research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, optical property and Hirshfeld surface analysis of bis­­[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexa­chlorido­stannate(IV)

CROSSMARK_Color_square_no_text.svg

aChemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia
*Correspondence e-mail: hhferjani@imamu.edu.sa

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 15 August 2020; accepted 2 September 2020; online 8 September 2020)

A new 0D organic–inorganic hybrid material bis­[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexa­chlorido­stannate(IV), (C6H9N2)2[SnCl6], has been prepared and characterized by single-crystal X-ray diffraction, Hirshfeld surface analysis and UV–visible spectroscopy. The structure consists of isolated [SnCl6]2− octa­hedral anions separated by layers of organic 1-(prop-2-en-1-yl)-1H-imidazol-3-ium cations. The 1-(prop-2-en-1-yl) fragment in the organic cation exhibits disorder over two sets of atomic sites having occupancies of 0.512 (9) and 0.488 (9). The crystal packing of the title compound is established by inter­molecular N/C–H⋯Cl hydrogen bond and ππ stacking inter­actions. Hirshfeld surface analysis employing three-dimensional mol­ecular surface contours and two-dimensional fingerprint plots has been used to analyse the inter­molecular inter­actions present in the structure. The optical properties of the crystal were studied using UV–visible absorption spectroscopy, showing one intense band at 208 nm, which is attributed to ππ* transitions in the cations.

1. Chemical context

Tin(IV) halide organic–inorganic hybrid compounds are significant materials because of their inter­esting structural topologies and their wide range of optical applications such as luminescence, non-linear activity and semiconductivity (Hajji et al., 2016[Hajji, R., Oueslati, A., Hajlaoui, F., Bulou, A. & Hlel, F. (2016). Phase Transit. 89, 523-542.], 2019[Hajji, R., Fersi, M. A., Hajji, S., Hlel, F. & Ben Ahmed, A. (2019). Chem. Phys. Lett. 722, 160-172.]; BelhajSalah et al., 2018[BelhajSalah, S., Abdelbaky, M. S. M., García-Granda, S., Essalah, K., Ben Nasr, C. & Mrad, M. L. (2018). Solid State Sci. 86, 77-85.]). As part of a continuing search of new organic–inorganic hybrid compounds such as Bi2Cl104− (Ferjani & Boughzala, 2018[Ferjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349-356.]; Ferjani et al., 2020[Ferjani, H., Bechaieb, R., Abd El-Fattah, W. & Fettouhi, M. (2020). Spectrochim. Acta Part A, 161, 126-131.]) and Hg2Cl6 (Garci et al., 2019[Garci, F., Ferjani, H., Chebbi, H., Ben Jomaa, M. & Zid, M. F. (2019). Acta Cryst. E75, 1600-1606.]), the synthesis and characterization of a new hybrid material, bis­[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexa­chlorido­stan­nate(IV), (C6H9N2)2[SnCl6] is reported.

[Scheme 1]

Imidazole was chosen as the organic cation because the resulting complexes show inter­esting structural, chemical and physical properties significant for photoluminescence, magnetism, ferroelectricity, and conductivity (Tritt-Goc et al., 2019[Tritt-Goc, J., Lindner, Ł., Bielejewski, M., Markiewicz, E. & Pankiewicz, R. (2019). Carbohydr. Polym. 225, 115196.]; Babar et al., 2019[Babar, R., Munawar, M. A., Tahir, M. N. & Arif, M. (2019). Spectrochim. Acta Part A, 217, 223-236.]; Ishak et al., 2019[Ishak, N. N. M., Jamsari, J., Ismail, A. Z., Tahir, M. I. M., Tiekink, E. R. T., Veerakumarasivam, A. & Ravoof, T. B. S. A. (2019). J. Mol. Struct. 1198, 126888.]). The Hirshfeld surface analysis was performed to completely characterize the inter­molecular inter­actions and explain the crystalline architecture. Moreover, the UV–visible spectrum was also investigated.

2. Structural commentary

The asymmetric unit of (C6H9N2)2[SnCl6] contains one (C6H9N2)+ cation and one half of an [SnCl6]2− anion (Fig. 1[link]). The SnIV atom is located on a special position of site symmetry 21/n (crystallographic center of inversion) and is coordinated by six chlorine atoms in an octa­hedral geometry. The hexa­chloro­stannate(IV) octa­hedron is nearly perfect with Sn—Cl bond lengths ranging from 2.4136 (6) to 2.4363 (6) Å and Cl—Sn—Cl bond angles between 88.44 (3) and 180°. These bond lengths and angles are in good agreement with those observed in similar compounds based on hexa­chloro­stannate(IV) (van Megen et al., 2013[Megen, M. van, Prömper, S. & Reiss, G. J. (2013). Acta Cryst. E69, m217.]; Zhou et al., 2012[Zhou, B. & Liu, H. (2012). Acta Cryst. E68, m782.]; Rademeyer et al., 2007[Rademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289-m292.]). The organic (C6H9N2)+ cations are related to each other by 21/n symmetry elements. The overall negative charges in the structure are counter-balanced by the protonated 1-(prop-2-en-1-yl)-1H-imidazol-3-ium cations (Fig. 1[link]). As usual, this aromatic amine is protonated at the N1 atom. The C=C and ring C—N bond lengths vary from 1.253 (8) to 1.307 (5), and 1.265 (6) to 1.349 (5) Å, respectively, which agree well with those in homologous materials involving 1-(prop-2-en-1-yl)-1H-imidazole (Ferjani, 2020[Ferjani, H. (2020). Crystals, 10, 397-411.]; Parshina et al., 2019[Parshina, L. N., Grishchenko, L. A., Smirnov, V. I., Borodina, T. N., Shakhmardanova, S. A., Tarasov, V. V., Apartsin, K. A., Kireeva, V. V. & Trofimov, B. A. (2019). Polyhedron, 161, 126-131.]). The crystal structure can be described as an organization of organic–inorganic layers, which propagate along the a axis at y = 0 and y = 1/2 (Fig. 2[link]). These layers are formed by [SnCl6]2− octa­hedra and (C6H9N2)+ organic cations.

[Figure 1]
Figure 1
The asymmetric unit of (C6H9N2)2[SnCl6], showing the atom-labelling scheme and the disorder of the allyl group with occupancies of 0.512 (9) (solid bonds) and 0.488 (9) (broken bonds).
[Figure 2]
Figure 2
Crystal packing of (C6H9N2)2[SnCl6] viewed along the a axis, showing the N—H⋯Cl and C—H⋯Cl hydrogen bonds (dashed lines).

3. Supra­molecular features

The cohesion and stabilization of the title structure is ensured by N—H⋯Cl and C—H⋯Cl hydrogen bonds between the NH+ unit of 1H-imidazol-3-ium as the donor group and the chlorine atoms of the [SnCl6]2− octa­hedron as acceptor with H⋯Cl lengths ranging between 2.67 and 2.98 Å (Fig. 2[link] and Table 1[link]). Additional stabilization is provided by weak ππ stacking inter­actions between 1H-imidazol-3-ium rings with a centroid-to-centroid distance of 3.996 (2) Å (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2 0.86 2.67 3.399 (4) 144
N1—H1A⋯Cl1 0.86 2.81 3.485 (4) 136
C2—H2⋯Cl3i 0.93 2.79 3.672 (4) 158
C3—H3⋯Cl3ii 0.93 2.90 3.790 (4) 160
C4A—H4A1⋯Cl2iii 0.97 2.89 3.716 (9) 144
C4A—H4A1⋯Cl1iv 0.97 2.94 3.743 (10) 141
C4B—H4B1⋯Cl1v 0.97 2.98 3.702 (10) 133
C4B—H4B2⋯Cl1iv 0.97 2.80 3.590 (7) 139
C5B—H5B⋯Cl2vi 0.93 2.97 3.766 (11) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z.
[Figure 3]
Figure 3
The ππ inter­actions between organic cations in (C6H9N2)2[SnCl6]. H atoms are omitted for clarity.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed and the associated 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.]). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) dnorm surface plotted over a fixed colour scale mapped over the range −0.208 (red) to 1.180 (blue) a.u. The dnorm mapping indicates that strong hydrogen-bonding inter­actions, such as N—H⋯Cl hydrogen bonding between chlorine atoms and imidazolium groups and C—H⋯Cl hydrogen bonding between chlorine atoms and the hydrogen atoms of the 1-(prop-2-en-1-yl) groups, appear to be the primary inter­actions in the structure, seen as a bright-red area in the Hirshfeld surface (Fig. 4[link]).

[Figure 4]
Figure 4
View of the Hirshfeld surfaces for (C6H9N2)2[SnCl6] mapped over shape-index, dnorm and curvedness.

A shape-index map of the title compound was calculated in the range −0.995 to 0.996 a.u. (Fig. 4[link]). The convex blue regions on the shape-index symbolize hydrogen-donor groups and the concave red regions symbolize hydrogen-acceptor groups. ππ inter­actions are generally indicated by adjacent red and blue triangles on the shape-index map of the Hirshfeld surface.

A curvedness map of the title compound was generated in the range −3.411 to 0.368 a.u. (Fig. 4[link]). The large flat region of green around the rings delineated by a blue outline on the Hirshfeld surface plotted over curvedness refer to the ππ stacking inter­actions.

The overall 2D fingerprint plot for all contacts are shown in Fig. 5[link], together with their relative contributions to the Hirshfeld surface. The 2D fingerprint plots show that the dominant inter­molecular H⋯Cl (N/C-H⋯Cl) and H⋯H inter­actions contribute 59.8% and 25.6%, respectively, to the overall crystal packing. The fingerprint plot of H⋯Cl contacts, which represent the largest contribution to the Hirshfeld surfaces (59.8%), shows two large spikes highly concentrated at the edges, having almost the same de + di = 2.7 Å (Fig. 5[link]). The H⋯H inter­actions appear as the next largest region of the fingerprint plot (25.6%), and have a distinct pattern with a minimum value of de = di = 1 Å (Fig. 5[link]). Apart from these above, C⋯Cl, C⋯H, Cl⋯Cl, Cl⋯N, N⋯H, C⋯C, and C⋯N inter­actions were observed, which are summarized in Fig. 5[link].

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound showing the contributions of different types of inter­actions.

5. Database survey

In the Cambridge Structural Database (Version 5.40, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), eight structures of transition-metal coordination compounds with the 1-allyl­imidazole ligand are reported. The environment for the central ion in the [ML6]2+ ion is provided by the nitro­gen atoms of six imidazole rings (Kurdziel & Glowiak, 2000[Kurdziel, K. T. & Głowiak, T. (2000). Polyhedron, 19, 2183-2188.]; Kurdziel & Glowiak, 1998[Kurdziel, K. T. & Głowiak, T. (1998). Pol. J. Chem. 72, 2181-2181.]) or by other ligands with the imidazole rings (Glowiak & Kurdziel, 2000[Głowiak, T. & Kurdziel, K. (2000). J. Mol. Struct. 516, 1-5.]; Curtis et al. 2008[Curtis, S. De A., Kurdziel, K., Materazzi, S. & Vecchio, S. (2008). J. Therm. Anal. Calorim. 92, 109-114.]; Kurdziel & Glowiak, 1998[Kurdziel, K. T. & Głowiak, T. (1998). Pol. J. Chem. 72, 2181-2181.]; Li & Liu, 2010[Li, R.-X., Wu, Q.-Y. & Liu, F.-Q. (2010). Acta Cryst. E66, m258.]). However, there is no structure reported of a post-transition-metal complex with 1-allyl­imidazole as ligand. One bis­muth complex with 1-allyl­imidazole (C6H9N2)4[Bi4I16]·2H2O has been recently determined by Ferjani (2020[Ferjani, H. (2020). Crystals, 10, 397-411.]), but is not yet available in the CSD. This and the title structure have the same monoclinic crystallographic P21/n symmetry. However, one has two cations in the unit cell and the other has only one. The half anionic cluster in the asymmetric unit sits on a crystallographic inversion center.

6. UV–visible spectroscopy

Optical absorption (OA) of the title compound was measured at ambient temperature in water. The experimental UV–visible absorption spectrum of the title compound is shown in Fig. 6[link]. It shows one intense absorption band at 208 nm. According to a similar compound studied previously (Maalaoui et al., 2012[Maalaoui, A., Olfa, B. S., Akriche, S. T., Al-Deyabd, S. S. & Rzaigui, M. (2012). Z. Naturforsch Teil B, 67, 1178-1184.]; Lassoued et al., 2017[Lassoued, M. S., Abdelbaky, M. S. M., Lassoued, A., Meroño, R. M., Ammar, S., Gadri, A., Ben Salah, A. & García-Granda, S. (2017). J. Mol. Struct. 1141, 660-667.]; Hermi et al., 2020[Hermi, S., Alotaibi, A. A., Lefebvre, F., Ben Nasr, C. & Mrad, M. H. (2020). J. Mol. Struct. 1216, 128296.]; Mathlouthi et al., 2017[Mathlouthi, M., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). Phase Transit. 90, 399-414.]), we assign this band to ππ* transitions within the (C6H9N2)+ organic cations.

[Figure 6]
Figure 6
UV–visible spectrum of the title compound.

7. Synthesis and crystallization

The title compound was prepared by dissolving 0.34 g (1 mmol) of 1-allyl­imidazole [1-(prop-2-en-1-yl)-1H-imidazole] and 0.3 g (2 mmol) of tin(II) chloride in 10 ml of concentrated (37%) hydro­chloric acid. The mixture was stirred with heating and then kept at room temperature. Three days later, colourless single crystals suitable for structural determination were obtained.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The disordered 1-(prop-2-en-1-yl) fragment in the organic cation was refined by splitting atoms C4 and C5 over two positions (C4A, C4B) and (C5A, C5B) with occupancy factors of 0.512 (9) and 0.488 (9). Geometrical restraints (SADI) on bond lengths were applied. H atoms were located in difference-Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 and 0.97 Å, N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C, N).

Table 2
Experimental details

Crystal data
Chemical formula (C6H8N2)2[SnCl6]
Mr 547.68
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 9.3953 (5), 11.7817 (6), 9.8243 (5)
β (°) 106.547 (4)
V3) 1042.44 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.00
Crystal size (mm) 0.71 × 0.66 × 0.42
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.311, 0.358
No. of measured, independent and observed [I > 2σ(I)] reflections 12972, 4294, 3326
Rint 0.035
(sin θ/λ)max−1) 0.791
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.086, 1.14
No. of reflections 4294
No. of parameters 126
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.93
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexachloridostannate(IV) top
Crystal data top
(C6H8N2)2[SnCl6]F(000) = 536
Mr = 547.68Dx = 1.745 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3953 (5) ÅCell parameters from 19596 reflections
b = 11.7817 (6) Åθ = 2.3–34.4°
c = 9.8243 (5) ŵ = 2.00 mm1
β = 106.547 (4)°T = 298 K
V = 1042.44 (10) Å3Prism, colorless
Z = 20.71 × 0.66 × 0.42 mm
Data collection top
Stoe IPDS2
diffractometer
4294 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3326 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.035
rotation method scansθmax = 34.2°, θmin = 2.7°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1114
Tmin = 0.311, Tmax = 0.358k = 1718
12972 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.5447P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.65 e Å3
4294 reflectionsΔρmin = 0.93 e Å3
126 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.0276 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn11.00000.50000.50000.03804 (7)
Cl20.87600 (8)0.32725 (6)0.39099 (8)0.05747 (17)
Cl31.12514 (8)0.39362 (6)0.70986 (7)0.05588 (17)
Cl10.79125 (8)0.53542 (7)0.59310 (8)0.06053 (18)
N20.3752 (3)0.5613 (2)0.1386 (4)0.0803 (9)
N10.5438 (4)0.4614 (4)0.2679 (4)0.0884 (10)
H1A0.62040.44130.33510.106*
C20.4639 (4)0.3926 (3)0.1674 (5)0.0778 (10)
H20.48000.31560.15720.093*
C30.3583 (4)0.4548 (3)0.0861 (4)0.0718 (9)
H30.28490.43010.00650.086*
C10.4905 (5)0.5607 (4)0.2501 (5)0.0895 (13)
H10.52760.62310.30730.107*
C60.0239 (5)0.6629 (5)0.0277 (6)0.1064 (17)
H6A0.02880.65700.12070.128*0.512 (9)
H6B0.06760.66960.00970.128*0.512 (9)
C5A0.1409 (7)0.6617 (7)0.0733 (9)0.0645 (19)0.488 (9)
H5A0.13960.66740.16740.077*0.488 (9)
C4A0.2828 (8)0.6505 (7)0.0334 (13)0.085 (3)0.512 (9)
H4A10.33460.72260.04350.102*0.512 (9)
H4A20.26350.62470.06390.102*0.512 (9)
C4B0.2765 (9)0.6630 (6)0.1398 (10)0.073 (2)0.488 (9)
H4B10.22900.65580.21500.087*0.488 (9)
H4B20.33400.73260.15430.087*0.488 (9)
C5B0.1662 (11)0.6638 (8)0.0018 (11)0.086 (3)0.512 (9)
H5B0.20390.66510.07610.103*0.512 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04007 (11)0.03416 (10)0.03755 (11)0.00060 (9)0.00730 (7)0.00264 (8)
Cl20.0611 (4)0.0399 (3)0.0626 (4)0.0058 (3)0.0033 (3)0.0064 (3)
Cl30.0597 (4)0.0527 (3)0.0467 (3)0.0001 (3)0.0015 (3)0.0136 (3)
Cl10.0553 (4)0.0704 (4)0.0611 (4)0.0057 (3)0.0250 (3)0.0003 (3)
N20.0484 (14)0.0470 (14)0.140 (3)0.0018 (11)0.0178 (16)0.0098 (16)
N10.0568 (17)0.107 (3)0.090 (2)0.0018 (19)0.0023 (15)0.016 (2)
C20.071 (2)0.0554 (19)0.111 (3)0.0096 (17)0.033 (2)0.005 (2)
C30.069 (2)0.067 (2)0.071 (2)0.0158 (17)0.0064 (16)0.0003 (17)
C10.066 (2)0.086 (3)0.117 (3)0.024 (2)0.027 (2)0.038 (3)
C60.078 (3)0.124 (4)0.107 (3)0.015 (3)0.009 (2)0.037 (3)
C5A0.064 (4)0.076 (4)0.059 (4)0.012 (3)0.028 (3)0.014 (3)
C4A0.068 (4)0.068 (4)0.127 (9)0.020 (3)0.042 (5)0.045 (5)
C4B0.075 (5)0.052 (4)0.081 (6)0.000 (3)0.005 (4)0.002 (3)
C5B0.099 (7)0.078 (5)0.072 (5)0.010 (5)0.010 (5)0.023 (4)
Geometric parameters (Å, º) top
Sn1—Cl32.4131 (6)C3—H30.9300
Sn1—Cl3i2.4131 (6)C1—H10.9300
Sn1—Cl1i2.4247 (7)C6—C5A1.253 (8)
Sn1—Cl12.4247 (7)C6—C5B1.285 (10)
Sn1—Cl22.4363 (6)C6—H6A0.9300
Sn1—Cl2i2.4363 (6)C6—H6B0.9300
N2—C11.303 (5)C5A—C4A1.499 (9)
N2—C31.349 (5)C5A—H5A0.9300
N2—C4B1.517 (8)C4A—H4A10.9700
N2—C4A1.554 (8)C4A—H4A20.9700
N1—C11.265 (6)C4B—C5B1.453 (9)
N1—C21.331 (5)C4B—H4B10.9700
N1—H1A0.8600C4B—H4B20.9700
C2—C31.307 (5)C5B—H5B0.9300
C2—H20.9300
Cl3—Sn1—Cl3i180.0C2—C3—H3126.2
Cl3—Sn1—Cl1i89.04 (3)N2—C3—H3126.2
Cl3i—Sn1—Cl1i90.96 (3)N1—C1—N2108.8 (4)
Cl3—Sn1—Cl190.96 (3)N1—C1—H1125.6
Cl3i—Sn1—Cl189.04 (3)N2—C1—H1125.6
Cl1i—Sn1—Cl1180.0C5A—C6—H6A120.0
Cl3—Sn1—Cl289.85 (2)C5A—C6—H6B120.0
Cl3i—Sn1—Cl290.15 (2)H6A—C6—H6B120.0
Cl1i—Sn1—Cl291.56 (3)C6—C5A—C4A116.0 (7)
Cl1—Sn1—Cl288.44 (3)C6—C5A—H5A122.0
Cl3—Sn1—Cl2i90.15 (2)C4A—C5A—H5A122.0
Cl3i—Sn1—Cl2i89.85 (2)C5A—C4A—N2104.8 (6)
Cl1i—Sn1—Cl2i88.44 (3)C5A—C4A—H4A1110.8
Cl1—Sn1—Cl2i91.56 (3)N2—C4A—H4A1110.8
Cl2—Sn1—Cl2i180.0C5A—C4A—H4A2110.8
C1—N2—C3107.2 (3)N2—C4A—H4A2110.8
C1—N2—C4B111.2 (4)H4A1—C4A—H4A2108.9
C3—N2—C4B137.0 (4)C5B—C4B—N2105.8 (7)
C1—N2—C4A137.4 (5)C5B—C4B—H4B1110.6
C3—N2—C4A113.1 (6)N2—C4B—H4B1110.6
C1—N1—C2110.1 (3)C5B—C4B—H4B2110.6
C1—N1—H1A124.9N2—C4B—H4B2110.6
C2—N1—H1A124.9H4B1—C4B—H4B2108.7
C3—C2—N1106.3 (3)C6—C5B—C4B129.0 (10)
C3—C2—H2126.8C6—C5B—H5B115.5
N1—C2—H2126.8C4B—C5B—H5B115.5
C2—C3—N2107.6 (3)
C1—N1—C2—C30.2 (5)C4A—N2—C1—N1160.5 (6)
N1—C2—C3—N20.1 (5)C6—C5A—C4A—N2135.5 (8)
C1—N2—C3—C20.0 (5)C1—N2—C4A—C5A106.0 (7)
C4B—N2—C3—C2152.5 (7)C3—N2—C4A—C5A94.2 (8)
C4A—N2—C3—C2165.9 (4)C1—N2—C4B—C5B171.4 (6)
C2—N1—C1—N20.1 (5)C3—N2—C4B—C5B36.7 (11)
C3—N2—C1—N10.1 (5)N2—C4B—C5B—C6124.1 (9)
C4B—N2—C1—N1160.4 (5)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.862.673.399 (4)144
N1—H1A···Cl10.862.813.485 (4)136
C2—H2···Cl3ii0.932.793.672 (4)158
C3—H3···Cl3iii0.932.903.790 (4)160
C4A—H4A1···Cl2iv0.972.893.716 (9)144
C4A—H4A1···Cl1v0.972.943.743 (10)141
C4B—H4B1···Cl1vi0.972.983.702 (10)133
C4B—H4B2···Cl1v0.972.803.590 (7)139
C5B—H5B···Cl2vii0.932.973.766 (11)145
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x1, y, z1; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+3/2, z1/2; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z.
 

Acknowledgements

Dr Necmi Dege of the Department of Physics, Ondokuz Mayıs University (Samsun, Turkey), is thanked for performing the SCXRD and UV–visible measurements related to this work.

References

First citationBabar, R., Munawar, M. A., Tahir, M. N. & Arif, M. (2019). Spectrochim. Acta Part A, 217, 223–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelhajSalah, S., Abdelbaky, M. S. M., García-Granda, S., Essalah, K., Ben Nasr, C. & Mrad, M. L. (2018). Solid State Sci. 86, 77–85.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCurtis, S. De A., Kurdziel, K., Materazzi, S. & Vecchio, S. (2008). J. Therm. Anal. Calorim. 92, 109–114.  Google Scholar
First citationFerjani, H. (2020). Crystals, 10, 397–411.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerjani, H., Bechaieb, R., Abd El-Fattah, W. & Fettouhi, M. (2020). Spectrochim. Acta Part A, 161, 126–131.  Google Scholar
First citationFerjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarci, F., Ferjani, H., Chebbi, H., Ben Jomaa, M. & Zid, M. F. (2019). Acta Cryst. E75, 1600–1606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGłowiak, T. & Kurdziel, K. (2000). J. Mol. Struct. 516, 1–5.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHajji, R., Fersi, M. A., Hajji, S., Hlel, F. & Ben Ahmed, A. (2019). Chem. Phys. Lett. 722, 160–172.  Web of Science CrossRef CAS Google Scholar
First citationHajji, R., Oueslati, A., Hajlaoui, F., Bulou, A. & Hlel, F. (2016). Phase Transit. 89, 523–542.  Web of Science CSD CrossRef CAS Google Scholar
First citationHermi, S., Alotaibi, A. A., Lefebvre, F., Ben Nasr, C. & Mrad, M. H. (2020). J. Mol. Struct. 1216, 128296.  Web of Science CSD CrossRef Google Scholar
First citationIshak, N. N. M., Jamsari, J., Ismail, A. Z., Tahir, M. I. M., Tiekink, E. R. T., Veerakumarasivam, A. & Ravoof, T. B. S. A. (2019). J. Mol. Struct. 1198, 126888.  Web of Science CSD CrossRef Google Scholar
First citationKurdziel, K. T. & Głowiak, T. (1998). Pol. J. Chem. 72, 2181–2181.  CAS Google Scholar
First citationKurdziel, K. T. & Głowiak, T. (2000). Polyhedron, 19, 2183–2188.  Web of Science CSD CrossRef CAS Google Scholar
First citationLassoued, M. S., Abdelbaky, M. S. M., Lassoued, A., Meroño, R. M., Ammar, S., Gadri, A., Ben Salah, A. & García-Granda, S. (2017). J. Mol. Struct. 1141, 660–667.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, R.-X., Wu, Q.-Y. & Liu, F.-Q. (2010). Acta Cryst. E66, m258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaalaoui, A., Olfa, B. S., Akriche, S. T., Al-Deyabd, S. S. & Rzaigui, M. (2012). Z. Naturforsch Teil B, 67, 1178–1184.  Web of Science CrossRef CAS Google Scholar
First citationMathlouthi, M., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). Phase Transit. 90, 399–414.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMegen, M. van, Prömper, S. & Reiss, G. J. (2013). Acta Cryst. E69, m217.  CSD CrossRef IUCr Journals Google Scholar
First citationParshina, L. N., Grishchenko, L. A., Smirnov, V. I., Borodina, T. N., Shakhmardanova, S. A., Tarasov, V. V., Apartsin, K. A., Kireeva, V. V. & Trofimov, B. A. (2019). Polyhedron, 161, 126–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationRademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289–m292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTritt-Goc, J., Lindner, Ł., Bielejewski, M., Markiewicz, E. & Pankiewicz, R. (2019). Carbohydr. Polym. 225, 115196.  Web of Science PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, B. & Liu, H. (2012). Acta Cryst. E68, m782.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds