research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1′S,2′S,3S)-1′-benzoyl-2′-(4-meth­­oxy­phen­yl)-1-methyl-2′,5′,6′,10b′-tetra­hydro-1′H-spiro­[indoline-3,3′-pyrrolo­[2,1-a]isoquinolin]-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, St.Peter's University, Avadi, Chennai-600054, Tamilnadu, India, bApplied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India, cAcademy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, India, dCSIR-North East Institute of Science and Technology (NEIST), Branch Laboratory, Lamphepat-795004, Imphal, Manipur, India, and eDepartment of Physics, Kings Engineering College, Irungattukottai, Sriperumbudur, Chennai–602117, Tamilnadu, India
*Correspondence e-mail: drkannan1208kings@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 25 June 2020; accepted 24 August 2020; online 4 September 2020)

In the title spiro compound, C34H30N2O3, the central pyrrolidine ring is fused with the tetra­hydro­iso­quinoline ring, both having distorted envelope conformations, with the flap atoms being C and N, respectively. The meth­oxy­phenyl group is attached to the pyrrolidine ring, and is disordered over two positions, with refined occupancies of 0.638 (6):0.362 (6) Å. The central pyrrolidine ring is inclined relative to the tetra­hydro­iso­quinoline group, such that the dihedral between the non-flap atoms of each ring system is 11.29 (7)°. The spiro-linkage creates a dihedral angle of 83.26 (5)° between the indolinone ring and the non-flap atoms of the pyrrolidine ring. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds. For the major disorder component, these form C(11) chains that propagate parallel to the a axis.

1. Chemical context

Spiro frameworks are often utilized in drug design as a result of their three-dimensionality and structural diversity, which provide a framework for the attachment of pharmaceutically relevant active sites (Kobayashi et al., 1991[Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.]). The spiro-pyrrolidine structural motif is present in numerous naturally occurring and pharmacologically important alkaloids. The spiro-pyrrolidine-indolin-2-one framework in particular is found in a number of alkaloids of biological significance (Hilton et al., 2000[Hilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639-2641.]). Some of these compounds have been used as anti­microbial and anti­tumour agents (Sundar et al., 2011[Sundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.]), or have analgesic (Crooks & Sommerville, 1982[Crooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291-294.]) and anti-influenza properties (Stylianakis et al., 2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]). Taking into account the significance of spiro compounds in this context, the single-crystal X-ray structure of the title compound, 1, was determined.

[Scheme 1]

2. Structural commentary

An ellipsoid plot of 1 is shown in Fig. 1[link]. The bond lengths (Allen et al., 1998[Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]) and bond angles are all normal. The tetra­hydro­iso­quinoline (N2/C11–C19) and pyrrolidine (N2/C1/C9–C11) rings each have envelope conformations, with the maximum deviation of the flap atoms being −0.363 (1) Å (for N2) and 0.253 (2) Å (for C11), respectively. These non-planar ring systems are fused at N2/C11, such that the dihedral angle between their non-flap atoms is 11.29 (7)°. The N-methyl indolinone ring system (N1/C1–C8/O1/C34) is essentially planar, with the maximum deviation being 0.030 (2) Å for the oxygen atom (O1). This group is attached to the pyrrolidine ring via the spiro-linkage, forming a dihedral angle with the non-flap atoms (N2/C1/C9/C10) of the pyrrolidine of 83.26 (5)°. The sum of the bond angles around N1 and N2 (360.0 and 338.33°, respectively) is in accordance with sp2 and sp3 hybridization states (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Figure 1]
Figure 1
A view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, the minor component of disorder of the meth­oxy­phenyl group is not shown.

The meth­oxy­phenyl group is disordered over two orientations, with refined occupancies of 0.638 (6):0.362 (6). The disordered meth­oxy­phenyl ring major (C27–C33/O3) and minor (C27D–C33D/O3D) components are largely planar, with the maximum deviations from their respective mean planes being observed for the methyl carbons, C33 [0.303 (7) Å] and C33D [0.130 (12) Å].

3. Supra­molecular features

In the crystal packing of 1, there are no classical hydrogen bonds or ππ inter­actions between the various rings of adjacent mol­ecules. There are, however, different weak C—H⋯O close contacts for the two disorder components (Table 1[link]). For the major component, there is a close contact between translation-related mol­ecules, C33—H33B⋯O2i, of 3.490 (5) Å [symmetry code: (i) x + 1, y, z], while for the minor component there is a close contact between glide-related mol­ecules, C4—H4⋯O3ii, of 3.559 (6) Å [symmetry code: (ii) x − 1, −y + [{1\over 2}], z − [{1\over 2}]]. For the major component, these generate C(11) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) that propagate parallel to the a axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33B⋯O2i 0.96 2.61 3.490 (5) 153
C4—H4⋯O3Dii 0.93 2.65 3.559 (6) 166
Symmetry codes: (i) x+1, y, z; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, showing the C(11) chain (major disorder component only) running parallel to the a axis. Hydrogen bonds are shown as dotted lines. Only the H atoms on groups involved in the hydrogen bonding are included.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.39, update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using pyrrolidine as the search fragment produced over 11600 hits. For the core spiro-pyrrolidine/N-methyl pyrrolidone fragment, the yield was a more modest 88 hits. These 88 structures show many different substitution patterns. The four structures with the most features in common with 1 are probably RAQCIY (Du et al., 2017[Du, Y., Yu, A., Jia, J., Zhang, Y. & Meng, X. (2017). Chem. Commun. 53, 1684-1687.]), IFETAR (Guo et al., 2018[Guo, J., Zhao, Y., Fang, D., Wang, Q. & Bu, Z. (2018). Org. Biomol. Chem. 16, 6025-6034.]), DOHMEV (Boudriga et al., 2019[Boudriga, S., Haddad, S., Askri, M., Soldera, A., Knorr, M., Strohmann, C. & Golz, C. (2019). RSC Adv. 9, 11082-11091.]), and KIFRID (Zhang et al., 2018[Zhang, X., Liu, M., iu, W., Evans, J., Kaur, M., Jasinski, J. P. & Zhang, W. (2018). ACS Sustainable Chem. Eng. 6, 5574-5579.]), though none of these are especially similar to 1.

5. Synthesis and crystallization

In a 50 mL round-bottom flask, 1-methyl­isatin (0.5 mmol) was dissolved in toluene (5 mL) followed by the addition of 1,2,3,4-tetra­hydro­iso­quinoline (0.5 mmol) and the mixture was stirred at room temperature for half an hour. After that, (E)-3-(4-meth­oxy­phen­yl)-1-phenyl­prop-2-en-1-one (0.5 mmol) was added to the reaction mixture and stirring was continued at 383 K for 10 h. The reaction was monitored for the formation of the product by TLC at regular inter­vals. Soon after the formation of the product, the reaction mixture was concentrated under reduced pressure and extracted with ethyl acetate/water (v/v = 75:25). The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum to yield the crude product, which was purified by column chromatography using ethyl acetate/n-hexane (3:17) as eluent. 0.2g of the compound were dissolved in ethanol and the solution was kept undisturbed in the open air for one week. After five days, crystals started to appear and were separated carefully.

1H NMR (500 MHz, CDCl3) δ 7.60 (d, J = 8.7 Hz, 2H), 7.28–7.22 (m, 3H), 7.14–7.03 (m, 5H), 7.02–6.98 (m, 1H), 6.96–6.90 (m, 3H), 6.92–6.85 (m, 1H), 6.75 (d, J = 7.8 Hz, 1H), 6.32 (d, J = 7.7 Hz, 1H), 5.15 (d, J = 10.1 Hz, 1H), 4.52 (d, J = 9.7 Hz, 1H), 4.24 (t, J = 9.9 Hz, 1H), 3.81 (s, 3H), 3.07 (s, 3H), 2.92 (d, J = 7.7 Hz, 2H), 2.65 (d, J = 12.3 Hz, 1H), 2.52–2.47 (m, 1H).

13C NMR (126 MHz, CDCl3) δ 197.0, 178.63, 158.55, 143.58, 138.24, 137.45, 134.71, 133.83, 132.39, 130.02, 129.07, 128.78, 127.77, 127.46, 127.12, 126.26, 126.15, 125.46, 125.04, 123.04, 114.43, 107.16, 70.87, 64.13, 63.59, 55.26, 49.83, 42.39, 30.32, 25.89.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq (C) for other H atoms. The occupancies of the disorder group of the meth­oxy phenyl moiety were initially allowed to ride then it was fixed and refined. The benzene rings were refined as rigid hexa­gons with C—C distances of 1.39 Å. The other bond lengths of the major and the minor components were made similar using similarity restraints with an s.u. of 0.01 Å. The positions of the meth­oxy­phenyl moiety (C30/O3/C33) atoms are disordered over two positions with site occupancy factors of 0.638 (6) and 0.362 (6), respectively.

Table 2
Experimental details

Crystal data
Chemical formula C34H30N2O3
Mr 514.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 9.5632 (1), 17.8067 (3), 16.1958 (3)
β (°) 103.463 (1)
V3) 2682.18 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.26 × 0.24 × 0.13
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.565, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24289, 5392, 4055
Rint 0.055
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.144, 1.06
No. of reflections 5392
No. of parameters 411
No. of restraints 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2020).

(1'S,2'S,3S)-1'-Benzoyl-2'-(4-methoxyphenyl)-1-methyl-2',5',6',10b'-tetrahydro-1'H-spiro[indoline-3,3'-pyrrolo[2,1-a]isoquinolin]-2-one top
Crystal data top
C34H30N2O3F(000) = 1088
Mr = 514.60Dx = 1.274 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5632 (1) ÅCell parameters from 4055 reflections
b = 17.8067 (3) Åθ = 2.3–26.3°
c = 16.1958 (3) ŵ = 0.08 mm1
β = 103.463 (1)°T = 294 K
V = 2682.18 (7) Å3Block, colourless
Z = 40.26 × 0.24 × 0.13 mm
Data collection top
Bruker D8 QUEST
diffractometer
4055 reflections with I > 2σ(I)
Radiation source: PHOTON-100Rint = 0.055
ω and φ scansθmax = 26.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.565, Tmax = 0.746k = 2222
24289 measured reflectionsl = 2019
5392 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.8201P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.26 e Å3
5392 reflectionsΔρmin = 0.22 e Å3
411 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
155 restraintsExtinction coefficient: 0.0198 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.45235 (17)0.17258 (8)0.65452 (10)0.0364 (4)
C20.5169 (2)0.13834 (10)0.58323 (12)0.0478 (4)
C30.2724 (2)0.12535 (11)0.54118 (12)0.0564 (5)
C40.1366 (3)0.10549 (16)0.49517 (17)0.0892 (8)
H40.1233050.0825820.4423030.107*
C50.0218 (3)0.12087 (19)0.5305 (2)0.0981 (9)
H50.0706590.1088390.5004410.118*
C60.0409 (2)0.15319 (15)0.60827 (19)0.0800 (7)
H60.0384550.1621770.6309070.096*
C70.1778 (2)0.17310 (11)0.65468 (14)0.0553 (5)
H70.1905550.1951870.7079490.066*
C80.29367 (18)0.15934 (9)0.61985 (11)0.0423 (4)
C90.50774 (16)0.25579 (8)0.67048 (10)0.0348 (3)
H90.5712740.2665150.6324000.042*
C100.59873 (16)0.25791 (8)0.76320 (10)0.0346 (3)
H100.5348850.2736870.7993270.042*
C110.63486 (17)0.17511 (8)0.78236 (10)0.0372 (4)
H110.7133970.1604250.7561830.045*
C120.67101 (18)0.15111 (9)0.87455 (11)0.0414 (4)
C130.74885 (19)0.19684 (11)0.93799 (11)0.0511 (4)
H130.7782450.2440220.9241100.061*
C140.7837 (2)0.17333 (13)1.02196 (13)0.0617 (5)
H140.8343300.2049911.0641280.074*
C150.7430 (2)0.10303 (13)1.04259 (13)0.0659 (6)
H150.7677070.0865451.0985880.079*
C160.6659 (2)0.05745 (12)0.98034 (13)0.0637 (6)
H160.6387270.0100290.9949090.076*
C170.6272 (2)0.08009 (10)0.89584 (12)0.0507 (4)
C180.5325 (3)0.03000 (11)0.83073 (13)0.0681 (6)
H18A0.4382820.0270190.8432040.082*
H18B0.5730280.0202020.8359080.082*
C190.5152 (2)0.05639 (9)0.74011 (12)0.0531 (5)
H19A0.5976740.0410310.7189410.064*
H19B0.4297280.0341330.7042610.064*
C200.38421 (17)0.31188 (9)0.65193 (11)0.0405 (4)
C210.31331 (18)0.32852 (10)0.56177 (11)0.0442 (4)
C220.3755 (2)0.31242 (12)0.49476 (12)0.0568 (5)
H220.4660220.2902410.5052730.068*
C230.3042 (2)0.32906 (17)0.41218 (14)0.0801 (7)
H230.3466050.3179790.3674520.096*
C240.1710 (3)0.36189 (19)0.39643 (16)0.0921 (9)
H240.1234080.3731830.3409350.111*
C250.1074 (2)0.37819 (18)0.46183 (17)0.0871 (8)
H250.0166910.4001270.4506620.105*
C260.1781 (2)0.36202 (13)0.54426 (15)0.0650 (6)
H260.1349850.3736050.5885630.078*
C270.7190 (15)0.3150 (7)0.7744 (19)0.0357 (9)0.638 (6)
C280.7031 (10)0.3858 (5)0.8046 (9)0.0496 (12)0.638 (6)
H280.6198480.3970170.8224320.060*0.638 (6)
C290.8066 (7)0.4410 (4)0.8093 (6)0.0575 (14)0.638 (6)
H290.7930340.4881240.8309070.069*0.638 (6)
C300.9290 (6)0.4261 (3)0.7822 (4)0.0445 (13)0.638 (6)
C310.9504 (6)0.3562 (3)0.7532 (5)0.0490 (13)0.638 (6)
H311.0351610.3450290.7369690.059*0.638 (6)
C320.8453 (7)0.3019 (3)0.7481 (7)0.0489 (13)0.638 (6)
H320.8596660.2549000.7263750.059*0.638 (6)
O31.0252 (4)0.4834 (2)0.7876 (2)0.0793 (11)0.638 (6)
C331.1100 (5)0.4875 (3)0.7290 (3)0.0908 (16)0.638 (6)
H33A1.0526940.4759890.6734560.136*0.638 (6)
H33B1.1873920.4520120.7438520.136*0.638 (6)
H33C1.1485530.5372510.7290880.136*0.638 (6)
C27D0.731 (3)0.3074 (12)0.770 (3)0.0357 (9)0.362 (6)
C28D0.7249 (19)0.3815 (10)0.7913 (17)0.0496 (12)0.362 (6)
H28D0.6414240.4002160.8038310.060*0.362 (6)
C29D0.8417 (12)0.4297 (6)0.7949 (9)0.049 (2)0.362 (6)
H29D0.8357550.4796850.8102730.059*0.362 (6)
C30D0.9633 (9)0.4034 (5)0.7761 (8)0.041 (2)0.362 (6)
C31D0.9735 (11)0.3295 (5)0.7567 (10)0.050 (2)0.362 (6)
H31D1.0572990.3113100.7441880.061*0.362 (6)
C32D0.8595 (15)0.2815 (6)0.7556 (13)0.0489 (13)0.362 (6)
H32D0.8696240.2307130.7451570.059*0.362 (6)
O3D1.0812 (5)0.4476 (3)0.7781 (4)0.0670 (17)0.362 (6)
C33D1.0613 (13)0.5235 (6)0.7809 (10)0.132 (4)0.362 (6)
H33D1.1519380.5485570.7867940.198*0.362 (6)
H33E1.0214340.5355910.8284340.198*0.362 (6)
H33F0.9964480.5395830.7293740.198*0.362 (6)
C340.4232 (4)0.08287 (19)0.43976 (16)0.1045 (10)
H34A0.3770440.1152490.3941130.157*
H34B0.3802740.0338770.4314610.157*
H34C0.5236940.0791560.4407810.157*
N10.4056 (2)0.11377 (10)0.52023 (10)0.0611 (5)
N20.50281 (15)0.13804 (7)0.73799 (8)0.0379 (3)
O10.64375 (16)0.13463 (9)0.58338 (10)0.0689 (4)
O20.34147 (16)0.34041 (8)0.70952 (9)0.0624 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (8)0.0343 (8)0.0314 (8)0.0025 (6)0.0071 (7)0.0015 (6)
C20.0607 (11)0.0420 (9)0.0424 (10)0.0081 (8)0.0155 (9)0.0025 (8)
C30.0646 (12)0.0542 (11)0.0428 (11)0.0016 (9)0.0030 (9)0.0054 (9)
C40.0880 (19)0.100 (2)0.0612 (15)0.0108 (15)0.0211 (13)0.0222 (14)
C50.0588 (15)0.115 (2)0.104 (2)0.0155 (14)0.0164 (15)0.0115 (18)
C60.0485 (12)0.0855 (17)0.102 (2)0.0072 (11)0.0103 (12)0.0003 (15)
C70.0472 (10)0.0543 (11)0.0634 (13)0.0030 (8)0.0108 (9)0.0003 (9)
C80.0474 (9)0.0361 (8)0.0397 (9)0.0032 (7)0.0027 (7)0.0009 (7)
C90.0364 (8)0.0346 (8)0.0334 (8)0.0012 (6)0.0079 (6)0.0016 (6)
C100.0392 (8)0.0330 (8)0.0314 (8)0.0012 (6)0.0076 (6)0.0003 (6)
C110.0404 (8)0.0337 (8)0.0362 (9)0.0031 (6)0.0062 (7)0.0011 (7)
C120.0428 (9)0.0410 (9)0.0381 (9)0.0065 (7)0.0049 (7)0.0045 (7)
C130.0500 (10)0.0578 (11)0.0413 (10)0.0048 (8)0.0019 (8)0.0049 (8)
C140.0592 (12)0.0800 (15)0.0398 (11)0.0069 (10)0.0010 (9)0.0024 (10)
C150.0699 (13)0.0818 (15)0.0403 (11)0.0028 (11)0.0013 (9)0.0189 (10)
C160.0803 (14)0.0555 (12)0.0516 (12)0.0036 (10)0.0081 (10)0.0180 (10)
C170.0626 (11)0.0406 (9)0.0453 (10)0.0065 (8)0.0052 (8)0.0074 (8)
C180.1057 (17)0.0350 (9)0.0558 (13)0.0070 (10)0.0028 (12)0.0072 (9)
C190.0723 (12)0.0310 (9)0.0506 (11)0.0010 (8)0.0031 (9)0.0033 (8)
C200.0429 (9)0.0334 (8)0.0449 (10)0.0006 (7)0.0098 (7)0.0026 (7)
C210.0399 (9)0.0421 (9)0.0484 (10)0.0010 (7)0.0055 (7)0.0099 (8)
C220.0462 (10)0.0761 (13)0.0460 (11)0.0065 (9)0.0064 (8)0.0113 (10)
C230.0601 (13)0.133 (2)0.0449 (12)0.0098 (13)0.0070 (10)0.0145 (13)
C240.0613 (14)0.155 (3)0.0520 (14)0.0119 (15)0.0034 (11)0.0281 (15)
C250.0482 (12)0.130 (2)0.0766 (17)0.0222 (13)0.0007 (11)0.0321 (16)
C260.0499 (11)0.0825 (15)0.0617 (13)0.0149 (10)0.0107 (10)0.0182 (11)
C270.041 (2)0.037 (2)0.027 (3)0.000 (2)0.0048 (18)0.000 (2)
C280.041 (3)0.0396 (13)0.071 (5)0.0006 (17)0.0188 (16)0.0077 (15)
C290.043 (3)0.042 (2)0.090 (4)0.0038 (19)0.019 (2)0.023 (2)
C300.038 (3)0.045 (3)0.049 (2)0.007 (2)0.006 (2)0.009 (2)
C310.046 (2)0.050 (3)0.054 (2)0.002 (2)0.019 (2)0.007 (3)
C320.0555 (18)0.039 (3)0.057 (2)0.002 (2)0.0224 (17)0.007 (3)
O30.068 (2)0.062 (2)0.111 (2)0.0330 (17)0.0269 (16)0.0194 (18)
C330.073 (3)0.074 (3)0.136 (4)0.025 (2)0.046 (3)0.007 (3)
C27D0.041 (2)0.037 (2)0.027 (3)0.000 (2)0.0048 (18)0.000 (2)
C28D0.041 (3)0.0396 (13)0.071 (5)0.0006 (17)0.0188 (16)0.0077 (15)
C29D0.047 (5)0.029 (3)0.076 (5)0.002 (3)0.023 (4)0.007 (3)
C30D0.031 (3)0.045 (5)0.045 (4)0.002 (3)0.006 (3)0.001 (4)
C31D0.041 (3)0.048 (5)0.067 (4)0.005 (3)0.020 (3)0.006 (5)
C32D0.0555 (18)0.039 (3)0.057 (2)0.002 (2)0.0224 (17)0.007 (3)
O3D0.040 (2)0.052 (3)0.106 (4)0.0002 (19)0.010 (2)0.007 (3)
C33D0.104 (6)0.075 (5)0.215 (9)0.006 (5)0.034 (6)0.009 (6)
C340.148 (3)0.121 (2)0.0454 (14)0.018 (2)0.0227 (15)0.0299 (15)
N10.0810 (12)0.0650 (11)0.0350 (9)0.0052 (9)0.0087 (8)0.0150 (7)
N20.0476 (7)0.0300 (7)0.0331 (7)0.0004 (5)0.0032 (6)0.0005 (5)
O10.0658 (9)0.0790 (10)0.0696 (10)0.0142 (7)0.0309 (8)0.0106 (8)
O20.0726 (9)0.0613 (9)0.0524 (8)0.0279 (7)0.0125 (7)0.0047 (7)
Geometric parameters (Å, º) top
C1—N21.461 (2)C21—C221.384 (3)
C1—C81.509 (2)C21—C261.392 (3)
C1—C21.555 (2)C22—C231.385 (3)
C1—C91.575 (2)C22—H220.9300
C2—O11.214 (2)C23—C241.371 (3)
C2—N11.364 (3)C23—H230.9300
C3—C81.382 (3)C24—C251.369 (4)
C3—C41.384 (3)C24—H240.9300
C3—N11.408 (3)C25—C261.379 (3)
C4—C51.378 (4)C25—H250.9300
C4—H40.9300C26—H260.9300
C5—C61.358 (4)C27—C281.373 (7)
C5—H50.9300C27—C321.390 (8)
C6—C71.396 (3)C28—C291.385 (7)
C6—H60.9300C28—H280.9300
C7—C81.377 (3)C29—C301.369 (5)
C7—H70.9300C29—H290.9300
C9—C201.523 (2)C30—C311.362 (6)
C9—C101.551 (2)C30—O31.363 (5)
C9—H90.9800C31—C321.383 (6)
C10—C271.514 (10)C31—H310.9300
C10—C27D1.522 (17)C32—H320.9300
C10—C111.529 (2)O3—C331.386 (6)
C10—H100.9800C33—H33A0.9600
C11—N21.457 (2)C33—H33B0.9600
C11—C121.514 (2)C33—H33C0.9600
C11—H110.9800C27D—C28D1.369 (12)
C12—C131.385 (3)C27D—C32D1.383 (12)
C12—C171.400 (2)C28D—C29D1.399 (12)
C13—C141.387 (3)C28D—H28D0.9300
C13—H130.9300C29D—C30D1.353 (9)
C14—C151.375 (3)C29D—H29D0.9300
C14—H140.9300C30D—C31D1.361 (9)
C15—C161.368 (3)C30D—O3D1.370 (9)
C15—H150.9300C31D—C32D1.382 (12)
C16—C171.392 (3)C31D—H31D0.9300
C16—H160.9300C32D—H32D0.9300
C17—C181.511 (3)O3D—C33D1.367 (11)
C18—C191.513 (3)C33D—H33D0.9600
C18—H18A0.9700C33D—H33E0.9600
C18—H18B0.9700C33D—H33F0.9600
C19—N21.459 (2)C34—N11.460 (3)
C19—H19A0.9700C34—H34A0.9600
C19—H19B0.9700C34—H34B0.9600
C20—O21.214 (2)C34—H34C0.9600
C20—C211.490 (2)
N2—C1—C8111.44 (13)C22—C21—C26118.54 (17)
N2—C1—C2114.79 (13)C22—C21—C20123.15 (15)
C8—C1—C2101.60 (13)C26—C21—C20118.31 (17)
N2—C1—C9102.60 (12)C21—C22—C23120.53 (19)
C8—C1—C9118.61 (13)C21—C22—H22119.7
C2—C1—C9108.32 (13)C23—C22—H22119.7
O1—C2—N1126.10 (17)C24—C23—C22119.9 (2)
O1—C2—C1126.08 (17)C24—C23—H23120.0
N1—C2—C1107.82 (15)C22—C23—H23120.0
C8—C3—C4121.8 (2)C25—C24—C23120.5 (2)
C8—C3—N1109.83 (16)C25—C24—H24119.8
C4—C3—N1128.4 (2)C23—C24—H24119.8
C5—C4—C3117.6 (2)C24—C25—C26119.9 (2)
C5—C4—H4121.2C24—C25—H25120.0
C3—C4—H4121.2C26—C25—H25120.0
C6—C5—C4121.4 (2)C25—C26—C21120.6 (2)
C6—C5—H5119.3C25—C26—H26119.7
C4—C5—H5119.3C21—C26—H26119.7
C5—C6—C7120.9 (2)C28—C27—C32116.1 (7)
C5—C6—H6119.5C28—C27—C10121.0 (6)
C7—C6—H6119.5C32—C27—C10122.7 (7)
C8—C7—C6118.5 (2)C27—C28—C29122.3 (5)
C8—C7—H7120.7C27—C28—H28118.8
C6—C7—H7120.7C29—C28—H28118.8
C7—C8—C3119.72 (17)C30—C29—C28119.9 (5)
C7—C8—C1130.92 (16)C30—C29—H29120.1
C3—C8—C1109.32 (16)C28—C29—H29120.1
C20—C9—C10114.19 (13)C31—C30—O3123.6 (5)
C20—C9—C1111.66 (12)C31—C30—C29119.7 (4)
C10—C9—C1105.86 (12)O3—C30—C29116.7 (5)
C20—C9—H9108.3C30—C31—C32119.6 (5)
C10—C9—H9108.3C30—C31—H31120.2
C1—C9—H9108.3C32—C31—H31120.2
C27—C10—C11119.6 (7)C31—C32—C27122.4 (6)
C27D—C10—C11113.6 (12)C31—C32—H32118.8
C27—C10—C9111.8 (12)C27—C32—H32118.8
C27D—C10—C9110 (2)C30—O3—C33119.3 (4)
C11—C10—C9102.84 (12)O3—C33—H33A109.5
C27—C10—H10107.3O3—C33—H33B109.5
C11—C10—H10107.3H33A—C33—H33B109.5
C9—C10—H10107.3O3—C33—H33C109.5
N2—C11—C12109.33 (13)H33A—C33—H33C109.5
N2—C11—C10101.99 (12)H33B—C33—H33C109.5
C12—C11—C10117.46 (13)C28D—C27D—C32D117.0 (13)
N2—C11—H11109.2C28D—C27D—C10119.6 (12)
C12—C11—H11109.2C32D—C27D—C10123.5 (12)
C10—C11—H11109.2C27D—C28D—C29D121.5 (11)
C13—C12—C17119.24 (16)C27D—C28D—H28D119.3
C13—C12—C11121.72 (15)C29D—C28D—H28D119.3
C17—C12—C11119.02 (15)C30D—C29D—C28D119.9 (9)
C12—C13—C14120.99 (18)C30D—C29D—H29D120.0
C12—C13—H13119.5C28D—C29D—H29D120.0
C14—C13—H13119.5C29D—C30D—C31D119.8 (8)
C15—C14—C13119.7 (2)C29D—C30D—O3D122.8 (9)
C15—C14—H14120.1C31D—C30D—O3D117.3 (8)
C13—C14—H14120.1C30D—C31D—C32D120.1 (9)
C16—C15—C14119.70 (19)C30D—C31D—H31D119.9
C16—C15—H15120.2C32D—C31D—H31D119.9
C14—C15—H15120.2C31D—C32D—C27D121.5 (11)
C15—C16—C17121.8 (2)C31D—C32D—H32D119.3
C15—C16—H16119.1C27D—C32D—H32D119.3
C17—C16—H16119.1C33D—O3D—C30D116.6 (8)
C16—C17—C12118.50 (18)O3D—C33D—H33D109.5
C16—C17—C18119.64 (18)O3D—C33D—H33E109.5
C12—C17—C18121.76 (16)H33D—C33D—H33E109.5
C17—C18—C19113.98 (17)O3D—C33D—H33F109.5
C17—C18—H18A108.8H33D—C33D—H33F109.5
C19—C18—H18A108.8H33E—C33D—H33F109.5
C17—C18—H18B108.8N1—C34—H34A109.5
C19—C18—H18B108.8N1—C34—H34B109.5
H18A—C18—H18B107.7H34A—C34—H34B109.5
N2—C19—C18108.81 (15)N1—C34—H34C109.5
N2—C19—H19A109.9H34A—C34—H34C109.5
C18—C19—H19A109.9H34B—C34—H34C109.5
N2—C19—H19B109.9C2—N1—C3111.40 (15)
C18—C19—H19B109.9C2—N1—C34123.9 (2)
H19A—C19—H19B108.3C3—N1—C34124.7 (2)
O2—C20—C21120.82 (15)C11—N2—C19112.57 (13)
O2—C20—C9120.50 (15)C11—N2—C1109.09 (12)
C21—C20—C9118.63 (14)C19—N2—C1116.67 (13)
N2—C1—C2—O158.2 (2)C9—C20—C21—C2218.0 (2)
C8—C1—C2—O1178.62 (18)O2—C20—C21—C2615.4 (3)
C9—C1—C2—O155.7 (2)C9—C20—C21—C26162.11 (17)
N2—C1—C2—N1122.25 (16)C26—C21—C22—C230.3 (3)
C8—C1—C2—N11.87 (18)C20—C21—C22—C23179.9 (2)
C9—C1—C2—N1123.79 (15)C21—C22—C23—C240.1 (4)
C8—C3—C4—C50.1 (4)C22—C23—C24—C250.2 (5)
N1—C3—C4—C5178.0 (2)C23—C24—C25—C260.5 (5)
C3—C4—C5—C61.1 (5)C24—C25—C26—C210.6 (4)
C4—C5—C6—C71.0 (5)C22—C21—C26—C250.5 (3)
C5—C6—C7—C80.1 (4)C20—C21—C26—C25179.6 (2)
C6—C7—C8—C31.0 (3)C11—C10—C27—C28143.2 (18)
C6—C7—C8—C1178.42 (19)C9—C10—C27—C2897 (2)
C4—C3—C8—C71.0 (3)C11—C10—C27—C3243 (3)
N1—C3—C8—C7177.27 (17)C9—C10—C27—C3277 (2)
C4—C3—C8—C1178.9 (2)C32—C27—C28—C290 (3)
N1—C3—C8—C10.6 (2)C10—C27—C28—C29174.9 (16)
N2—C1—C8—C753.4 (2)C27—C28—C29—C301 (2)
C2—C1—C8—C7176.10 (18)C28—C29—C30—C312.2 (13)
C9—C1—C8—C765.4 (2)C28—C29—C30—O3179.1 (9)
N2—C1—C8—C3124.20 (15)O3—C30—C31—C32178.6 (7)
C2—C1—C8—C31.48 (18)C29—C30—C31—C322.8 (11)
C9—C1—C8—C3117.03 (16)C30—C31—C32—C272.3 (19)
N2—C1—C9—C20119.90 (14)C28—C27—C32—C311 (3)
C8—C1—C9—C203.37 (19)C10—C27—C32—C31175.4 (15)
C2—C1—C9—C20118.32 (15)C31—C30—O3—C3332.0 (9)
N2—C1—C9—C104.93 (15)C29—C30—O3—C33149.3 (7)
C8—C1—C9—C10128.20 (14)C11—C10—C27D—C28D151 (3)
C2—C1—C9—C10116.85 (14)C9—C10—C27D—C28D94 (4)
C20—C9—C10—C2787.6 (4)C11—C10—C27D—C32D28 (5)
C1—C9—C10—C27149.2 (4)C9—C10—C27D—C32D87 (4)
C20—C9—C10—C27D95.6 (7)C32D—C27D—C28D—C29D3 (6)
C1—C9—C10—C27D141.2 (7)C10—C27D—C28D—C29D178 (3)
C20—C9—C10—C11142.92 (13)C27D—C28D—C29D—C30D1 (4)
C1—C9—C10—C1119.68 (15)C28D—C29D—C30D—C31D2 (2)
C27—C10—C11—N2161.6 (11)C28D—C29D—C30D—O3D179.7 (16)
C27D—C10—C11—N2156 (2)C29D—C30D—C31D—C32D0 (2)
C9—C10—C11—N237.08 (14)O3D—C30D—C31D—C32D178.5 (14)
C27—C10—C11—C1278.9 (11)C30D—C31D—C32D—C27D3 (4)
C27D—C10—C11—C1284 (2)C28D—C27D—C32D—C31D5 (6)
C9—C10—C11—C12156.53 (13)C10—C27D—C32D—C31D176 (3)
N2—C11—C12—C13152.60 (16)C29D—C30D—O3D—C33D14.6 (17)
C10—C11—C12—C1337.1 (2)C31D—C30D—O3D—C33D167.5 (12)
N2—C11—C12—C1728.8 (2)O1—C2—N1—C3178.84 (19)
C10—C11—C12—C17144.31 (16)C1—C2—N1—C31.6 (2)
C17—C12—C13—C140.1 (3)O1—C2—N1—C343.9 (3)
C11—C12—C13—C14178.63 (17)C1—C2—N1—C34175.6 (2)
C12—C13—C14—C151.3 (3)C8—C3—N1—C20.7 (2)
C13—C14—C15—C161.3 (3)C4—C3—N1—C2177.4 (2)
C14—C15—C16—C170.1 (4)C8—C3—N1—C34176.5 (2)
C15—C16—C17—C121.1 (3)C4—C3—N1—C345.4 (4)
C15—C16—C17—C18175.4 (2)C12—C11—N2—C1960.40 (17)
C13—C12—C17—C161.1 (3)C10—C11—N2—C19174.56 (13)
C11—C12—C17—C16177.49 (17)C12—C11—N2—C1168.44 (12)
C13—C12—C17—C18175.28 (19)C10—C11—N2—C143.40 (15)
C11—C12—C17—C186.1 (3)C18—C19—N2—C1166.5 (2)
C16—C17—C18—C19172.27 (19)C18—C19—N2—C1166.23 (16)
C12—C17—C18—C1911.4 (3)C8—C1—N2—C11158.00 (13)
C17—C18—C19—N239.1 (3)C2—C1—N2—C1187.21 (16)
C10—C9—C20—O217.6 (2)C9—C1—N2—C1130.05 (15)
C1—C9—C20—O2102.41 (18)C8—C1—N2—C1973.08 (18)
C10—C9—C20—C21164.84 (13)C2—C1—N2—C1941.7 (2)
C1—C9—C20—C2175.12 (17)C9—C1—N2—C19158.97 (14)
O2—C20—C21—C22164.45 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33B···O2i0.962.613.490 (5)153
C4—H4···O3Dii0.932.653.559 (6)166
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1/2, z1/2.
 

Acknowledgements

YP and JBD are grateful to the Director, CSIR-NEIST, Jorhat, Assam, India, for his keen inter­est in this work.

Funding information

JBD and YP thank the Science and Engineering Research Board (SERB), New Delhi (Ref. No. EEQ/2017/000161) for financial support.

References

First citationAllen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoudriga, S., Haddad, S., Askri, M., Soldera, A., Knorr, M., Strohmann, C. & Golz, C. (2019). RSC Adv. 9, 11082–11091.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291–294.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDu, Y., Yu, A., Jia, J., Zhang, Y. & Meng, X. (2017). Chem. Commun. 53, 1684–1687.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, J., Zhao, Y., Fang, D., Wang, Q. & Bu, Z. (2018). Org. Biomol. Chem. 16, 6025–6034.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.  Web of Science CSD CrossRef PubMed Google Scholar
First citationZhang, X., Liu, M., iu, W., Evans, J., Kaur, M., Jasinski, J. P. & Zhang, W. (2018). ACS Sustainable Chem. Eng. 6, 5574–5579.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds