research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­(citric acid)(hydrogen citrato)calcium monohydrate, [Ca(HC6H5O7)(H3C6H5O7)(H2O)]·H2O, from synchrotron X-ray powder data, and DFT-optimized crystal structure of existing calcium hydrogen citrate trihydrate, [Ca(HC6H5O7)(H2O)3]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, North Central College, 131 S. Loomis, St., Naperville IL 60540, USA, and bDepartment of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago IL 60616, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 July 2020; accepted 21 September 2020; online 25 September 2020)

The crystal structure of `aquabis­(di­hydrogen citrato)calcium hydrate', better formulated as aqua­(citric acid)(hydrogen citrato)calcium monohydrate, (I), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. The CaO8 coordination polyhedra are isolated, but occur in layers parallel to the ab plane. Both the Rietveld-refined and DFT-optimized structures indicate that one citrate is doubly ionized and that the other is citric acid. All of the active hydrogen atoms participate in strong (11–16 kcal mol−1) hydrogen bonds. Hydrogen atoms were added to the existing calcium hydrogen citrate trihydrate structure [Sheldrick (1974[Sheldrick, B. (1974). Acta Cryst. B30, 2056-2057.]). Acta Cryst. B30, 2056–2057; CSD refcode: CAHCIT], (II), and a DFT calculation was carried out to assess the hydrogen bonding and compare it to this optimized structure.

1. Chemical context

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). This paper is part of an extension of the study to Group 2 (alkaline earth) citrates. Calcium citrate (as the tetra­hydrate) is a common dietary supplement. Previously reported calcium citrate structures include calcium hydrogen citrate trihydrate (Sheldrick, 1974[Sheldrick, B. (1974). Acta Cryst. B30, 2056-2057.]; CSD refcode: CAHCIT) and calcium citrate tetra­hydrate (Herdtweck et al., 2011[Herdtweck, E., Kornprobst, T., Sieber, R., Straver, L. & Plank, J. (2011). Z. Anorg. Allg. Chem. 637, 655-659.]; ISEQIH). The ISEQIH structure was derived from a hydro­thermally synthesized pseudomerohedrally twinned crystal at 123 K, and in this study a Rietveld refinement using room-temperature powder data was also reported.

[Scheme 1]

The crystal structures of anhydrous calcium citrate, a new (and commercially relevant, for it is the phase that occurs in dietary supplements) polymorph of calcium citrate tetra­hydrate, and calcium citrate hexa­hydrate have been reported recently (Kaduk, 2018[Kaduk, J. A. (2018). Powder Diffr. 33, 98-107.]).

2. Structural commentary

The crystal structure of `aquabis­(di­hydrogen citrato)calcium hydrate', (I), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques (Fig. 1[link]). The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld refined and DFT-optimized structures is 0.213 Å (Fig. 2[link]) The absolute difference in the position of the Ca2+ cation in the unit cell is 0.318 Å. The good agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). The rest of the discussion will emphasize the DFT-optimized structure. Almost all of the citrate bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Only the C4—C3—C6 angle of 102.6° [average = 110.4 (19), Z-score = 4. 2] is flagged as unusual. One citrate occurs in the trans,trans-conformation, and the other occurs in the gauche,trans-conformation. Both conformations are equivalent in energy (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). Both central carboxyl­ate groups and the hydroxyl groups exhibit slight twists (O10—C6—C3—O13 = −18.1 and O29—C26—C23—O33 = −4.1°) from the normal planar arrangement.

[Figure 1]
Figure 1
The asymmetric unit of aqua­(citric acid)(hydrogen citrato)calcium monohydrate with the atom numbering and 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of aqua­(citric acid)(hydrogen citrato)calcium monohydrate. The refined structure is in red, and the DFT-optimized structure is in blue.

Both the refined and optimized structures indicate that one citrate group (C1–C6) is doubly ionized (in the normal fashion central/terminal), with the C1—O8—O7—H40 moiety being an intact carb­oxy­lic acid group. The other `citrate' (C21–C26) is in fact citric acid. The compound may therefore be better characterized as aqua­(citric acid)(hydrogen citrato)calcium monohydrate. The C—O bond lengths in both the refined (restrained) and optimized structures are consistent with this formulation. Removing the restraints on the C—O bond lengths did not change the refined values significantly. Given the preparation (in a probable excess of citric acid), the crystallization of a mixed salt/co-crystal is not unreasonable. It is probably wise to be cautious about locating hydrogen atoms using X-ray powder (even synchrotron) data, even when the structure is confirmed by a DFT calculation. As noted below, some of the hydrogen bonds are very strong, and perhaps have double minima. A more sophisticated quantum calculation may be required to understand the details of the hydrogen bonding in this compound.

The Ca2+ cation is eight-coordinate, with seven shorter and one long bond (Table 1[link]), resulting in a distorted bicapped octa­hedral coordination polyhedron; the ligands are two terminal carboxyl­ate groups, one central carboxyl­ate group, one terminal CO2H, one central CO2H, two hydroxyl groups, and one water mol­ecule. The Ca bond-valence sum amounts to 2.10 valence units (v.u.). Both citrate and citric acid chelate to the Ca2+ cation through the hydroxyl groups and the central carboxyl groups (O13/O10 and O33/O29), respectively, forming a five-membered ring. The citrate anion also exhibits a monodentate mode to two other Ca2+ cations (through O11 and O12) whereas the citric acid mol­ecule shows a monodentate coordination mode only through O27.

Table 1
Selected bond lengths (Å) for (I)[link]

Ca19—O12i 2.332 Ca19—O29 2.446
Ca19—O33 2.400 Ca19—O39 2.466
Ca19—O11ii 2.417 Ca19—O27iii 2.564
Ca19—O10 2.421 Ca19—O13 2.818
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). Études Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) method suggests that we might expect blocky morphology for aqua­(citric acid)(hydrogen citrato)calcium monohydrate. A 2nd order spherical harmonic model was included in the refinement. The texture index was only 1.003, indicating that preferred orientation was not significant in this rotated capillary specimen.

In the known crystal structure of CAHCIT, (II), the citrate anion is also in the gauche,trans-conformation, and chelates to the Ca2+ cation through the hydroxyl group and a terminal carboxyl­ate group as well as through the ionized central and terminal carboxyl­ate groups. The root-mean-square Cartesian displacement between the single crystal and the DFT-optimized structures is only 0.0399 Å, confirming the excellent quality of the single-crystal study (Sheldrick, 1974[Sheldrick, B. (1974). Acta Cryst. B30, 2056-2057.]). The Ca bond-valence sum is 2.07 v.u. With a limited number of calcium citrate structures, it is hard to make grand generalizations, but several more such compounds have been synthesized and await structural characterization.

3. Supra­molecular features

The CaO8 coordination polyhedra in aqua­(citric acid)(hydrogen citrato)calcium monohydrate are isolated (Fig. 3[link]), but occur in layers parallel to the ab plane. Numerical values of the hydrogen bonds are summarized in Table 2[link]. The free water mol­ecule O20 acts as a hydrogen-bond donor to the hydroxyl group O13 and the carbonyl group O8. The coordinating water mol­ecule O39 acts as a donor to the carbonyl group O32 and the free water mol­ecule O20. The carb­oxy­lic acid group O7—H40 in the hydrogen citrate anion acts as a donor to the coordinating water mol­ecule O39. The carb­oxy­lic acid function O28—H46 acts as a donor to the ionized central carboxyl­ate O9. The carb­oxy­lic acids O31—H43 and O30—H44 act as donors to the free water mol­ecule O20. The hydroxyl group O13—H16 forms an intra­molecular hydrogen bond to the ionized central carboxyl­ate O11 atom, while the hydroxyl group O33—H36 forms an inter­molecular hydrogen bond to the ionized central carboxyl­ate O10 atom.

Table 2
Hydrogen-bond geometry (Å, °, electrons, kcal mol−1) for (I)

D—H⋯A D—H H⋯A DA D—H⋯A Mulliken overlap H-bond energy
O28i—H46⋯O9 1.022 1.542 2.545 165.8 0.087 16.1
O20—H47⋯O13ii 0.999 1.726 2.706 166.0 0.078 15.3
O7—H40⋯O39iii 1.001 1.706 2.677 162.4 0.076 15.1
O33—H36⋯O10iv 1.002 1.683 2.672 168.4 0.070 14.5
O30—H44⋯O20 0.999 1.687 2.685 178.1 0.066 14.0
O13—H16⋯O11 0.995 1.852 2.739 146.8 0.061 13.5
O20—H45⋯O8v 0.991 1.798 2.754 161.0 0.059 13.3
O39—H41⋯O20ii 0.978 1.815 2.765 163.2 0.057 13.0
O39—H42⋯O32vi 0.986 1.816 2.739 154.3 0.049 12.1
O31—H43⋯O20vii 0.984 1.816 2.851 159.6 0.042 11.2
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z; (iii) 1 − x, −y, −z; (iv) 2 − x, 1 − y, 1 − z; (v) x, y, 1 + z; (vi) 2 − x, −y, 1 − z; (vii) 1 + x, y, z.
[Figure 3]
Figure 3
Crystal structure of aqua­(citric acid)(hydrogen citrato)calcium monohydrate, viewed down the a axis.

In CAHCIT, the Ca2+ cation is seven-coordinated in the form of a distorted side-capped trigonal prism. The polyhedra share corners to form chains along the [010] direction. In Ca3(C6H5O7)2 and its hydrates (Kaduk, 2018[Kaduk, J. A. (2018). Powder Diffr. 33, 98-107.]), the coordination numbers are larger, and the Ca/O coordination spheres share edges to form layers, which condense to a three-dimensional framework in anhydrous calcium citrate. Since the hydrogen atoms were not located in the CAHCIT structure, approximate positions were deduced, and a DFT calculation was carried out to assess the hydrogen bonding (Table 3[link]). The carb­oxy­lic acid function O13—H23 acts as a donor to the ionized carboxyl­ate O8 atom. The hydroxyl group O9—H20 forms an inter­molecular hydrogen bond to the carbonyl O12 atom. The water mol­ecules act as donors to both ionized carboxyl­ate groups and other water mol­ecules. The crystal structure of calcium hydrogen citrate trihydrate is shown in Fig. 4[link].

Table 3
Hydrogen-bond geometry (Å, °, electrons, kcal mol−1) for (II)

D—H⋯A D—H H⋯A DA D—H⋯A Mulliken overlap H-bond energy
O15i—H29⋯O8ii 0.974 1.940 2.891 164.6 0.035 10.2
O15iii—H28⋯O10iv 0.979 1.831 2.806 173.5 0.046 11.7
O16i—H27⋯O7vi 0.971 1.970 2.926 167.6 0.037 10.5
O16i—H26⋯O7i 0.981 1.838 2.817 176.3 0.055 12.8
O14v—H25⋯O15i 0.992 1.719 2.702 170.9 0.081 15.6
O14v—H24⋯O8v 0.975 1.782 2.742 167.1 0.047 11.8
O13v—H23⋯O8v 1.018 1.560 2.571 171.4 0.076 15.1
O9v—H20⋯O12i 0.988 1.764 2.749 174.9 0.061 13.5
Symmetry codes: (i) x, [{1\over 2}] − y, [{1\over 2}] + z; (ii) 1 − x, −y, 1 − z; (iii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (iv) x, 1 + y, z; (v) 1 − x, 1 − y, 1 − z.
[Figure 4]
Figure 4
Crystal structure of [Ca(C6H6O7(H2O)3], viewed down the b axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.], version 2020.2.0) using a citrate fragment and Ca, C, H, and O only yielded two hits, viz. calcium hydrogen citrate trihydrate (Sheldrick, 1974[Sheldrick, B. (1974). Acta Cryst. B30, 2056-2057.]; CAHCIT) and calcium citrate tetra­hydrate (Herdtweck et al., 2011[Herdtweck, E., Kornprobst, T., Sieber, R., Straver, L. & Plank, J. (2011). Z. Anorg. Allg. Chem. 637, 655-659.]; ISEQIH). A search of the Powder Diffraction File (Gates-Rector & Blanton, 2019[Gates-Rector, S. & Blanton, T. N. (2019). Powder Diffr. 34, 352-360.]) for C, H, Ca, and O only with `citrat' in the compound name yielded entry 00-028-2003 for the mineral earlandite (calcium citrate tetra­hydrate, isolated from an unconsolidated ocean floor sediment from the Weddell Sea near Antarctica), 00-069-1272, 1273, and 1274 for the three compounds from Kaduk (2018[Kaduk, J. A. (2018). Powder Diffr. 33, 98-107.]), 01-084-5956 calculated from ISEQIH, and 02-060-8946 calculated from CAHCIT.

5. Synthesis and crystallization

This solid was obtained from the scale [94.5 (1) wt% magnesian calcite Ca0.84Mg0.16CO3, 5.3 (4) wt% brucite Mg(OH)2, and 0.2 (1) wt% vaterite polymorph of CaCO3] in a Megahome water still. The still was cleaned by filling the tank with tap water (from Lake Michigan; 47 ppm Ca and 11 ppm Mg), adding several tablespoons of citric acid monohydrate, and boiling for ∼2 h. The pale-yellow solution was deca­nted into a plastic pail, and allowed to evaporate at ambient conditions. This solid was recovered after 90 days, with isolation of inter­mediate phases. The wet solid was washed with ethanol to remove the yellow syrup from the white solid. The slurry was filtered and dried in an oven at 338 K. The solid was first ground in a mortar and pestle, then in a Spex 8000 mixer/mill.

6. Refinement

The laboratory pattern (measured on a Bruker D2 Phaser using Cu radiation) was indexed on a primitive triclinic unit cell using DICVOL06 (Louër & Boultif, 2007[Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191-196.]). The indexing was carried out on a pattern from a specimen blended with NIST SRM 640b Si inter­nal standard; a = 8.37261 (3), b = 10.90306 (4), c = 11.06287 (4) Å, α = 105.2026 (4), β = 100.6846 (4), γ = 110.7096 (3)°, V = 867.2026 (4) Å3, and Z = 2. This cell was used to solve the structure with data collected from beamline 11-BM (Lee et al., 2008[Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). J. Synchrotron Rad. 15, 427-432.]; Wang et al., 2008[Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. & Beno, M. A. (2008). Rev. Sci. Instrum. 79, 085105.]) at the Advanced Photon Source, Argonne National Laboratory using direct methods in EXPO2009 (Altomare et al., 2009[Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197-1202.]).

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The structure was refined by the Rietveld method using GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]). Initial positions for the active hydrogen atoms were derived by an analysis of potential hydrogen-bonding patterns. All non-H bond lengths and angles in the citrate anion/citric acid mol­ecule were subjected to restraints, based on a Mercury Mogul geometry check (Sykes et al., 2011[Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882-886.]; Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) of the mol­ecule; the Ca—O bond lengths were not restrained. The Mogul average and standard deviation for each qu­antity were used as the restraint parameters. The hydrogen atoms were included in calculated positions, which were recalculated during the refinement using Materials Studio (Dassault Systèmes, 2018[Dassault Systèmes (2018). Materials Studio. BIOVIA, San Diego, USA.]). Uiso values were grouped by chemical similarity, and the Uiso value in the two anions were constrained to be the same. The Uiso value of each H atom was constrained to be 1.3× that of the heavy atom to which is is attached. A Rietveld plot is given in Fig. 5[link]. The largest errors in the difference plot reflect the presence of an unidentified impurity and misfits of the peak profiles. The peaks of the impurity phase can be indexed on a primitive monoclinic unit cell with a = 15.3648, b = 7.2713, c = 19.3755 Å, β = 109.116°, and V = 2045.30 Å3, but no structure solution has as yet been obtained.

Table 4
Experimental details

  (I)
Crystal data
Chemical formula [Ca(C6H6O7)(C6H8O7)(H2O)]·H2O
Mr 458.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 8.37267 (11), 10.9032 (3), 11.0629 (3)
α, β, γ (°) 105.2029 (6), 100.6847 (4), 110.7096 (3)
V3) 867.24 (1)
Z 2
Radiation type Synchrotron, λ = 0.41307 Å
Specimen shape, size (mm) Cylinder, 3 × 1.5
 
Data collection
Diffractometer 11-BM, APS
Specimen mounting Kapton capillary
Data collection mode Transmission
Scan method Step
2θ values (°) 2θmin = 0.500, 2θmax = 49.991, 2θstep = 0.001
 
Refinement
R factors and goodness of fit Rp = 0.116, Rwp = 0.154, Rexp = 0.066, R(F2) = 0.11717, χ2 = 5.532
No. of parameters 115
No. of restraints 68
H-atom treatment Only H-atom displacement parameters refined
(Δ/σ)max 0.163
Computer programs: EXPO2009 (Altomare et al., 2009[Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197-1202.]), GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), DIAMOND (Brandenburg, 2016[Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 5]
Figure 5
Rietveld plot for aqua­(citric acid)(hydrogen citrato)calcium monohydrate. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 10× for 2θ > 10.0°, and by a factor of 40× for 2θ > 17.0°. The row of blue tick marks indicates the calculated reflection positions; the red line is the background curve.

Density functional geometry optimizations (fixed experimental unit cell) for the two structures were carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the H, C and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Ca was that of Catti et al. (1991[Catti, M., Pavese, A. & Saunders, V. R. (1991). J. Phys. Condens. Matter, 3, 4151-4164.]). The calculations used 8 k-points and the B3LYP functional, and each took around seven days on a 2.4 GHz PC.

Supporting information


Computing details top

Program(s) used to solve structure: EXPO2009 (Altomare et al., 2009) for (I). Program(s) used to refine structure: GSAS-II (Toby & Von Dreele, 2013) for (I). Molecular graphics: Mercury (Macrae et al., 2020), DIAMOND (Brandenburg, 2016) for (I). Software used to prepare material for publication: publCIF (Westrip, 2010) for (I).

Aqua(citric acid)(hydrogen citrato)calcium monohydrate (I) top
Crystal data top
[Ca(C6H6O7)(C6H8O7)(H2O)]·H2OV = 867.24 (1) Å3
Mr = 458.34Z = 2
Triclinic, P1Dx = 1.755 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.41307 Å
a = 8.37267 (11) ÅT = 295 K
b = 10.9032 (3) ÅParticle morphology: white powder
c = 11.0629 (3) Åwhite
α = 105.2029 (6)°cylinder, 3 × 1.5 mm
β = 100.6847 (4)°Specimen preparation: Prepared at 300 K
γ = 110.7096 (3)°
Data collection top
11-BM, APS
diffractometer
Scan method: step
Specimen mounting: Kapton capillary2θmin = 0.500°, 2θmax = 49.991°, 2θstep = 0.001°
Data collection mode: transmission
Refinement top
Least-squares matrix: full115 parameters
Rp = 0.11668 restraints
Rwp = 0.154Only H-atom displacement parameters refined
Rexp = 0.066Weighting scheme based on measured s.u.'s
R(F2) = 0.11717(Δ/σ)max = 0.163
49492 data pointsBackground function: Background function: "chebyschev-1" function with 6 terms: 86.9(17), 10.6(26), -9.1(12), -14.2(8), 19.3(10), -23.7(7), Background peak parameters: pos, int, sig, gam: 5.20(3), 5.0(4)e5, 3.10(18)e4, 0.100,
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 1.163, -0.126, 0.063, 0.000, 0.000, 0.002, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.41(5), 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 1026(17), 1.000,Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = 0.041(5); 0:0:C(2,-1) = 0.002(5); 0:0:C(2,0) = -0.053(5); 0:0:C(2,1) = -0.047(5); 0:0:C(2,2) = 0.076(5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3002 (7)0.0929 (11)0.1064 (5)0.0317 (7)*
C20.2629 (8)0.1243 (8)0.2378 (6)0.0194 (16)*
C30.4299 (6)0.1958 (4)0.3587 (4)0.0194*
C40.3777 (8)0.2398 (5)0.4829 (6)0.0194*
C50.2425 (8)0.1186 (7)0.5031 (8)0.0317*
C60.5717 (6)0.3282 (6)0.3500 (8)0.0317*
O70.1573 (8)0.0272 (7)0.0020 (6)0.0317*
O80.4552 (7)0.1313 (7)0.0985 (6)0.0317*
O90.5212 (8)0.4142 (6)0.3257 (7)0.0317*
O100.7340 (7)0.3519 (6)0.3923 (7)0.0317*
O110.2937 (8)0.0305 (7)0.5283 (7)0.0317*
O120.0867 (8)0.1091 (6)0.4861 (7)0.0317*
O130.5123 (7)0.1008 (6)0.3667 (6)0.0317*
H140.192430.1797070.2144540.0252*
H150.169940.021560.243180.0252*
H160.460140.044560.402310.0412*
H170.502200.2891940.572850.0252*
H180.319420.318720.476490.0252*
Ca190.8557 (3)0.2040 (3)0.4459 (3)0.0265 (10)*
O200.5714 (9)0.1614 (7)0.8826 (7)0.034 (3)*
C210.9040 (8)0.6012 (10)0.7264 (9)0.0317*
C221.0577 (9)0.5859 (7)0.8073 (6)0.0194*
C231.0641 (5)0.4425 (5)0.7610 (4)0.0194*
C241.2319 (8)0.4523 (7)0.8537 (6)0.0194*
C251.2572 (8)0.3207 (6)0.8292 (11)0.0317*
C260.8915 (7)0.3260 (7)0.7618 (5)0.0317*
O270.9197 (8)0.6604 (7)0.6442 (7)0.0317*
O280.7536 (8)0.5408 (7)0.7496 (7)0.0317*
O290.7793 (8)0.2414 (7)0.6568 (5)0.0317*
O300.8722 (8)0.3353 (7)0.8750 (6)0.0317*
O311.4295 (8)0.3460 (6)0.8536 (7)0.0317*
O321.1330 (8)0.2043 (6)0.7770 (7)0.0317*
O331.0718 (7)0.4071 (6)0.6278 (5)0.0317*
H341.190500.665340.8107910.0252*
H351.052650.610390.912860.0252*
H361.127010.486100.621460.0412*
H371.356530.533130.8545570.0252*
H381.227580.489430.958940.0252*
O390.8031 (10)0.0427 (8)0.2335 (7)0.051 (3)*
H400.180030.018670.079890.0412*
H410.689160.037670.232110.0663*
H420.852480.025140.248340.0663*
H431.437190.269280.827340.0412*
H440.744720.278200.869660.0412*
H450.550210.117810.943790.0441*
H460.659680.576370.777330.0412*
H470.550750.082740.801810.0441*
Geometric parameters (Å, º) top
C1—C21.519 (6)Ca19—O27iv2.494 (6)
C1—O71.314 (6)Ca19—O292.501 (6)
C1—O81.243 (6)Ca19—O332.388 (6)
C2—C11.519 (6)Ca19—O392.389 (7)
C2—C31.530 (4)C21—C221.512 (6)
C3—C21.530 (4)C21—O271.246 (6)
C3—C41.527 (4)C21—O281.306 (5)
C3—C61.551 (3)C22—C211.512 (6)
C3—O131.445 (3)C22—C231.536 (4)
C4—C31.527 (4)C23—C221.536 (4)
C4—C51.507 (4)C23—C241.529 (4)
C5—C41.507 (4)C23—C261.554 (3)
C5—O111.253 (5)C23—O331.442 (3)
C5—O121.246 (5)C24—C231.529 (4)
C6—C31.551 (3)C24—C251.486 (6)
C6—O91.225 (4)C25—C241.486 (6)
C6—O101.259 (4)C25—O311.328 (6)
O7—C11.314 (6)C25—O321.219 (6)
O8—C11.243 (6)C26—C231.554 (3)
O9—C61.225 (4)C26—O291.226 (5)
O10—C61.259 (4)C26—O301.275 (6)
O10—Ca192.330 (6)O27—Ca19iv2.494 (6)
O11—C51.253 (5)O27—C211.246 (6)
O11—Ca19i2.537 (6)O28—C211.306 (5)
O12—C51.246 (5)O29—Ca192.501 (6)
O12—Ca19ii2.519 (6)O29—C261.226 (5)
O13—C31.445 (3)O30—C261.275 (6)
O13—Ca192.562 (6)O31—C251.328 (6)
Ca19—O102.330 (6)O32—C251.219 (6)
Ca19—O11i2.537 (6)O33—Ca192.388 (6)
Ca19—O12iii2.519 (6)O33—C231.442 (3)
Ca19—O132.562 (6)O39—Ca192.389 (7)
C2—C1—O7115.3 (4)O33—Ca19—O39145.5 (2)
C2—C1—O8122.2 (4)C22—C21—O27123.3 (5)
O7—C1—O8122.5 (4)C22—C21—O28112.1 (5)
C1—C2—C3114.8 (4)O27—C21—O28124.6 (4)
C2—C3—C4109.7 (3)C21—C22—C23116.7 (6)
C2—C3—C6111.3 (3)C22—C23—C24107.8 (3)
C4—C3—C6108.6 (3)C22—C23—C26110.2 (4)
C2—C3—O13109.8 (2)C24—C23—C26111.1 (3)
C4—C3—O13110.13 (19)C22—C23—O33110.3 (2)
C6—C3—O13107.4 (3)C24—C23—O33110.1 (2)
C3—C4—C5113.3 (3)C26—C23—O33107.4 (3)
C4—C5—O11116.9 (5)C23—C24—C25116.0 (5)
C4—C5—O12117.8 (4)C24—C25—O31111.7 (4)
O11—C5—O12125.1 (4)C24—C25—O32123.0 (5)
C3—C6—O9117.5 (3)O31—C25—O32124.6 (4)
C3—C6—O10117.1 (2)C23—C26—O29119.2 (3)
O9—C6—O10124.0 (4)C23—C26—O30115.3 (3)
C6—O10—Ca19129.0 (3)O29—C26—O30125.10 (19)
O10—Ca19—O3386.2 (2)Ca19—O33—C23125.0 (3)
O10—Ca19—O39101.9 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1.
(I_DFT) top
Crystal data top
C12H18CaO16c = 11.0629 Å
Mr = 458.34α = 105.2026°
Triclinic, P1β = 100.6846°
Hall symbol: -P 1γ = 110.7096°
a = 8.3726 ÅV = 867.24 Å3
b = 10.9031 ÅZ = 2
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.310160.072850.087490.02690*
C20.269560.107470.217190.01140*
C30.432770.178130.341790.01140*
C40.386520.233720.468200.01140*
C50.251770.121710.501350.02690*
C60.579010.311420.341060.02690*
O70.164690.017960.011410.02690*
O80.460260.124560.074960.02690*
O90.530900.397950.308530.02690*
O100.741650.332210.383820.02690*
O110.288970.018690.506830.02690*
O120.119840.139790.525040.02690*
O130.505830.078640.353110.02690*
H140.199480.174890.213640.01480*
H150.172670.010680.220380.01480*
H160.448730.032250.410110.03500*
H170.511070.284200.550550.01480*
H180.336950.311780.460160.01480*
Ca190.881410.197830.466150.01810*
O200.548110.147740.851530.03720*
C210.895740.614060.728100.02690*
C221.050880.603660.813260.01140*
C231.058350.459290.765910.01140*
C241.225830.468590.862060.01140*
C251.249340.334010.831480.02690*
C260.884890.342660.761540.02690*
O270.912830.676600.650130.02690*
O280.744380.554860.752490.02690*
O290.779080.248510.658990.02690*
O300.859380.355410.877360.02690*
O311.419520.356270.844420.02690*
O321.126390.218380.803560.02690*
O331.064960.423420.635410.02690*
H341.175170.682820.813720.01480*
H351.038990.624820.912290.01480*
H361.142340.508040.619690.03500*
H371.344670.551220.859780.01480*
H381.215690.494400.962040.01480*
O390.816960.020020.250930.04720*
H400.185370.029450.099140.04120*
H410.689160.037670.232110.06630*
H420.869020.047870.253310.06630*
H431.435900.269280.831760.04120*
H440.744720.278200.869660.04120*
H450.530700.126740.931250.04410*
H460.357700.420240.281450.04120*
H470.546190.065380.783980.04410*
Bond lengths (Å) top
C1—C21.518Ca19—O132.818
C1—O71.321O20—H450.991
C1—O81.233O20—H470.999
C2—C31.537C21—C221.515
C2—H141.094C21—O271.231
C2—H151.094C21—O281.317
C3—C41.548C22—C231.551
C3—C61.537C22—H341.090
C3—O131.442C22—H351.090
C4—C51.521C23—C241.548
C4—H171.095C23—C261.538
C4—H181.086C23—O331.410
C5—O111.280C24—C251.508
C5—O121.250C24—H371.091
C6—O91.255C24—H381.095
C6—O101.271C25—O311.331
O7—H401.001C25—O321.227
O11—Ca19i2.417C26—O291.224
O12—Ca19ii2.332C26—O301.317
O13—H160.995O27—Ca19iv2.564
Ca19—O12iii2.332O28—H46v1.022
Ca19—O332.400O30—H440.999
Ca19—O11i2.417O31—H430.984
Ca19—O102.421O33—H361.002
Ca19—O292.446O39—H410.978
Ca19—O392.466O39—H420.986
Ca19—O27iv2.564H46—O28v1.022
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O28v—H46···O91.0221.5422.545165.8
O20—H47···O13i0.9991.7262.706166.0
O7—H40···O39vi1.0011.7062.677162.4
O33—H36···O10iv1.0021.6832.672168.4
O30—H44···O200.9991.6872.685178.1
O13—H16···O110.9951.8522.739146.8
O20—H45···O8vii0.9911.7982.754161.0
O39—H41···O20i0.9781.8152.765163.2
O39—H42···O32viii0.9861.8162.739154.3
O31—H43···O20iii0.9841.8162.851159.6
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x+2, y, z+1.
Calcium hydrogen citrate trihydrate (CAHCIT_DFT) top
Crystal data top
[Ca(C6H6O7)(H2O)3]c = 23.8176 Å
Mr = 284.2β = 116.7700°
Monoclinic, P21/cV = 1045.35 Å3
a = 8.7955 ÅZ = 4
b = 5.5891 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.765240.053480.372450.01640*
C20.951400.087980.418380.01460*
C30.038470.276470.395460.01420*
C40.047280.185110.335910.01370*
C50.225200.323380.445880.01720*
C60.233520.460100.502070.01570*
O70.273440.466570.181780.02140*
O80.652430.116250.388700.02060*
O90.941760.493870.378320.01870*
O100.092790.028770.335190.01850*
O110.010080.329080.290620.01980*
O120.177850.121760.037320.02810*
O130.698270.325640.491240.02930*
O140.360360.366470.317110.02640*
O150.583500.258870.109890.03520*
O160.629800.415410.247560.02480*
Ca170.142600.196080.225560.01080*
H180.036960.857610.536070.02070*
H190.018700.080770.576490.02070*
H200.102890.469760.591270.02070*
H210.710420.848190.537200.02070*
H220.706000.576360.574780.02070*
H230.308700.753530.548360.03810*
H240.531760.719320.662520.03330*
H250.621960.479820.659970.03330*
H260.505230.073730.725120.03330*
H270.657110.244610.765150.03330*
H280.304520.835940.374040.04570*
H290.512800.126850.618410.04570*
Bond lengths (Å) top
C1—C21.517O13—C6iii1.317
C1—O7i1.274O13—H23iii1.018
C1—O81.266O14—H24iii0.975
C2—C3ii1.540O14—H25iii0.992
C2—H18iii1.086O15—H28i0.981
C2—H19iv1.091O15—H29viii0.974
C3—C2v1.540O16—H26viii0.981
C3—C41.542O16—H27viii0.971
C3—C51.559H18—C2iii1.086
C3—O9v1.433H19—C2iv1.091
C4—O101.263H20—O9iii0.988
C4—O111.265H21—C5iii1.094
C5—C61.514H22—C5iii1.091
C5—H21iii1.094H23—O13iii1.018
C5—H22iii1.091H24—O14iii0.975
C6—O12vi1.235H25—O14iii0.992
C6—O13iii1.317H26—O16vi0.981
O7—C1vii1.274H27—O16vi0.971
O9—C3ii1.433H28—O15vii0.981
O9—H20iii0.988H29—O15vi0.974
O12—C6viii1.235
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15vi—H29···O8iv0.9741.9402.891164.6
O15vii—H28···O10ix0.9791.8312.806173.5
O16vi—H27···O7iii0.9711.9702.926167.6
O16vi—H26···O7vi0.9811.8382.817176.3
O14iii—H25···O15vi0.9921.7192.702170.9
O14iii—H24···O8iii0.9751.7822.742167.1
O13iii—H23···O8iii1.0181.5602.571171.4
O9iii—H20···O12vi0.9881.7642.749174.9
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (ix) x, y+1, z.
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for (I) top
D—H···AD—HH···AD···AD—H···AMulliken overlapH-bond energy
O28i—H46···O91.0221.5422.545165.80.08716.1
O20—H47···O13ii0.9991.7262.706166.00.07815.3
O7—H40···O39iii1.0011.7062.677162.40.07615.1
O33—H36···O10iv1.0021.6832.672168.40.07014.5
O30—H44···O200.9991.6872.685178.10.06614.0
O13—H16···O110.9951.8522.739146.80.06113.5
O20—H45···O8v0.9911.7982.754161.00.05913.3
O39—H41···O20ii0.9781.8152.765163.20.05713.0
O39—H42···O32vi0.9861.8162.739154.30.04912.1
O31—H43···O20vii0.9841.8162.851159.60.04211.2
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 1 - z; (iii) 1 - x, -y, -z; (iv) 2 - x, 1 - y, 1 - z; (v) x, y, 1 + z; (vi) 2 - x, -y, 1 - z; (vii) 1 + x, y, z.
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for (II) top
D—H···AD—HH···AD···AD—H···AMulliken overlapH-bond energy
O15i—H29···O8ii0.9741.9402.891164.60.03510.2
O15iii—H28···O10iv0.9791.8312.806173.50.04611.7
O16i—H27···O7v0.9711.9702.926167.60.03710.5
O16i—H26···O7i0.9811.8382.817176.30.05512.8
O14v—H25···O15i0.9921.7192.702170.90.08115.6
O14v—H24···O8v0.9751.7822.742167.10.04711.8
O13v—H23···O8v1.0181.5602.571171.40.07615.1
O9v—H20···O12i0.9881.7642.749174.90.06113.5
Symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) 1 - x, -y, 1 - z; (iii) 1 - x, 1/2 + y, 1/2 - z; (iv) x, 1 + y, z; (v) 1 - x, 1 - y, 1 - z;
 

Acknowledgements

Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. I thank Matthew Suchomel and Lynn Ribaud for assistance with the data collection.

References

First citationAltomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197–1202.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBravais, A. (1866). Études Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCatti, M., Pavese, A. & Saunders, V. R. (1991). J. Phys. Condens. Matter, 3, 4151–4164.  CrossRef CAS Google Scholar
First citationDassault Systèmes (2018). Materials Studio. BIOVIA, San Diego, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGates-Rector, S. & Blanton, T. N. (2019). Powder Diffr. 34, 352–360.  CAS Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerdtweck, E., Kornprobst, T., Sieber, R., Straver, L. & Plank, J. (2011). Z. Anorg. Allg. Chem. 637, 655–659.  CSD CrossRef CAS Google Scholar
First citationKaduk, J. A. (2018). Powder Diffr. 33, 98–107.  CrossRef CAS Google Scholar
First citationLee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). J. Synchrotron Rad. 15, 427–432.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLouër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191–196.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, B. (1974). Acta Cryst. B30, 2056–2057.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882–886.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. & Beno, M. A. (2008). Rev. Sci. Instrum. 79, 085105.  Web of Science CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds