research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­flux synthesis and crystal structure of Tl3IO

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Dresden, Chair of Inorganic Chemistry II, Bergstrasse 66, 01069 Dresden, Germany, and bMax-Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany
*Correspondence e-mail: michael.ruck@tu-dresden.de

Edited by S. Parkin, University of Kentucky, USA (Received 27 August 2020; accepted 8 September 2020; online 11 September 2020)

Single-crystals of thallium(I) iodide oxide Tl3IO were obtained as by-product in a hydro­flux synthesis at 473 K for 10 h. A potassium hydroxide hydro­flux with a water-base molar ratio of 1.6 and the starting materials TlNO3, RhI3 and Ba(NO3)2 was used, resulting in a few black needle-shaped crystals. X-ray diffraction on a single-crystal revealed the hexa­gonal space group P63/mmc (No. 194) with lattice parameters a = 7.1512 (3) Å and c = 6.3639 (3) Å. Tl3IO crystallizes as hexa­gonal anti-perovskite (anti-BaNiO3 type) and is thus structurally related to the alkali-metal halide/auride oxides M3XO (M = K, Rb, Cs; X = Cl, Br, I, Au). The oxygen atoms center thallium octa­hedra. The [OTl6] octa­hedra share trans faces, forming a linear chain along [001]. Twelve thallium atoms surround each iodine atom in an [ITl12] anti-cubocta­hedron. Thallium and iodine atoms together form a hexa­gonal close-sphere packing, in which every fourth octa­hedral void is occupied by oxygen.

1. Chemical context

The class of alkali-metal halide/auride oxides comprises several compounds with the general formula M3XO (M = K, Rb, Cs; X = Cl, Br, I, Au) (Sitta et al., 1991a[Sitta, S., Hippler, K., Vogt, P. & Sabrowsky, H. (1991a). Z. Anorg. Allg. Chem. 597, 197-200.],b[Sitta, S., Hippler, K., Vogt, P. & Sabrowsky, H. (1991b). Z. Kristallogr. 196, 193-196.]; Feldmann & Jansen, 1995a[Feldmann, C. & Jansen, M. (1995a). Z. Anorg. Allg. Chem. 621, 201-206.],b[Feldmann, C. & Jansen, M. (1995b). Z. Anorg. Allg. Chem. 621, 1907-1912.],c[Feldmann, C. & Jansen, M. (1995c). Z. Naturforsch. Teil B, 50, 1415-1416.]; Sabrowsky et al., 1996[Sabrowsky, H., Feldbaum-Möller, E., Fischer, K., Sitta, S., Vogt, P. & Winter, V. (1996). Z. Anorg. Allg. Chem. 622, 153-156.]), Li3BrO (Wortmann et al., 1989[Wortmann, R., Sitta, S. & Sabrowsky, H. (1989). Z. Naturforsch. Teil B, 44, 1348-1350.]), Na3X′O (X′ = Cl, Br) (Sabrowsky et al., 1988[Sabrowsky, H., Paszkowski, K., Reddig, D. & Vogt, P. (1988). Z. Naturforsch. Teil B, 43, 238-239.]; Hippler et al., 1990[Hippler, K., Sitta, S., Vogt, P. & Sabrowsky, H. (1990). Acta Cryst. C46, 736-738.]). These ternary oxides crystallize typically as anti-perovskites, i.e. in the cubic anti-CaTiO3 type. The cesium derivatives Cs3BrO, Cs3IO and Cs3AuO adopt hexa­gonal anti-perovskite structures (anti-BaNiO3 type), whereas the Cs3ClO crystallizes as anti-NH4CdCl3 type and thus does not form a perovskite structure. The crystal structure of Rb3IO has both face and corner-sharing [ORb6] octa­hedra (anti-BaFeO3–x type). The adopted structure type depends on the size of the alkali-metal and halide/auride ions and their ratio. The stability range of the different perovskite phases can be estimated by using Goldschmidt's tolerance factor, where larger M and X ions tend to destabilize the cubic anti-perovskite structure resulting in the hexa­gonal polymorph (Babel, 1969[Babel, D. (1969). Z. Anorg. Allg. Chem. 369, 117-130.]; Feldmann & Jansen, 1995b[Feldmann, C. & Jansen, M. (1995b). Z. Anorg. Allg. Chem. 621, 1907-1912.]).

For the synthesis of the title compound, the hydro­flux method was used, which can be classified as inter­mediate between hydro­thermal and flux synthesis (Chance et al., 2013[Chance, W. M., Bugaris, D. E., Sefat, A. S. & zur Loye, H.-K. (2013). Inorg. Chem. 52, 11723-11733.]). An approximately equimolar mixture of alkali-metal hydroxide (typically NaOH or KOH) and water is used as reaction medium (Albrecht et al., 2020a[Albrecht, R., Doert, T. & Ruck, M. (2020a). Z. Anorg. Allg. Chem. In the press. https://doi.org/10.1002/zaac.202000031]). Good solubility of oxides and hydroxides, highly crystalline reaction products suitable for single-crystal X-ray diffraction analysis, comparably low reaction temperatures and a pressureless setup are essential advantages of the hydro­flux method. In this communication, we report on the synthesis and crystal structure analysis of the thallium(I) iodide oxide Tl3IO.

2. Structural commentary

Single-crystal X-ray diffraction on a black needle revealed the composition Tl3IO and a hexa­gonal structure in the space group P63/mmc (no. 194) with lattice parameters a = 7.1512 (3) Å and c = 6.3639 (3) Å at 100 (1) K. Tl3IO crystallizes as hexa­gonal anti-perovskite (anti-BaNiO3 type; Fig. 1[link], Tables 1[link] and 2[link]). The asymmetric unit consists of three atoms, thallium (site symmetry mm2, Wyckoff position 6h), iodine ([\overline{6}]m2, 2d) and oxygen ([\overline{3}]m., 2a). The oxygen atoms center thallium octa­hedra. The [OTl6] octa­hedra share trans faces, forming a linear chain along [001]. Twelve thallium atoms surround each iodine atom in a [ITl12] anti-cubocta­hedron (triangular orthobicupola). Thallium and iodine atoms together form a hexa­gonal close-sphere packing, in which every fourth octa­hedral void is occupied by oxygen. Thus, also the thallium atom centers an anti-cubocta­hedron, which has the composition [Tl(I4Tl8)].

Table 1
Atomic coordinates and equivalent isotropic displacement parameters (in 10 4 Å2) in Tl3IO at 100 (1) K

Atom Wyckoff symbol x y z Uiso/Ueq
Tl 6h 0.1608 (1) 0.3216 (1) 1/4 47 (1)
I 2d 2/3 1/3 1/4 53 (1)
O 2a 0 0 0 68 (7)

Table 2
Anisotropic displacement parameters (in 10 4 Å2) in Tl3IO at 100 (1) K

Atom U11 U22 U33 U23 U12 U13
Tl 38 (1) 24 (1) 73 (1) 0 0 12 (1)
I 42 (1) 42 (1) 77 (2) 0 0 21 (1)
O 68 (10) 68 (10) 68 (19) 0 0 34 (5)
[Figure 1]
Figure 1
Crystal structure of Tl3IO in P63/mmc, highlighting the one-dimensional chains consisting of [OTl6] octa­hedra. Ellipsoids enclose 99% of the probability density of the atoms.

The [OTl6] octa­hedron is slightly elongated along the chain direction. The O—Tl bond length of 2.549 (1) Å is about 1% longer than in Tl2O, at 2.517 (1) Å (Sabrowsky, 1971[Sabrowsky, H. (1971). Z. Anorg. Allg. Chem. 381, 266-279.]). The Tl—O—Tl angles along the chain parallel to c are 94.8 (1)°. The shortest Tl⋯Tl distances in Tl3IO are with 3.449 (1) Å, very similar to those in thallium metal, which has Tl⋯Tl distances of 3.405 (1) and 3.455 (1) Å in its hexa­gonal sphere packing (Barrett, 1958[Barrett, C. S. (1958). Phys. Rev. 110, 1071-1072.]). Accordingly, the [ITl12] anti­cubocta­hedra are also stretched along [001], with Tl—I distances of 3.576 (1) Å and 3.833 (1) Å. Although thallium(I) has a larger ionic radius (1.70 Å for c.n. = 12; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) than potassium (1.64 Å for c.n. = 12), the M—O, MM and the average M—I distances in Tl3IO are smaller than in K3IO by 3.5%, 7.5% and 1%, respectively (Feldmann & Jansen, 1995b[Feldmann, C. & Jansen, M. (1995b). Z. Anorg. Allg. Chem. 621, 1907-1912.]).

3. Synthesis and crystallization

Thallium(I) iodide oxide, Tl3IO, was synthesized in a potassium hydroxide hydro­flux. The reaction was carried out in a PTFE-lined 50 mL Berghof type DAB-2 stainless steel autoclave starting from TlNO3 (0.38 mmol; abcr, 99.5%), RhI3 (0.06 mmol; abcr, 99%), and Ba(NO3)2 (0.19 mmol; VEB Laborchemie Apolda, 99%). Water and potassium hydroxide (86%, Fisher Scientific) in the molar ratio of 1.6:1.0 were added to these compounds. The sealed autoclave was heated at a heating rate of 2 K min−1 to 473 K and after 10 h cooled to room temperature at a rate of 0.1 K min−1. The reaction product after washing with water mainly consisted of thallium(I) iodide, thallium(III) oxide, barium carbonate and a brown powder of an unidentified rhodium-containing compound. A few black single crystals of Tl3IO with a needle-like morphology were found, which are sensitive to water and other protic solvents. In contact with water, the Tl3IO crystals immediately turn yellow, probably due to the formation of thallium(I) hydroxide and thallium(I) iodide, which are both yellow. Energy-dispersive X-ray spectroscopy on Tl3IO single-crystals revealed a disproportionately high oxygen content, indicating surface decomposition.

Several experiments failed to exchange rhodium(III) iodide with other iodine sources like potassium iodide, copper(I) iodide or silver(I) iodide. Likewise, experiments without barium nitrate were not successful. However, when both starting materials were used, Tl3IO was obtained reproducibly, also at reaction temperatures of 423 K or 523 K. Similarly, the hydro­thermal synthesis of Na3[Tl(OH)6] starting from thallium(I) sulfate required heavy metal salts like bis­muth nitrate (Giesselbach, 2002[Giesselbach, M. (2002). Neue komplexe Hydroxide, Oxidhydroxide und Oxide von schweren Hauptgruppenmetallen. PhD Thesis, Universität Köln, Germany.]). The oxidation of thallium(I) to thallium(III) in this reaction was achieved by oxygen in alkaline solutions (Rich, 2007[Rich, R. (2007). Inorganic Reactions in Water, p. 321. Berlin Heidelberg: Springer-Verlag.]).

The alkali-metal oxide halides M3XO are reported to be very sensitive to traces of moisture or carbon dioxide due to their highly basic nature (Feldmann & Jansen, 1995b[Feldmann, C. & Jansen, M. (1995b). Z. Anorg. Allg. Chem. 621, 1907-1912.]). Remarkably, Tl3IO crystallizes in the presence of water from the hydro­flux. In other experiments, we synthesized a water sensitive oxo­hydroxoferrate (Albrecht et al., 2019[Albrecht, R., Doert, T. & Ruck, M. (2019). ChemistryOpen 8, 1399-1406.]) or an oxidation sensitive manganate(V) from hydro­flux (Albrecht et al., 2020b[Albrecht, R., Doert, T. & Ruck, M. (2020b). Z. Anorg. Allg. Chem. In the press. https://doi.org/10.1002/zaac.202000065.]). Obviously, the activity of water is dramatically reduced in these aqueous salt melts.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula Tl3IO
Mr 756.01
Crystal system, space group Hexagonal, P63/mmc
Temperature (K) 100
a, c (Å) 7.1512 (3), 6.3639 (3)
V3) 281.85 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 90.87
Crystal size (mm) 0.09 × 0.05 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.113, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 15853, 480, 442
Rint 0.049
(sin θ/λ)max−1) 0.995
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.041, 1.29
No. of reflections 480
No. of parameters 10
Δρmax, Δρmin (e Å−3) 2.80, −2.01
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Thallium(I) iodide oxide top
Crystal data top
Tl3IODx = 8.908 Mg m3
Mr = 756.01Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 8223 reflections
a = 7.1512 (3) Åθ = 3.2–46.5°
c = 6.3639 (3) ŵ = 90.87 mm1
V = 281.85 (3) Å3T = 100 K
Z = 2Needle, black
F(000) = 6080.09 × 0.05 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
442 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 45.0°, θmin = 3.3°
Tmin = 0.113, Tmax = 0.749h = 1414
15853 measured reflectionsk = 1114
480 independent reflectionsl = 1112
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0193P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max < 0.001
wR(F2) = 0.041Δρmax = 2.80 e Å3
S = 1.29Δρmin = 2.01 e Å3
480 reflectionsExtinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 parametersExtinction coefficient: 0.0035 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl0.16078 (2)0.32156 (2)0.2500000.00465 (5)
I0.6666670.3333330.2500000.00534 (7)
O0.0000000.0000000.0000000.0068 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl0.00378 (6)0.00238 (6)0.00733 (9)0.00119 (3)0.0000.000
I0.00418 (9)0.00418 (9)0.00765 (18)0.00209 (5)0.0000.000
O0.0068 (10)0.0068 (10)0.0068 (19)0.0034 (5)0.0000.000
Geometric parameters (Å, º) top
Tl—Tli3.4494 (3)Tl—Tlvi3.7538 (1)
Tl—Tlii3.7538 (1)Tl—Tlvii3.7018 (3)
Tl—Tliii3.7538 (1)Tl—Tlviii3.7018 (3)
Tl—Tliv3.4494 (3)Tl—O2.5490 (1)
Tl—Tlv3.7538 (1)Tl—Oix2.5490 (1)
Tli—Tl—Tliv60.0O—Tl—Tlviii132.580 (2)
Tliv—Tl—Tliii62.648 (2)Oix—Tl—Tlviii132.580 (2)
Tlvii—Tl—Tlvi90.0Oix—Tl—Tliv47.420 (2)
Tli—Tl—Tlviii180.0Oix—Tl—Tli47.420 (2)
Tlv—Tl—Tliii115.917 (5)O—Tl—Tliii42.580 (2)
Tliv—Tl—Tlviii120.0O—Tl—Tliv47.420 (2)
Tlii—Tl—Tlv149.235 (3)Oix—Tl—Tlvii132.580 (2)
Tli—Tl—Tlvii120.0O—Tl—Tlvii132.580 (2)
Tliii—Tl—Tlvi149.235 (3)O—Tl—Tli47.420 (2)
Tliv—Tl—Tlvii180.0O—Tl—Tlv108.774 (4)
Tliv—Tl—Tlvi90.0O—Tl—Tlii42.580 (2)
Tlviii—Tl—Tlvii60.0O—Tl—Tlvi108.774 (4)
Tlv—Tl—Tlvi54.704 (4)Oix—Tl—Tlvi42.580 (2)
Tli—Tl—Tlii62.648 (2)Oix—Tl—Tliii108.774 (4)
Tli—Tl—Tliii90.0O—Tl—Oix77.242 (5)
Tliv—Tl—Tlii90.0Tlx—O—Tli94.839 (4)
Tlviii—Tl—Tliii90.0Tlx—O—Tliii85.161 (4)
Tlviii—Tl—Tlii117.352 (2)Tl—O—Tlx180.0
Tlii—Tl—Tliii54.704 (4)Tliv—O—Tli85.161 (4)
Tlvii—Tl—Tlii90.0Tl—O—Tlii94.840 (4)
Tli—Tl—Tlvi62.648 (2)Tliv—O—Tliii94.839 (4)
Tli—Tl—Tlv90.0Tlx—O—Tlii85.160 (4)
Tlviii—Tl—Tlvi117.352 (2)Tlii—O—Tli94.839 (4)
Tliv—Tl—Tlv62.648 (2)Tl—O—Tliv85.160 (4)
Tlii—Tl—Tlvi115.917 (5)Tl—O—Tliii94.840 (4)
Tlviii—Tl—Tlv90.0Tlx—O—Tliv94.840 (4)
Tlvii—Tl—Tlv117.352 (2)Tlii—O—Tliii85.161 (4)
Tlvii—Tl—Tliii117.352 (2)Tlii—O—Tliv180.0
Oix—Tl—Tlii108.774 (4)Tli—O—Tliii180.0
Oix—Tl—Tlv42.580 (2)Tl—O—Tli85.160 (4)
Symmetry codes: (i) y, xy, z; (ii) xy, x, z; (iii) y, x+y, z; (iv) x+y, x, z; (v) y, x+y, z+1; (vi) xy, x, z+1; (vii) x+y, x+1, z; (viii) y+1, xy+1, z; (ix) x, y, z+1/2; (x) x, y, z.
Atomic coordinates and equivalent isotropic displacement parameters (in 10 4 Å2) in Tl3IO at 100 (1) K top
AtomWyckoff symbolxyzUiso/Ueq
Tl6h0.1608 (1)0.3216 (1)1/447 (1)
I2d2/31/31/453 (1)
O2a00068 (7)
Anisotropic displacement parameters (in 10 4 Å2) in Tl3IO at 100 (1) K top
AtomU11U22U33U23U12U13
Tl38 (1)24 (1)73 (1)0012 (1)
I42 (1)42 (1)77 (2)0021 (1)
O68 (10)68 (10)68 (19)0034 (5)
 

Funding information

This work was financially supported by the Deutsche Forschungsgemeinschaft (project-id: 438795198).

References

First citationAlbrecht, R., Doert, T. & Ruck, M. (2019). ChemistryOpen 8, 1399–1406.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationAlbrecht, R., Doert, T. & Ruck, M. (2020a). Z. Anorg. Allg. Chem. In the press. https://doi.org/10.1002/zaac.202000031  Google Scholar
First citationAlbrecht, R., Doert, T. & Ruck, M. (2020b). Z. Anorg. Allg. Chem. In the press. https://doi.org/10.1002/zaac.202000065.  Google Scholar
First citationBabel, D. (1969). Z. Anorg. Allg. Chem. 369, 117–130.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBarrett, C. S. (1958). Phys. Rev. 110, 1071–1072.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChance, W. M., Bugaris, D. E., Sefat, A. S. & zur Loye, H.-K. (2013). Inorg. Chem. 52, 11723–11733.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeldmann, C. & Jansen, M. (1995a). Z. Anorg. Allg. Chem. 621, 201–206.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFeldmann, C. & Jansen, M. (1995b). Z. Anorg. Allg. Chem. 621, 1907–1912.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFeldmann, C. & Jansen, M. (1995c). Z. Naturforsch. Teil B, 50, 1415–1416.  CrossRef CAS Google Scholar
First citationGiesselbach, M. (2002). Neue komplexe Hydroxide, Oxidhydroxide und Oxide von schweren Hauptgruppenmetallen. PhD Thesis, Universität Köln, Germany.  Google Scholar
First citationHippler, K., Sitta, S., Vogt, P. & Sabrowsky, H. (1990). Acta Cryst. C46, 736–738.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationRich, R. (2007). Inorganic Reactions in Water, p. 321. Berlin Heidelberg: Springer-Verlag.  Google Scholar
First citationSabrowsky, H. (1971). Z. Anorg. Allg. Chem. 381, 266–279.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSabrowsky, H., Feldbaum-Möller, E., Fischer, K., Sitta, S., Vogt, P. & Winter, V. (1996). Z. Anorg. Allg. Chem. 622, 153–156.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSabrowsky, H., Paszkowski, K., Reddig, D. & Vogt, P. (1988). Z. Naturforsch. Teil B, 43, 238–239.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSitta, S., Hippler, K., Vogt, P. & Sabrowsky, H. (1991a). Z. Anorg. Allg. Chem. 597, 197–200.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSitta, S., Hippler, K., Vogt, P. & Sabrowsky, H. (1991b). Z. Kristallogr. 196, 193–196.  CrossRef ICSD CAS Web of Science Google Scholar
First citationWortmann, R., Sitta, S. & Sabrowsky, H. (1989). Z. Naturforsch. Teil B, 44, 1348–1350.  CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds