research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of peptide di­methyl bi­phenyl hybrid C52H60N6O10·0.25H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, VNU University of science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
*Correspondence e-mail: thaithanhthubui@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 September 2020; accepted 22 September 2020; online 25 September 2020)

The synthesis and crystal structure of peptide 6,6′-dimethyl biphenyl hybrid are described. The title compound was synthesized by reaction between 6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-dicarbonyl dichloride in CH2Cl2, amine HN–proline–phenyl­alanine–alanine–COOMe and Et3N at 273 K under N2 atmosphere and characterized by single-crystal X-ray diffraction. The asymmetric unit contains one peptide mol­ecule and a quarter of a water mol­ecule. A disorder of a methyl and meth­oxy­carbonyl group of one alanine residue is observed with occupancy ratio 0.502 (6):0.498 (6). The structure is consolidated by intra- and inter­molecular hydrogen bonds.

1. Chemical context

Since the first application in 1922 of peptides in the treatment of diabetes with insulin (Banting et al., 1922[Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. (1922). Can. Med. Assoc. J. 12, 141-146.]), the chemistry of peptides has become a very important domain in the search of new therapeutic drugs. From 2011 to 2018, the global market of drugs has increased from US $ 14.1 to 24.4 billion. With more than 140 peptides in clinical trials, the number of peptide-based drugs is expected to grow significantly (Fosgerau et al., 2015[Fosgerau, K. & Hoffmann, T. (2015). Drug Discovery Today, 20, 122-128.]). Despite their tremendous potential, applications of peptides for pharmaceutical purposes are limited by their instability toward enzymatic systems, short half-life, rapid renal clearance, and formulation challenges (Otvos et al., 2014[Otvos, L. Jr & Wade, J. D. (2014). Front. Chem, 2, 62.]). These problems can be overcome by modifying the linear peptide to enhance the stability and therefore the selectivity and affinity. The biphenyl structure is present in numerous pharmaceuticals and bioactive compounds, as illustrated by the glycopeptide anti­biotic vancomycin, the proteasome inhibitor TMC-95A (Kaiser et al., 2004[Kaiser, M., Groll, M., Siciliano, C., Assfalg-Machleidt, I., Weyher, E., Kohno, J., Milbradt, A. G., Renner, C., Huber, R. & Moroder, L. (2004). ChemBioChem, 5, 1256-1266.]) and aryl­omycins (Schimana et al., 2002[Schimana, J., Gebhardt, K., Holtzel, A., Schmid, D. G., Sussmuth, R., Muller, J., Pukall, R. & Fiedler, H.-P. (2002). J. Antibiot. 55, 565-570.]). A statistical analysis of NMR data indicates that compounds containing the biphenyl structure can bind a wide range of proteins with high levels of specificity (Hajduk et al., 2000[Hajduk, P. J., Bures, M., Praestgaard, J. & Fesik, S. W. (2000). J. Med. Chem. 43, 3443-3447.]). Coupling of a small protein chain to the biphenyl structure is a strategy to create a new family of peptidomimetic compounds, which can be used in medicinal chemistry because of its specific conformation and its particular hydrogen-bonding inter­actions.

The synthesis and biological activity as calpain inhibitor of peptide–biphenyl hybrids type I have been reported by Montero and Mann (Montero et al., 2004a[Montero, A., Mann, E., Chana, A. & Herradón, B. (2004a). Chem. Biodiv. 1, 442-457.],b[Montero, A., Albericio, F., Royo, M. & Herradón, B. (2004b). Org. Lett. 6, 4089-4092.]; Mann et al., 2002[Mann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624-3638.]). Amine et al. (2002[Amine, A., Atmani, Z., El Hallaoui, A., Giorgi, M., Pierrot, M. & Réglier, M. (2002). Bioorg. Med. Chem. Lett. 12, 57-60.]) synthesized a bis amido–copper(II) complex from N-containing tetra­dentate ligands having two amido groups with a biphenyl skeleton, which is used as a DNA cleaving agent. Recently, we have reported crystallographic studies of a peptide-biphenyl hybrid A (Fig. 1[link]) with tripeptide Pro–Phe–Ala (Le et al., 2020[Le, T. Q., Nguyen, X. T., Nguyen, H. H., Mac, D. H. & Bui, T. T. T. (2020). Acta Cryst. E76, 257-260.]).

[Scheme 1]
[Figure 1]
Figure 1
Peptide–biphenyl hybrids A and B.

We report herein the synthesis and crystallographic study of a peptide-2,2′-biphenyl B (Fig. 1[link]) with the introduction of two methyl groups at the 6-6′ positions to prevent free rotation around the central ar­yl–aryl bond.

2. Structural commentary

The compound dimethyl 2,2′-[((2S,2′S)-2,2′-{[(2S,2′S)-1,1′-(6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­nedi­yl)](2S,2′S)-dipropionate (Fig. 2[link]) crystallizes in the monoclinic space group C2 with one mol­ecule of peptide biphenyl hybrid accompanied by a quarter of a water mol­ecule in the asymmetric unit. Two methyl groups have been introduced to the biphenyl rings at the 6,6′ position in order to limit the rotation of the two central phenyl rings in solution. In the solid state, the dihedral angle between biphenyl rings C20–C25 and C27-C32 is 73.8 (3)°. However, this value is similar to that of a previous compound not bearing the methyl groups (C50H56N6O10·0.5H2O; Le et al., 2020[Le, T. Q., Nguyen, X. T., Nguyen, H. H., Mac, D. H. & Bui, T. T. T. (2020). Acta Cryst. E76, 257-260.]). A disorder of a methyl and meth­oxy­carbonyl group of alanine is observed in the crystal structure and was refined with an occupancy ratio of 0.502 (6):0.498 (6).

[Figure 2]
Figure 2
A view of the mol­ecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level and hydrogen bonds (dashed lines) within the asymmetric unit. H atoms are shown as small circles of arbitrary radii.

The backbone conformation of the two tripeptide fragments is characterized by the torsion angles ω, φ, ψ (see Table 1[link]). The torsion angles φ and ψ of amino acids Ala1, Ala2, Phe2 correspond with the usual α-helix (right-handed) region of the Ramachandran plot, and only the torsion angles of amino acid Phe1 fall into the corresponding type β-sheet Ramachandran plot region. For both prolines, the related torsion angles lie in the α region of the Ramachandran plot for proline.

Table 1
Backbone torsion angles ω, φ, ψ (°) for the two tripeptide fragments

C20—C19—N3—C15 178.3 (2) C32—C34—N4—C38 −164.6 (2)
C19—N3—C15—C14 −73.4 (3) C34—N4—C38—C39 −69.1 (3)
N3—C15—C14—N2 −17.5 (3) N4—C38—C39—N5 −14.4 (4)
C15—C14—N2—C6 176.5 (2) C38—C39—N5—C40 −177.2 (2)
C14—N2—C6—C5 −163.0 (2) C39—N5—C40—C48 −106.8 (3)
N2—C6—C5—N1 171.4 (2) N5—C40—C48—N6 18.6 (3)
C6—C5—N1—C3 −174.8 (3) C40—C48—N6—C49 179.1 (2)
C5—N1—C3—C2B −58.0 (5) C48—N6—C49—C51 −60.9 (3)
N1—C3—C2B—O2B −39.6 (13) N6—C49—C51—O9 −35.0 (4)

There are six intra­molecular hydrogen bonds formed in the structure of the title compound (Table 2[link]). Two hydrogen bonds are formed between the NH and CO groups with H⋯O distances of 2.07 Å for N5—H5 ⋯O5 and 2.42 Å for N6—H6⋯O6. The latter value is noticeably longer than the values observed (from 2.04 to 2.29 Å) in other reported peptides (Ranganathan et al., 1997[Ranganathan, D., Kurur, S., Madhusudanan, K. P. & Karle, I. L. (1997). Tetrahedron Lett. 38, 4659-4662.]; Le et al., 2020[Le, T. Q., Nguyen, X. T., Nguyen, H. H., Mac, D. H. & Bui, T. T. T. (2020). Acta Cryst. E76, 257-260.]). Four other intra­molecular bonds are formed between CH and CO groups with distances from 2.35 to 2.59 Å.

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 and Cg5 are the centroids of the C8–C13 and C27–C32 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O5 0.88 2.07 2.923 (3) 162
N6—H6⋯O6 0.88 2.42 3.233 (3) 154
C9—H9⋯O2B 0.95 2.35 3.270 (18) 164
C21—H21⋯O3 0.95 2.44 3.352 (4) 161
C35—H35A⋯O5 0.99 2.51 3.171 (4) 124
C43—H43⋯O4 0.95 2.59 3.443 (4) 149
N1—H1⋯O4i 0.88 2.01 2.865 (3) 163
C1B—H1BB⋯O10ii 0.98 2.46 2.913 (16) 108
C30—H30⋯O8iii 0.95 2.46 3.222 (4) 137
C35—H35⋯O7iv 0.99 2.39 3.228 (4) 142
C52—H52B⋯O10v 0.98 2.60 3.559 (5) 166
O11—H11A⋯O8 0.87 2.48 3.136 (6) 133
C13—H13⋯O11vi 0.95 2.52 3.155 (7) 124
C36—H36BCg3vi 0.99 2.94 3.845 (4) 152
C4A—H4ACCg5vii 1.05 (8) 2.93 (7) 3.770 (8) 135 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) -x+1, y, -z+1; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (v) -x+1, y, -z; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (vii) x, y+1, z.

3. Supra­molecular features

In the crystal, the packing is characterized by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonding (see Table 2, Fig. 3[link][link]). The strongest inter­molecular inter­action is formed between NH and CO groups of two neighboring peptide residues [N1—H1⋯O4i, with d = 2.01 Å; symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, 1 − z]. Furthermore, there are six additional hydrogen bonds linking the mol­ecules. Two contacts are established between the water mol­ecule and two tripeptides (O11—H11A⋯O8; C13— H13⋯O11). Four C—H⋯O=C contacts with H⋯O distances ranging from 2.39 to 2.60 Å further consolidate the crystal packing. In addition, the mol­ecules are linked by two inter­molecular C—H ⋯π inter­actions, one between a proline H atom and the phenyl ring of a phenyl­alanine residue, the other between a H atom of the disordered methyl group and a phenyl ring of the central biphenyl fragment.

[Figure 3]
Figure 3
Crystal packing of the title compound, indicating some inter­molecular hydrogen bonds (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (version 5.41 with update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for peptide–dimethyl biphenyl hybrids was conducted. There are seven dimethyl biphenyl hybrid structures with only one amino acid, including JITYET (Linden & Rippert, 2018a[Linden, A. & Rippert, A. J. (2018a). Private communication (CCDC refcode 1884542). CCDC, Cambridge, England.]), JITZEU (Linden & Rippert, 2018b[Linden, A. & Rippert, A. J. (2018b). Private communication (CCDC refcode 1884572). CCDC, Cambridge, England.]), JITYOD (Linden & Rippert, 2018c[Linden, A. & Rippert, A. J. (2018c). Private communication (CCDC refcode 1884549). CCDC, Cambridge, England.]), NOSPUG & NOSQAN (Weigand & Feigel, 1998[Weigand, C. & Feigel, M. (1998). Chem. Commun. pp. 679-680.]), PITSUJ (Linden et al., 2018d[Linden, A., Furegati, M. & Rippert, A. J. (2018d). Private communication (CCDC refcode 1885480). CCDC, Cambridge, England.]) and NIKJOI (Samadi et al., 2013[Samadi, S., Nazari, S., Arvinnezhad, H., Jadidi, K. & Notash, B. (2013). Tetrahedron, 69, 6679-6686.]). For these structures the dihedral angles between the dimethyl biphenyl rings varies from 82.0 to 95.8o, larger than the corresponding angle of the title compound.

5. Synthesis and crystallization

To a round-bottom flask was added 6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-di­carb­oxy­lic acid (1 eq.) and SOCl2 (3 eq.) respectively under a nitro­gen atmosphere. The mixture was heated under reflux for 4 h and was then evaporated under vacuum. The acid chloride was used in the next step without further purification.

To a round-bottom flask was added amine HN–proline–phenyl­alanine–alanine–COOMe (1 eq.), Et3N (2 eq.) and anhydrous CH2Cl2 (50mL). To this solution was added a solution of (6,6′-dimethyl-[1,1′-biphen­yl]-2,2′-dicarbonyl dichloride in CH2Cl2 at 273 K under an N2 atmosphere. After completion of the reaction, the mixture was washed with 1 N HCl solution, water and a solution of brine, respectively. The organic phase was dried over Na2SO4, filtered and evaporated under reduced pressure. The crude product was then purified by flash chromatography (AcOEt/hexane 3:2) to give a white solid (60% yield). The compound was recrystallized by slow evaporation in methanol to give crystals suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The methyl and meth­oxy­carbonyl groups of alanine show two conformations with refined occupancy factors converging to 0.502 (6) and 0.498 (6). Geometrical restraints were applied to the disordered atoms. H atoms were placed at calculated positions (C—H = 0.95–1.08 Å and N—H = 0.88 Å), with isotropic displacement parameters Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for all other H atoms. The solvent water mol­ecule is disordered and was refined with a site occupation factor fixed to 0.25. The H atoms of the water mol­ecule were located in difference-Fourier maps and refined in riding-model approximation with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula C52H60N6O10·0.25H2O
Mr 933.56
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 27.505 (3), 12.3814 (12), 14.6346 (14)
β (°) 99.999 (3)
V3) 4908.2 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS-; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.713, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 84318, 9371, 7959
Rint 0.062
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.06
No. of reflections 9371
No. of parameters 693
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.16
Absolute structure Flack x determined using 3323 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.1 (3)
Computer programs: APEX22 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX22 (Bruker 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dimethyl 2,2'-[((2S,2'S)-2,2'-{[(2S,2'S)-1,1'-(6,6'-dimethyl-[1,1'-biphenyl]-2,2'-dicarbonyl)bis(pyrrolidine-1,2-diyl-2-carbonyl)]bis(azanediyl)}bis(3-phenylpropanoyl))bis(azanediyl)](2S,2'S)-dipropionate top
Crystal data top
C52H60N6O10·0.25H2OF(000) = 1986
Mr = 933.56Dx = 1.263 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 27.505 (3) ÅCell parameters from 9371 reflections
b = 12.3814 (12) Åθ = 2.8–25.8°
c = 14.6346 (14) ŵ = 0.09 mm1
β = 99.999 (3)°T = 100 K
V = 4908.2 (8) Å3Needle, clear light colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
7959 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS-; Bruker, 2013)
θmax = 25.8°, θmin = 2.8°
Tmin = 0.713, Tmax = 0.745h = 3333
84318 measured reflectionsk = 1515
9371 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0359P)2 + 2.1291P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.28 e Å3
9371 reflectionsΔρmin = 0.16 e Å3
693 parametersAbsolute structure: Flack x determined using 3323 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
4 restraintsAbsolute structure parameter: 0.1 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O50.33318 (6)0.37671 (15)0.30911 (12)0.0262 (4)
O40.25033 (7)0.41245 (17)0.49754 (15)0.0367 (5)
O60.37283 (7)0.35432 (16)0.07943 (13)0.0314 (4)
N30.36969 (8)0.32535 (18)0.45153 (14)0.0252 (5)
N20.32176 (8)0.50351 (19)0.50273 (15)0.0291 (5)
H20.35370.49600.50380.035*
O70.25946 (8)0.5451 (2)0.00116 (15)0.0531 (6)
O30.38550 (8)0.64671 (17)0.4803 (2)0.0552 (7)
O90.40799 (7)0.7684 (2)0.02936 (16)0.0536 (7)
N10.33544 (8)0.7906 (2)0.48045 (17)0.0351 (6)
H10.30700.81500.49170.042*
N50.29721 (8)0.50901 (18)0.14594 (15)0.0277 (5)
H50.30850.45830.18620.033*
N40.29975 (8)0.2897 (2)0.10755 (15)0.0302 (5)
O2A0.4152 (8)0.8404 (16)0.5865 (9)0.052 (4)0.498 (6)
O100.47865 (9)0.8022 (2)0.12726 (19)0.0665 (8)
C190.37162 (9)0.35712 (19)0.36445 (17)0.0221 (5)
O80.36763 (10)0.74704 (19)0.2248 (2)0.0667 (8)
N60.38529 (8)0.6049 (2)0.14123 (16)0.0335 (5)
H60.37420.54630.11060.040*
C200.42128 (9)0.3761 (2)0.33809 (17)0.0224 (5)
C140.29481 (10)0.4139 (2)0.49355 (18)0.0277 (6)
C220.49273 (10)0.4901 (2)0.34994 (19)0.0300 (6)
H220.51160.54990.37690.036*
C210.44813 (10)0.4663 (2)0.37539 (19)0.0264 (6)
H210.43550.51130.41840.032*
C390.27589 (10)0.4803 (3)0.05996 (19)0.0336 (7)
C340.34964 (10)0.2867 (2)0.11713 (18)0.0292 (6)
C250.43896 (10)0.3099 (2)0.27349 (17)0.0264 (6)
C150.32173 (10)0.3090 (2)0.48016 (18)0.0290 (6)
H150.30040.26380.43270.035*
C230.50992 (10)0.4261 (2)0.2846 (2)0.0339 (7)
H230.54030.44410.26590.041*
C320.37479 (11)0.1926 (2)0.1698 (2)0.0342 (7)
C50.34545 (10)0.6858 (2)0.4894 (2)0.0362 (7)
C420.22491 (12)0.6148 (3)0.2431 (2)0.0393 (7)
C80.32288 (11)0.5941 (3)0.6886 (2)0.0368 (7)
C180.41107 (10)0.2861 (3)0.52286 (19)0.0355 (7)
H18A0.43910.33750.53160.043*
H18B0.42280.21430.50620.043*
C240.48386 (10)0.3365 (2)0.24582 (19)0.0326 (7)
C60.30370 (9)0.6123 (2)0.5111 (2)0.0303 (6)
H6A0.27430.62310.46120.036*
C280.43711 (12)0.1101 (2)0.2858 (2)0.0382 (7)
C380.27062 (10)0.3606 (3)0.03950 (19)0.0348 (7)
H380.27890.34590.02320.042*
C270.41520 (10)0.2032 (2)0.2421 (2)0.0306 (6)
C70.28776 (10)0.6356 (3)0.6048 (2)0.0360 (7)
H7A0.2831 (11)0.715 (3)0.610 (2)0.043*
H7B0.2561 (12)0.604 (3)0.606 (2)0.043*
C400.30215 (11)0.6212 (2)0.1744 (2)0.0344 (7)
H400.28200.66440.12370.041*
C480.35480 (12)0.6626 (2)0.1841 (2)0.0395 (7)
C510.44291 (12)0.7469 (3)0.1020 (2)0.0465 (8)
C410.27949 (12)0.6391 (2)0.2612 (2)0.0403 (7)
H41A0.29620.59180.31160.048*
H41B0.28480.71500.28180.048*
C490.43632 (11)0.6369 (3)0.1441 (2)0.0381 (7)
H490.45340.63750.21030.046*
C310.35836 (13)0.0900 (2)0.1390 (2)0.0456 (8)
H310.33150.08300.08880.055*
C170.38721 (11)0.2796 (3)0.6093 (2)0.0461 (8)
H17A0.38790.35060.64060.055*
H17B0.40400.22560.65380.055*
C430.20546 (13)0.5304 (3)0.2867 (2)0.0406 (8)
H430.22670.48760.33040.049*
C260.50273 (12)0.2713 (3)0.1714 (2)0.0459 (8)
H26A0.50780.19620.19200.069*
H26B0.53410.30180.16040.069*
H26C0.47850.27370.11390.069*
C350.26820 (12)0.2261 (3)0.1605 (2)0.0403 (8)
H35A0.28180.22670.22780.048*
H35B0.26480.15040.13860.048*
C90.36689 (11)0.6476 (3)0.7211 (3)0.0515 (9)
H90.37530.70960.68900.062*
C300.38083 (14)0.0007 (3)0.1809 (3)0.0563 (10)
H300.36970.07030.15920.068*
C360.21906 (12)0.2852 (3)0.1399 (2)0.0492 (9)
H36A0.21820.34630.18330.059*
H36B0.19120.23580.14410.059*
C440.15538 (13)0.5070 (3)0.2676 (2)0.0488 (9)
H440.14270.44900.29900.059*
C160.33427 (11)0.2449 (3)0.5705 (2)0.0434 (8)
H16A0.33240.16620.55840.052*
H16B0.31170.26370.61380.052*
C290.41922 (14)0.0090 (3)0.2539 (2)0.0520 (9)
H290.43390.05430.28340.062*
C330.48036 (13)0.1160 (3)0.3656 (2)0.0466 (8)
H33A0.51120.12010.34100.070*
H33B0.48070.05140.40440.070*
H33C0.47710.18040.40300.070*
C370.21720 (11)0.3253 (3)0.0408 (2)0.0492 (9)
H37A0.19410.38670.02680.059*
H37B0.20700.26680.00470.059*
C500.46145 (12)0.5544 (3)0.0915 (2)0.0498 (9)
H50A0.45600.48180.11450.075*
H50B0.49700.56930.10080.075*
H50C0.44760.55870.02520.075*
C130.31123 (13)0.5060 (3)0.7362 (2)0.0546 (9)
H130.28110.46890.71580.065*
C30.37093 (12)0.8660 (3)0.4522 (3)0.0506 (9)
H3A0.38930.82820.40820.061*0.498 (6)
H3B0.37760.84690.38910.061*0.502 (6)
C450.12403 (14)0.5668 (3)0.2040 (3)0.0587 (10)
H450.08980.55020.19030.070*
C470.19287 (15)0.6750 (4)0.1803 (3)0.0668 (12)
H470.20530.73420.15000.080*
C520.41693 (14)0.8637 (4)0.0232 (3)0.0722 (13)
H52A0.39050.87130.07700.108*
H52B0.44870.85630.04430.108*
H52C0.41770.92780.01630.108*
C110.38662 (15)0.5233 (4)0.8454 (3)0.0675 (12)
H110.40850.49880.89890.081*
C100.39836 (14)0.6128 (4)0.7984 (3)0.0665 (12)
H100.42830.65050.81950.080*
C120.34359 (16)0.4694 (4)0.8155 (3)0.0695 (12)
H120.33540.40740.84800.083*
C460.14300 (16)0.6512 (4)0.1605 (3)0.0794 (14)
H460.12170.69350.11640.095*
O1B0.46376 (18)0.8694 (5)0.5125 (5)0.082 (2)0.502 (6)
C1A0.4577 (7)0.8657 (13)0.6565 (10)0.065 (4)0.498 (6)
H1AA0.48650.87810.62660.098*0.498 (6)
H1AB0.46450.80520.70000.098*0.498 (6)
H1AC0.45100.93080.69020.098*0.498 (6)
C4A0.3372 (3)0.9666 (6)0.3947 (6)0.0338 (16)0.498 (6)
H4AA0.314 (3)1.001 (6)0.437 (5)0.051*0.498 (6)
H4AB0.318 (3)0.951 (6)0.348 (5)0.051*0.498 (6)
H4AC0.365 (3)1.022 (6)0.380 (5)0.051*0.498 (6)
C2B0.4233 (4)0.8525 (9)0.5327 (8)0.051 (3)0.502 (6)
O110.2727 (2)0.8908 (5)0.1778 (4)0.0166 (14)0.25
H11A0.30480.89160.19060.025*0.25
H11B0.26570.83810.13830.025*0.25
C4B0.3574 (3)0.9738 (5)0.4551 (7)0.049 (2)0.502 (6)
H4BA0.32990.98870.40440.074*0.502 (6)
H4BB0.38561.01970.44830.074*0.502 (6)
H4BC0.34710.98910.51460.074*0.502 (6)
C2A0.4049 (2)0.9141 (6)0.5214 (4)0.0317 (15)0.498 (6)
O2B0.4184 (6)0.8407 (16)0.6190 (9)0.044 (3)0.502 (6)
O1A0.42431 (16)1.0015 (3)0.5223 (3)0.0492 (16)0.498 (6)
C1B0.4595 (6)0.8377 (14)0.6925 (11)0.081 (5)0.502 (6)
H1BA0.48320.78350.67880.121*0.502 (6)
H1BB0.44830.81880.75040.121*0.502 (6)
H1BC0.47540.90880.69890.121*0.502 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0269 (9)0.0271 (10)0.0227 (9)0.0019 (8)0.0009 (8)0.0012 (8)
O40.0254 (10)0.0376 (12)0.0472 (12)0.0104 (9)0.0069 (8)0.0008 (10)
O60.0302 (10)0.0322 (11)0.0318 (10)0.0050 (9)0.0054 (8)0.0008 (9)
N30.0254 (12)0.0256 (12)0.0232 (11)0.0044 (9)0.0002 (9)0.0021 (9)
N20.0221 (11)0.0308 (13)0.0348 (13)0.0061 (10)0.0056 (9)0.0074 (11)
O70.0503 (14)0.0743 (17)0.0343 (11)0.0200 (12)0.0064 (10)0.0256 (12)
O30.0292 (12)0.0309 (12)0.114 (2)0.0076 (9)0.0349 (13)0.0243 (13)
O90.0327 (12)0.0701 (18)0.0595 (15)0.0071 (11)0.0126 (11)0.0410 (13)
N10.0259 (12)0.0284 (13)0.0554 (16)0.0076 (10)0.0196 (11)0.0116 (12)
N50.0354 (13)0.0248 (12)0.0246 (12)0.0065 (10)0.0099 (10)0.0053 (10)
N40.0309 (12)0.0303 (13)0.0290 (12)0.0028 (10)0.0040 (10)0.0103 (10)
O2A0.041 (5)0.038 (5)0.065 (10)0.016 (3)0.026 (7)0.003 (8)
O100.0492 (15)0.0653 (18)0.0834 (19)0.0116 (14)0.0069 (13)0.0320 (15)
C190.0295 (14)0.0124 (12)0.0231 (13)0.0013 (10)0.0014 (11)0.0028 (10)
O80.0794 (18)0.0229 (12)0.110 (2)0.0139 (12)0.0500 (16)0.0127 (13)
N60.0345 (13)0.0342 (13)0.0325 (13)0.0013 (11)0.0081 (10)0.0046 (11)
C200.0277 (13)0.0161 (12)0.0222 (13)0.0028 (10)0.0005 (10)0.0058 (11)
C140.0282 (15)0.0322 (15)0.0219 (14)0.0075 (12)0.0020 (11)0.0003 (12)
C220.0305 (15)0.0233 (15)0.0342 (15)0.0039 (12)0.0000 (12)0.0053 (12)
C210.0305 (15)0.0200 (13)0.0269 (14)0.0013 (11)0.0000 (11)0.0012 (11)
C390.0246 (14)0.052 (2)0.0257 (15)0.0092 (13)0.0095 (12)0.0095 (14)
C340.0337 (15)0.0254 (14)0.0272 (14)0.0013 (12)0.0019 (12)0.0103 (12)
C250.0307 (14)0.0229 (14)0.0241 (13)0.0047 (11)0.0006 (11)0.0036 (11)
C150.0274 (14)0.0286 (15)0.0300 (15)0.0091 (11)0.0020 (11)0.0045 (12)
C230.0269 (14)0.0369 (17)0.0379 (17)0.0005 (13)0.0057 (12)0.0097 (14)
C320.0427 (17)0.0248 (15)0.0337 (16)0.0039 (13)0.0028 (13)0.0065 (12)
C50.0258 (15)0.0318 (17)0.054 (2)0.0077 (12)0.0160 (14)0.0184 (14)
C420.0492 (18)0.0316 (16)0.0422 (17)0.0097 (14)0.0227 (14)0.0042 (14)
C80.0328 (15)0.0426 (18)0.0371 (16)0.0007 (13)0.0116 (13)0.0186 (15)
C180.0313 (15)0.0407 (17)0.0315 (15)0.0012 (13)0.0032 (12)0.0135 (14)
C240.0320 (15)0.0343 (17)0.0319 (15)0.0077 (13)0.0070 (12)0.0033 (13)
C60.0210 (13)0.0302 (15)0.0406 (16)0.0080 (12)0.0084 (11)0.0110 (13)
C280.0498 (18)0.0244 (15)0.0389 (17)0.0049 (14)0.0033 (14)0.0024 (14)
C380.0255 (14)0.057 (2)0.0208 (13)0.0045 (14)0.0019 (11)0.0098 (14)
C270.0378 (16)0.0226 (14)0.0316 (15)0.0033 (12)0.0069 (12)0.0036 (12)
C70.0213 (14)0.043 (2)0.0457 (18)0.0077 (13)0.0109 (13)0.0152 (15)
C400.0463 (17)0.0194 (15)0.0407 (16)0.0077 (12)0.0168 (13)0.0088 (12)
C480.055 (2)0.0228 (16)0.0453 (18)0.0042 (14)0.0211 (15)0.0123 (14)
C510.0326 (17)0.057 (2)0.051 (2)0.0011 (16)0.0109 (15)0.0229 (17)
C410.058 (2)0.0239 (16)0.0442 (18)0.0049 (14)0.0228 (15)0.0003 (13)
C490.0352 (16)0.0478 (19)0.0303 (15)0.0007 (14)0.0030 (12)0.0116 (14)
C310.059 (2)0.0280 (18)0.0443 (19)0.0017 (15)0.0071 (15)0.0127 (14)
C170.0407 (17)0.065 (2)0.0304 (16)0.0062 (16)0.0007 (13)0.0203 (16)
C430.056 (2)0.0351 (18)0.0337 (16)0.0022 (15)0.0160 (14)0.0066 (14)
C260.0419 (18)0.052 (2)0.0469 (19)0.0102 (16)0.0174 (15)0.0010 (16)
C350.0485 (19)0.0351 (17)0.0394 (17)0.0185 (15)0.0138 (14)0.0148 (14)
C90.0289 (17)0.046 (2)0.075 (2)0.0047 (14)0.0034 (16)0.0197 (18)
C300.079 (3)0.0222 (17)0.060 (2)0.0023 (17)0.0101 (19)0.0131 (16)
C360.0418 (18)0.049 (2)0.062 (2)0.0186 (16)0.0242 (16)0.0270 (18)
C440.060 (2)0.042 (2)0.051 (2)0.0074 (17)0.0283 (17)0.0189 (17)
C160.0408 (18)0.051 (2)0.0391 (18)0.0072 (15)0.0079 (14)0.0166 (15)
C290.071 (2)0.0218 (16)0.058 (2)0.0099 (16)0.0032 (18)0.0010 (16)
C330.057 (2)0.0244 (16)0.052 (2)0.0060 (15)0.0065 (16)0.0037 (15)
C370.0285 (16)0.066 (2)0.052 (2)0.0036 (15)0.0053 (14)0.0270 (18)
C500.0316 (17)0.073 (2)0.0423 (19)0.0083 (17)0.0006 (14)0.0043 (18)
C130.055 (2)0.075 (3)0.0339 (18)0.022 (2)0.0101 (15)0.0034 (18)
C30.048 (2)0.0403 (19)0.073 (2)0.0194 (16)0.0389 (18)0.0190 (18)
C450.047 (2)0.069 (3)0.063 (2)0.009 (2)0.0205 (19)0.013 (2)
C470.060 (2)0.064 (3)0.085 (3)0.023 (2)0.035 (2)0.034 (2)
C520.047 (2)0.088 (3)0.089 (3)0.017 (2)0.032 (2)0.066 (3)
C110.059 (3)0.093 (4)0.046 (2)0.008 (2)0.0040 (18)0.026 (2)
C100.042 (2)0.062 (3)0.087 (3)0.0087 (19)0.013 (2)0.031 (2)
C120.079 (3)0.091 (3)0.039 (2)0.013 (2)0.013 (2)0.005 (2)
C460.053 (3)0.095 (4)0.094 (3)0.031 (2)0.022 (2)0.029 (3)
O1B0.034 (3)0.090 (5)0.129 (6)0.012 (3)0.029 (3)0.011 (4)
C1A0.067 (8)0.054 (7)0.063 (8)0.011 (6)0.020 (6)0.018 (5)
C4A0.029 (4)0.035 (4)0.038 (4)0.007 (3)0.007 (3)0.009 (3)
C2B0.040 (5)0.023 (5)0.095 (9)0.004 (4)0.027 (6)0.008 (5)
O110.016 (3)0.015 (3)0.019 (3)0.002 (3)0.005 (3)0.001 (3)
C4B0.051 (5)0.035 (4)0.069 (6)0.002 (3)0.028 (5)0.012 (4)
C2A0.024 (3)0.025 (4)0.048 (4)0.000 (3)0.012 (3)0.001 (3)
O2B0.023 (4)0.034 (4)0.065 (8)0.008 (3)0.017 (6)0.012 (6)
O1A0.041 (3)0.027 (3)0.074 (3)0.017 (2)0.006 (2)0.009 (2)
C1B0.039 (5)0.087 (11)0.101 (12)0.018 (6)0.031 (7)0.012 (9)
Geometric parameters (Å, º) top
O5—C191.239 (3)C49—C501.517 (5)
O4—C141.235 (3)C31—H310.9500
O6—C341.239 (3)C31—C301.374 (5)
N3—C191.343 (3)C17—H17A0.9900
N3—C151.466 (3)C17—H17B0.9900
N3—C181.486 (3)C17—C161.530 (4)
N2—H20.8800C43—H430.9500
N2—C141.328 (3)C43—C441.388 (5)
N2—C61.449 (4)C26—H26A0.9800
O7—C391.228 (4)C26—H26B0.9800
O3—C51.232 (3)C26—H26C0.9800
O9—C511.330 (4)C35—H35A0.9900
O9—C521.452 (4)C35—H35B0.9900
N1—H10.8800C35—C361.521 (5)
N1—C51.329 (4)C9—H90.9500
N1—C31.461 (4)C9—C101.369 (5)
N5—H50.8800C30—H300.9500
N5—C391.341 (4)C30—C291.371 (5)
N5—C401.450 (4)C36—H36A0.9900
N4—C341.355 (3)C36—H36B0.9900
N4—C381.459 (4)C36—C371.526 (5)
N4—C351.486 (4)C44—H440.9500
O2A—C1A1.449 (14)C44—C451.371 (5)
O2A—C2A1.314 (15)C16—H16A0.9900
O10—C511.203 (4)C16—H16B0.9900
C19—C201.501 (4)C29—H290.9500
O8—C481.225 (4)C33—H33A0.9800
N6—H60.8800C33—H33B0.9800
N6—C481.338 (4)C33—H33C0.9800
N6—C491.452 (4)C37—H37A0.9900
C20—C211.397 (4)C37—H37B0.9900
C20—C251.401 (4)C50—H50A0.9800
C14—C151.524 (4)C50—H50B0.9800
C22—H220.9500C50—H50C0.9800
C22—C211.375 (4)C13—H130.9500
C22—C231.387 (4)C13—C121.409 (5)
C21—H210.9500C3—H3A1.0000
C39—C381.513 (5)C3—H3B1.0000
C34—C321.498 (4)C3—C4A1.688 (8)
C25—C241.404 (4)C3—C2B1.704 (13)
C25—C271.510 (4)C3—C4B1.389 (7)
C15—H151.0000C3—C2A1.388 (7)
C15—C161.529 (4)C45—H450.9500
C23—H230.9500C45—C461.373 (6)
C23—C241.388 (4)C47—H470.9500
C32—C271.402 (4)C47—C461.384 (6)
C32—C311.396 (4)C52—H52A0.9800
C5—C61.540 (4)C52—H52B0.9800
C42—C411.509 (5)C52—H52C0.9800
C42—C431.379 (4)C11—H110.9500
C42—C471.377 (5)C11—C101.372 (6)
C8—C71.513 (4)C11—C121.363 (6)
C8—C91.389 (4)C10—H100.9500
C8—C131.363 (5)C12—H120.9500
C18—H18A0.9900C46—H460.9500
C18—H18B0.9900O1B—C2B1.218 (10)
C18—C171.526 (4)C1A—H1AA0.9800
C24—C261.517 (4)C1A—H1AB0.9800
C6—H6A1.0000C1A—H1AC0.9800
C6—C71.537 (4)C4A—H4AA1.05 (7)
C28—C271.403 (4)C4A—H4AB0.81 (8)
C28—C291.395 (5)C4A—H4AC1.08 (8)
C28—C331.517 (4)C2B—O2B1.301 (17)
C38—H381.0000O11—H11A0.8705
C38—C371.537 (4)O11—H11B0.8699
C7—H7A0.99 (4)C4B—H4BA0.9800
C7—H7B0.96 (3)C4B—H4BB0.9800
C40—H401.0000C4B—H4BC0.9800
C40—C481.519 (4)C2A—O1A1.205 (8)
C40—C411.525 (4)O2B—C1B1.419 (13)
C51—C491.518 (5)C1B—H1BA0.9800
C41—H41A0.9900C1B—H1BB0.9800
C41—H41B0.9900C1B—H1BC0.9800
C49—H491.0000
C19—N3—C15119.8 (2)C16—C17—H17B111.2
C19—N3—C18127.6 (2)C42—C43—H43119.4
C15—N3—C18111.8 (2)C42—C43—C44121.1 (3)
C14—N2—H2116.9C44—C43—H43119.4
C14—N2—C6126.3 (2)C24—C26—H26A109.5
C6—N2—H2116.9C24—C26—H26B109.5
C51—O9—C52114.9 (3)C24—C26—H26C109.5
C5—N1—H1119.5H26A—C26—H26B109.5
C5—N1—C3121.0 (2)H26A—C26—H26C109.5
C3—N1—H1119.5H26B—C26—H26C109.5
C39—N5—H5119.1N4—C35—H35A111.2
C39—N5—C40121.9 (2)N4—C35—H35B111.2
C40—N5—H5119.1N4—C35—C36102.8 (3)
C34—N4—C38120.9 (2)H35A—C35—H35B109.1
C34—N4—C35127.2 (3)C36—C35—H35A111.2
C38—N4—C35112.0 (2)C36—C35—H35B111.2
C2A—O2A—C1A114.1 (14)C8—C9—H9119.3
O5—C19—N3120.5 (2)C10—C9—C8121.4 (4)
O5—C19—C20120.8 (2)C10—C9—H9119.3
N3—C19—C20118.5 (2)C31—C30—H30119.9
C48—N6—H6119.3C29—C30—C31120.2 (3)
C48—N6—C49121.5 (3)C29—C30—H30119.9
C49—N6—H6119.3C35—C36—H36A111.1
C21—C20—C19117.9 (2)C35—C36—H36B111.1
C21—C20—C25120.6 (2)C35—C36—C37103.1 (2)
C25—C20—C19121.3 (2)H36A—C36—H36B109.1
O4—C14—N2123.2 (3)C37—C36—H36A111.1
O4—C14—C15120.1 (2)C37—C36—H36B111.1
N2—C14—C15116.7 (2)C43—C44—H44119.7
C21—C22—H22120.3C45—C44—C43120.6 (3)
C21—C22—C23119.4 (3)C45—C44—H44119.7
C23—C22—H22120.3C15—C16—C17103.5 (2)
C20—C21—H21119.9C15—C16—H16A111.1
C22—C21—C20120.1 (3)C15—C16—H16B111.1
C22—C21—H21119.9C17—C16—H16A111.1
O7—C39—N5123.8 (3)C17—C16—H16B111.1
O7—C39—C38119.0 (3)H16A—C16—H16B109.0
N5—C39—C38117.2 (2)C28—C29—H29119.4
O6—C34—N4121.7 (3)C30—C29—C28121.2 (3)
O6—C34—C32121.8 (2)C30—C29—H29119.4
N4—C34—C32116.3 (3)C28—C33—H33A109.5
C20—C25—C24118.9 (2)C28—C33—H33B109.5
C20—C25—C27122.3 (2)C28—C33—H33C109.5
C24—C25—C27118.3 (2)H33A—C33—H33B109.5
N3—C15—C14113.6 (2)H33A—C33—H33C109.5
N3—C15—H15109.1H33B—C33—H33C109.5
N3—C15—C16103.9 (2)C38—C37—H37A111.1
C14—C15—H15109.1C38—C37—H37B111.1
C14—C15—C16111.9 (2)C36—C37—C38103.3 (2)
C16—C15—H15109.1C36—C37—H37A111.1
C22—C23—H23119.2C36—C37—H37B111.1
C22—C23—C24121.7 (3)H37A—C37—H37B109.1
C24—C23—H23119.2C49—C50—H50A109.5
C27—C32—C34123.4 (2)C49—C50—H50B109.5
C31—C32—C34116.5 (3)C49—C50—H50C109.5
C31—C32—C27120.0 (3)H50A—C50—H50B109.5
O3—C5—N1123.2 (3)H50A—C50—H50C109.5
O3—C5—C6120.2 (3)H50B—C50—H50C109.5
N1—C5—C6116.6 (2)C8—C13—H13119.7
C43—C42—C41121.6 (3)C8—C13—C12120.5 (3)
C47—C42—C41120.7 (3)C12—C13—H13119.7
C47—C42—C43117.7 (3)N1—C3—H3A108.7
C9—C8—C7120.8 (3)N1—C3—H3B110.4
C13—C8—C7120.8 (3)N1—C3—C4A106.0 (3)
C13—C8—C9118.3 (3)N1—C3—C2B105.5 (4)
N3—C18—H18A111.3C4A—C3—H3A108.7
N3—C18—H18B111.3C2B—C3—H3B110.4
N3—C18—C17102.3 (2)C4B—C3—N1114.2 (4)
H18A—C18—H18B109.2C4B—C3—H3B110.4
C17—C18—H18A111.3C4B—C3—C2B105.8 (6)
C17—C18—H18B111.3C2A—C3—N1117.8 (4)
C25—C24—C26120.6 (3)C2A—C3—H3A108.7
C23—C24—C25119.2 (3)C2A—C3—C4A106.8 (5)
C23—C24—C26120.2 (3)C44—C45—H45120.6
N2—C6—C5104.6 (2)C44—C45—C46118.8 (4)
N2—C6—H6A107.9C46—C45—H45120.6
N2—C6—C7113.9 (3)C42—C47—H47119.3
C5—C6—H6A107.9C42—C47—C46121.3 (4)
C7—C6—C5114.3 (2)C46—C47—H47119.3
C7—C6—H6A107.9O9—C52—H52A109.5
C27—C28—C33121.9 (3)O9—C52—H52B109.5
C29—C28—C27119.1 (3)O9—C52—H52C109.5
C29—C28—C33119.0 (3)H52A—C52—H52B109.5
N4—C38—C39115.6 (2)H52A—C52—H52C109.5
N4—C38—H38109.3H52B—C52—H52C109.5
N4—C38—C37103.5 (3)C10—C11—H11120.0
C39—C38—H38109.3C12—C11—H11120.0
C39—C38—C37109.6 (2)C12—C11—C10120.1 (4)
C37—C38—H38109.3C9—C10—C11119.9 (4)
C32—C27—C25123.8 (2)C9—C10—H10120.1
C32—C27—C28119.2 (3)C11—C10—H10120.1
C28—C27—C25116.9 (2)C13—C12—H12120.1
C8—C7—C6114.8 (2)C11—C12—C13119.8 (4)
C8—C7—H7A110.1 (19)C11—C12—H12120.1
C8—C7—H7B107.6 (19)C45—C46—C47120.5 (4)
C6—C7—H7A108.4 (19)C45—C46—H46119.7
C6—C7—H7B109.5 (19)C47—C46—H46119.7
H7A—C7—H7B106 (3)O2A—C1A—H1AA109.5
N5—C40—H40106.6O2A—C1A—H1AB109.5
N5—C40—C48113.0 (2)O2A—C1A—H1AC109.5
N5—C40—C41110.3 (2)H1AA—C1A—H1AB109.5
C48—C40—H40106.6H1AA—C1A—H1AC109.5
C48—C40—C41113.2 (3)H1AB—C1A—H1AC109.5
C41—C40—H40106.6C3—C4A—H4AA110 (4)
O8—C48—N6122.2 (3)C3—C4A—H4AB117 (5)
O8—C48—C40121.5 (3)C3—C4A—H4AC102 (4)
N6—C48—C40116.2 (3)H4AA—C4A—H4AB102 (6)
O9—C51—C49112.6 (3)H4AA—C4A—H4AC113 (5)
O10—C51—O9124.8 (3)H4AB—C4A—H4AC112 (7)
O10—C51—C49122.3 (3)O1B—C2B—C3120.9 (9)
C42—C41—C40111.3 (3)O1B—C2B—O2B120.6 (13)
C42—C41—H41A109.4O2B—C2B—C3117.7 (9)
C42—C41—H41B109.4H11A—O11—H11B104.4
C40—C41—H41A109.4C3—C4B—H4BA109.5
C40—C41—H41B109.4C3—C4B—H4BB109.5
H41A—C41—H41B108.0C3—C4B—H4BC109.5
N6—C49—C51114.6 (2)H4BA—C4B—H4BB109.5
N6—C49—H49108.6H4BA—C4B—H4BC109.5
N6—C49—C50108.9 (3)H4BB—C4B—H4BC109.5
C51—C49—H49108.6O2A—C2A—C3105.3 (9)
C50—C49—C51107.5 (3)O1A—C2A—O2A125.2 (10)
C50—C49—H49108.6O1A—C2A—C3129.3 (6)
C32—C31—H31119.9C2B—O2B—C1B122.3 (15)
C30—C31—C32120.2 (3)O2B—C1B—H1BA109.5
C30—C31—H31119.9O2B—C1B—H1BB109.5
C18—C17—H17A111.2O2B—C1B—H1BC109.5
C18—C17—H17B111.2H1BA—C1B—H1BB109.5
C18—C17—C16103.0 (2)H1BA—C1B—H1BC109.5
H17A—C17—H17B109.1H1BB—C1B—H1BC109.5
C16—C17—H17A111.2
C20—C19—N3—C15178.3 (2)C32—C34—N4—C38164.6 (2)
C19—N3—C15—C1473.4 (3)C34—N4—C38—C3969.1 (3)
N3—C15—C14—N217.5 (3)N4—C38—C39—N514.4 (4)
C15—C14—N2—C6176.5 (2)C38—C39—N5—C40177.2 (2)
C14—N2—C6—C5163.0 (2)C39—N5—C40—C48106.8 (3)
N2—C6—C5—N1171.4 (2)N5—C40—C48—N618.6 (3)
C6—C5—N1—C3174.8 (3)C40—C48—N6—C49179.1 (2)
C5—N1—C3—C2B58.0 (5)C48—N6—C49—C5160.9 (3)
N1—C3—C2B—O2B39.6 (13)N6—C49—C51—O935.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg5 are the centroids of the C8–C13 and C27–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5···O50.882.072.923 (3)162
N6—H6···O60.882.423.233 (3)154
C9—H9···O2B0.952.353.270 (18)164
C21—H21···O30.952.443.352 (4)161
C35—H35A···O50.992.513.171 (4)124
C43—H43···O40.952.593.443 (4)149
N1—H1···O4i0.882.012.865 (3)163
C1B—H1BB···O10ii0.982.462.913 (16)108
C30—H30···O8iii0.952.463.222 (4)137
C35—H35···O7iv0.992.393.228 (4)142
C52—H52B···O10v0.982.603.559 (5)166
O11—H11A···O80.872.483.136 (6)133
C13—H13···O11vi0.952.523.155 (7)124
C36—H36B···Cg3vi0.992.943.845 (4)152
C4A—H4AC···Cg5vii1.05 (8)2.93 (7)3.770 (8)135 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x+1/2, y1/2, z; (v) x+1, y, z; (vi) x+1/2, y1/2, z+1; (vii) x, y+1, z.
 

Funding information

TTTB is thankful to the Asia Research Center–Vietnam National University (ARC–VNU) and the Korea Foundation for Advanced Studies (KFAS) for financial support (Project CA.20.7 A).

References

First citationAmine, A., Atmani, Z., El Hallaoui, A., Giorgi, M., Pierrot, M. & Réglier, M. (2002). Bioorg. Med. Chem. Lett. 12, 57–60.  CSD CrossRef PubMed CAS Google Scholar
First citationBanting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. (1922). Can. Med. Assoc. J. 12, 141–146.  CAS PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFosgerau, K. & Hoffmann, T. (2015). Drug Discovery Today, 20, 122–128.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHajduk, P. J., Bures, M., Praestgaard, J. & Fesik, S. W. (2000). J. Med. Chem. 43, 3443–3447.  CrossRef PubMed CAS Google Scholar
First citationKaiser, M., Groll, M., Siciliano, C., Assfalg-Machleidt, I., Weyher, E., Kohno, J., Milbradt, A. G., Renner, C., Huber, R. & Moroder, L. (2004). ChemBioChem, 5, 1256–1266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLe, T. Q., Nguyen, X. T., Nguyen, H. H., Mac, D. H. & Bui, T. T. T. (2020). Acta Cryst. E76, 257–260.  CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Furegati, M. & Rippert, A. J. (2018d). Private communication (CCDC refcode 1885480). CCDC, Cambridge, England.  Google Scholar
First citationLinden, A. & Rippert, A. J. (2018a). Private communication (CCDC refcode 1884542). CCDC, Cambridge, England.  Google Scholar
First citationLinden, A. & Rippert, A. J. (2018b). Private communication (CCDC refcode 1884572). CCDC, Cambridge, England.  Google Scholar
First citationLinden, A. & Rippert, A. J. (2018c). Private communication (CCDC refcode 1884549). CCDC, Cambridge, England.  Google Scholar
First citationMann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624–3638.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontero, A., Albericio, F., Royo, M. & Herradón, B. (2004b). Org. Lett. 6, 4089–4092.  CrossRef PubMed CAS Google Scholar
First citationMontero, A., Mann, E., Chana, A. & Herradón, B. (2004a). Chem. Biodiv. 1, 442–457.  CrossRef CAS Google Scholar
First citationOtvos, L. Jr & Wade, J. D. (2014). Front. Chem, 2, 62.  PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRanganathan, D., Kurur, S., Madhusudanan, K. P. & Karle, I. L. (1997). Tetrahedron Lett. 38, 4659–4662.  CrossRef CAS Web of Science Google Scholar
First citationSamadi, S., Nazari, S., Arvinnezhad, H., Jadidi, K. & Notash, B. (2013). Tetrahedron, 69, 6679–6686.  CSD CrossRef CAS Google Scholar
First citationSchimana, J., Gebhardt, K., Holtzel, A., Schmid, D. G., Sussmuth, R., Muller, J., Pukall, R. & Fiedler, H.-P. (2002). J. Antibiot. 55, 565–570.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeigand, C. & Feigel, M. (1998). Chem. Commun. pp. 679–680.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds