—H = 0.84 Å, Uiso(H) = 1.5Ueq(C,O) for methyl and hydroxyl groups and with C—H = 0.93 Å, N—H = 0.88 Å, Uiso(H) = 1.2Ueq(C,N) for all other hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula C10H8ClNO5S
Mr 289.68
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 11.153 (3), 6.8926 (15), 14.600 (3)
β (°) 97.528 (5)
V3) 1112.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.30 × 0.10 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.428, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9166, 1957, 1343
Rint 0.111
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.145, 1.05
No. of reflections 1957
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae, 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae, 2020).

Methyl 5-chloro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate top
Crystal data top
C10H8ClNO5SF(000) = 592
Mr = 289.68Dx = 1.729 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.153 (3) ÅCell parameters from 2736 reflections
b = 6.8926 (15) Åθ = 3.3–34.2°
c = 14.600 (3) ŵ = 0.54 mm1
β = 97.528 (5)°T = 120 K
V = 1112.6 (4) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
1957 independent reflections
Radiation source: Enhance (Mo) X-ray Source1343 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.111
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1313
Tmin = 0.428, Tmax = 1.000k = 88
9166 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.6529P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1957 reflectionsΔρmax = 0.38 e Å3
165 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84549 (13)0.2458 (2)0.73322 (9)0.0298 (4)
S10.76398 (12)0.09884 (18)0.35643 (9)0.0158 (3)
O10.6753 (3)0.0566 (5)0.6066 (2)0.0218 (9)
H1O0.6387290.0487150.5944360.033*
O20.5710 (3)0.2111 (5)0.5105 (2)0.0232 (9)
O30.6006 (3)0.2377 (5)0.3617 (2)0.0212 (9)
O40.6887 (3)0.0811 (5)0.2691 (2)0.0209 (8)
O50.8815 (3)0.0129 (5)0.3625 (2)0.0213 (9)
N10.7714 (4)0.3285 (6)0.3778 (3)0.0200 (10)
H1N0.7500450.4096290.3319630.024*
C10.8100 (4)0.4052 (7)0.4653 (3)0.0150 (11)
C20.8599 (4)0.5923 (7)0.4729 (4)0.0187 (12)
H20.8672920.6660610.4189380.022*
C30.8974 (4)0.6672 (8)0.5574 (4)0.0215 (12)
H30.9286460.7955660.5621150.026*
C40.8914 (5)0.5596 (8)0.6383 (4)0.0225 (13)
H40.9211920.6119910.6970510.027*
C50.8413 (4)0.3765 (8)0.6308 (3)0.0182 (12)
C60.7937 (4)0.2947 (7)0.5441 (3)0.0156 (11)
C70.7202 (4)0.1186 (7)0.5325 (3)0.0163 (11)
C80.6938 (4)0.0228 (7)0.4494 (3)0.0152 (11)
C90.6170 (4)0.1515 (7)0.4434 (3)0.0180 (12)
C100.5228 (5)0.4067 (7)0.3536 (4)0.0247 (13)
H10C0.5287400.4719780.2947000.037*
H10B0.4389870.3663650.3557810.037*
H10A0.5481020.4959940.4046690.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0396 (9)0.0322 (8)0.0162 (7)0.0041 (7)0.0016 (6)0.0010 (6)
S10.0175 (7)0.0156 (7)0.0151 (7)0.0009 (6)0.0050 (5)0.0007 (6)
O10.030 (2)0.020 (2)0.0181 (19)0.0045 (17)0.0113 (17)0.0001 (16)
O20.022 (2)0.023 (2)0.028 (2)0.0011 (17)0.0127 (17)0.0031 (17)
O30.023 (2)0.021 (2)0.022 (2)0.0081 (17)0.0110 (16)0.0049 (16)
O40.023 (2)0.025 (2)0.0143 (18)0.0003 (17)0.0004 (15)0.0031 (16)
O50.020 (2)0.019 (2)0.028 (2)0.0041 (16)0.0107 (16)0.0025 (16)
N10.029 (3)0.014 (2)0.017 (2)0.003 (2)0.004 (2)0.0069 (18)
C10.009 (2)0.017 (3)0.019 (3)0.002 (2)0.001 (2)0.002 (2)
C20.017 (3)0.013 (3)0.027 (3)0.002 (2)0.005 (2)0.001 (2)
C30.011 (3)0.018 (3)0.036 (3)0.002 (2)0.005 (2)0.008 (2)
C40.015 (3)0.028 (3)0.024 (3)0.005 (2)0.001 (2)0.008 (2)
C50.011 (3)0.027 (3)0.017 (3)0.003 (2)0.003 (2)0.000 (2)
C60.010 (3)0.018 (3)0.019 (3)0.006 (2)0.002 (2)0.000 (2)
C70.010 (3)0.022 (3)0.018 (3)0.005 (2)0.006 (2)0.002 (2)
C80.013 (3)0.014 (3)0.019 (3)0.002 (2)0.007 (2)0.001 (2)
C90.014 (3)0.020 (3)0.020 (3)0.010 (2)0.003 (2)0.003 (2)
C100.020 (3)0.021 (3)0.034 (3)0.008 (3)0.007 (2)0.009 (3)
Geometric parameters (Å, º) top
Cl1—C51.741 (5)C1—C21.403 (7)
S1—O51.431 (4)C1—C61.412 (7)
S1—O41.437 (3)C2—C31.352 (7)
S1—N11.614 (4)C3—C41.404 (7)
S1—C81.734 (5)C4—C51.379 (7)
O1—C71.320 (6)C5—C61.423 (7)
O2—C91.234 (6)C6—C71.462 (7)
O3—C91.323 (6)C7—C81.379 (7)
O3—C101.448 (6)C8—C91.471 (7)
N1—C11.397 (6)
O5—S1—O4116.3 (2)C4—C5—Cl1116.2 (4)
O5—S1—N1111.8 (2)C6—C5—Cl1121.6 (4)
O4—S1—N1105.3 (2)C1—C6—C5116.0 (5)
O5—S1—C8109.3 (2)C1—C6—C7118.9 (4)
O4—S1—C8113.4 (2)C5—C6—C7124.8 (4)
N1—S1—C899.3 (2)O1—C7—C8120.3 (5)
C9—O3—C10116.5 (4)O1—C7—C6116.2 (4)
C1—N1—S1123.3 (3)C8—C7—C6123.5 (4)
N1—C1—C2119.5 (4)C7—C8—C9119.9 (4)
N1—C1—C6119.0 (4)C7—C8—S1118.5 (4)
C2—C1—C6121.5 (5)C9—C8—S1121.3 (4)
C3—C2—C1119.7 (5)O2—C9—O3122.9 (5)
C2—C3—C4121.5 (5)O2—C9—C8121.6 (5)
C5—C4—C3118.8 (5)O3—C9—C8115.5 (4)
C4—C5—C6122.2 (5)
O5—S1—N1—C169.3 (4)C5—C6—C7—O114.5 (7)
O4—S1—N1—C1163.5 (4)C1—C6—C7—C819.0 (7)
C8—S1—N1—C145.9 (4)C5—C6—C7—C8167.7 (5)
S1—N1—C1—C2154.5 (4)O1—C7—C8—C91.2 (7)
S1—N1—C1—C627.8 (6)C6—C7—C8—C9178.8 (4)
N1—C1—C2—C3180.0 (4)O1—C7—C8—S1175.2 (3)
C6—C1—C2—C32.3 (7)C6—C7—C8—S17.2 (7)
C1—C2—C3—C42.1 (7)O5—S1—C8—C782.9 (4)
C2—C3—C4—C52.7 (7)O4—S1—C8—C7145.5 (4)
C3—C4—C5—C61.2 (7)N1—S1—C8—C734.2 (4)
C3—C4—C5—Cl1176.1 (4)O5—S1—C8—C991.1 (4)
N1—C1—C6—C5176.5 (4)O4—S1—C8—C940.5 (5)
C2—C1—C6—C55.8 (7)N1—S1—C8—C9151.8 (4)
N1—C1—C6—C79.7 (7)C10—O3—C9—O21.1 (7)
C2—C1—C6—C7168.0 (4)C10—O3—C9—C8178.4 (4)
C4—C5—C6—C15.2 (7)C7—C8—C9—O23.0 (7)
Cl1—C5—C6—C1171.9 (4)S1—C8—C9—O2176.9 (4)
C4—C5—C6—C7168.2 (5)C7—C8—C9—O3177.5 (4)
Cl1—C5—C6—C714.7 (7)S1—C8—C9—O33.6 (6)
C1—C6—C7—O1158.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.841.762.509 (5)148
N1—H1N···O4i0.882.072.841 (5)145
O1—H1O···Cl1ii0.842.873.203 (4)106
C10—H10C···Cl1iii0.982.843.399 (5)117
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y1/2, z1/2.
 

Acknowledgements

Any acknowledgements?

References

First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, K., Hua, X.-W., Tao, Y.-Y., Liu, Y., Liu, N., Ma, Y., Li, Y.-H., Xu, X.-H. & Kong, C.-H. (2016). Bioorg. Med. Chem. 24, 92–103.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationUkrainets, I. V., Burian, A. A., Baumer, V. N., Shishkina, S. V., Sidorenko, L. V., Tugaibei, I. A., Voloshchuk, N. I. & Bondarenko, P. S. (2018). Sci. Pharm. 86, 21, https://doi.org/10.3390/scipharm86020021  Google Scholar
First citationUkrainets, I. V., Burian, A. A., Hamza, G. M., Voloshchuk, N. I., Malchenko, O. V., Shishkina, S. V., Sidorenko, L. V., Burian, K. O. & Sim, G. (2019b). Sci. Pharm. 87, 12, https://doi.org/10.3390/scipharm87020012.  Google Scholar
First citationUkrainets, I. V., Hamza, G. M., Burian, A. A., Voloshchuk, N. I., Malchenko, O. V., Shishkina, S. V., Danylova, I. A. & Sim, G. (2019a). Sci. Pharm. 87, 10, https://doi.org/10.3390/scipharm87020010.  Google Scholar
First citationUkrainets, I. V., Petrushova, L. A. & Bereznyakova, N. L. (2015a). Pharm. Chem. J. 49, 519–522.  CSD CrossRef CAS Google Scholar
First citationUkrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Chem. Heterocycl. Compd. 49, 1378–1383.  CrossRef CAS Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014). Chem. Heterocycl. Compd, 1, 114–122.  Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Sim, G. & Kryvanych, O. V. (2016b). Sci. Pharm. 84, 523–535.  CSD CrossRef CAS PubMed Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Sim, G. & Bereznyakova, N. L. (2015b). Chem. Heterocycl. Compd, 51, 97–101.  CrossRef CAS Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Sim, G. & Grinevich, L. A. (2017). Pharm. Chem. J. 51, 482–485.  CSD CrossRef CAS Google Scholar
First citationUkrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016a). Acta Cryst. C72, 411–415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds