research communications
N1,N3-bis[(1-benzyl-1H-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato-κN)iron(II)
of {aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania, and cDepartment of General and Inorganic Chemistry, Faculty of Chemistry, Tajik State Pedagogical University, Rudaki 121, 734003 Dushanbe, Tajikistan
*Correspondence e-mail: mlseredyuk@gmail.com, soliev.lutfullo@yandex.com
The II(NCS)2(C25H28N8)], consists of two charge-neutral complex molecules related by an inversion centre. In the complex molecule, the tetradentate ligand N1,N3-bis[(1-benzyl-1H-1,2,3-triazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine coordinates to the FeII ion through the N atoms of the 1,2,3-triazole moieties and aldimine groups. Two thiocyanate anions, coordinating through their N atoms, complete the coordination sphere of the central ion. In the crystal, neighbouring molecules are linked through weak C—H⋯π, C—H⋯S and C—H⋯N interactions into a two-dimensional network extending parallel to (011). The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H (35.2%), H⋯C/C⋯H (26.4%), H⋯S/S⋯H (19.3%) and H⋯N/N⋯H (13.9%).
of the title compound, [FeKeywords: iron(II) complex; thiocyanate complex; high spin state; trigonal distortion; crystal structure.
CCDC reference: 2032292
1. Chemical context
Coordination complexes of 3d transition metals represent a large class of potentially applicable materials exhibiting catalytic (Strotmeyer et al., 2003), magnetic (Pavlishchuk et al., 2010) and spin-switching functionalities (Gütlich & Goodwin, 2004) with easily detectable and exploitable variations of physical properties (Gural'skiy et al., 2012; Suleimanov et al., 2015).
Iron(II) complexes based on et al., 2014, 2016, 2020; Hora & Hagiwara, 2017). In charge-neutral mononuclear complexes of this kind described so far, the thiocyanate anions occupy the axial position of the coordination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016; Hagiwara et al., 2017).
derived from N-substituted 1,2,3-triazole represent an interesting class of coordination compounds exhibiting spin-state switching between low- and high-spin states in different temperature regions (HagiwaraHaving ongoing interest in functional 3d metal complexes formed by polydentate ligands (Seredyuk et al., 2006, 2007, 2011, 2015, 2016; Seredyuk, 2012; Valverde-Muñoz et al., 2020), we report here the synthesis and of a new high-spin FeII complex based on the tetradentate ligand N1,N3-bis[(1-benzyl-1H-1,2,3-triazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine with thiocyanate anions arranged in a cis-configuration.
2. Structural commentary
The FeII ion of the title complex has a distorted trigonal–prismatic N6 coordination environment formed by four N atoms of the tetradentate Schiff-base ligand and two NCS− counter-ions (Fig. 1). The average bond length <Fe—N> = 2.19 (9) Å is typical for high-spin complexes with an [FeN6] chromophore (Gütlich & Goodwin, 2004). The N—Fe—N angle between the cis-aligned thiocyanate N atoms is 87.58 (9)°. The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octahedron (Chang et al., 1990), are 453.2 and 149.38°, respectively. These values reveal a great deviation of the coordination environment from an ideal octahedron (where Σ = Θ = 0), and are significantly larger than those of similar [FeN6] high-spin trans-complexes (Hagiwara et al., 2017). With the aid of continuous shape measure (CShM), the closest shape of a and its distortion can be determined numerically (Kershaw Cook et al., 2015). The calculated CShM value relative to the ideal Oh symmetry for an octahedron is 6.285, while it is 4.008 relative to the ideal D3h symmetry for a trigonal prism. Hence, the polyhedron is closer to the latter shape; however, it is notably distorted (for the ideal polyhedron CShM = 0). The volume of the [FeN6] is 12.4 Å3.
3. Supramolecular features
Neighbouring complex molecules form dimers through double weak contacts C18—H18B⋯Cgi of 3.330 (3) Å (Cg corresponds to the centroid of the C20–C25 phenyl ring; symmetry codes refer to Table 1). The CH group of one of the triazole rings forms a weak hydrogen bond C7—H7⋯S1ii [3.755 (3) Å] with a thiocyanate anion. This, together with the C4—H4B⋯C27ii and C4—H4B⋯N10ii interactions [3.709 (3) and 3.617 (3) Å] involving the C≡N group of the anion, links the dimers into a supramolecular chain propagating parallel to [01] (Fig. 2). These chains are weakly bound through double contacts between the benzyl groups and the thiocyanate anions [C21—H21⋯C27iii = 3.603 (3) Å] and triazole groups [C19—H19A⋯N7iii = 3.311 (3) Å] of neighbouring complex molecules, forming a two-dimensional supramolecular array extending parallel to (011).
4. Hirshfeld surface and 2D fingerprint plots
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2018), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.2801 (red) to 1.8236 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 3. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are presented in Fig. 4, associated with their relative contributions to the Hirshfeld surface. At 35.2%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 26.4%, and the H⋯S/S⋯H contacts contribute 19.3% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 13.9% contribution to the Hirshfeld surface.
5. Database survey
A search of the Cambridge Structural Database (CSD 2020, update of May 2020; Groom et al., 2016) revealed four similar FeII thiocyanate complexes, derivatives of a 1,3-diaminopropanes and N-substituted 1,2,3-triazole viz. DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017; Hagiwara & Okada, 2016). These complexes show hysteretic spin crossover with the Fe—N distances in the range 1.931–1.959 Å for the low-spin state and 2.154–2.169 Å for the high-spin state of the FeII ions. The reported pseudo-trigonal–prismatic complexes with an [FeN6] chromophore are formed by structurally hindered rigid hexadentate ligands favoring a trigonal–prismatic environment of the central FeII ion in the low- or high-spin state: CABLOH (Voloshin et al., 2001), BUNSAF (El Hajj et al., 2009), OWIHAE (Seredyuk et al., 2011), OTANOO (Stock et al., 2016). For comparison purposes, Table 2 collates the distortion parameters Σ, Θ and CShM for the latter complexes.
|
6. Synthesis and crystallization
The ligand of the title compound was obtained in situ by condensation of 1 eq. of 2,2-dimethyl-1,3-propanediamine with 2.2 eq. of 1-benzyl-1H-1,2,3-triazole-4-carbaldehyde in boiling methanol over 5 min and subsequent reaction with 1 eq. of [Fe(py)4(NCS)2] dissolved in a minimum amount of boiling methanol with a minimum amount of ascorbic acid. The formed yellow solution was slowly cooled to ambient temperature. The formed orange crystals were subsequently filtered off. Elemental analysis calculated (%) for C27H28FeN10S2: C, 52.94; H, 4.61; N, 22.87; S, 10.47; found: C, 52.88; H, 4.37; N, 22.40; S, 10.35. IR vKBr (cm−1): 1615 (C=N), 2071, 2115 (NCS).
7. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions using idealized geometries, with C—H = 0.96–0.97 Å for methylene and methyl groups and 0.93 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2032292
https://doi.org/10.1107/S2056989020012608/wm5580sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020012608/wm5580Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020012608/wm5580Isup3.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Fe(NCS)2(C25H28N8)] | Z = 2 |
Mr = 612.56 | F(000) = 636 |
Triclinic, P1 | Dx = 1.389 Mg m−3 |
a = 8.9656 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.5060 (6) Å | Cell parameters from 4582 reflections |
c = 14.2311 (7) Å | θ = 1.6–28.8° |
α = 67.552 (5)° | µ = 0.69 mm−1 |
β = 85.106 (4)° | T = 250 K |
γ = 84.087 (4)° | Plate, orange |
V = 1465.06 (14) Å3 | 0.4 × 0.2 × 0.2 mm |
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer | 5175 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4416 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 25.0°, θmin = 1.6° |
ω scans | h = −10→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −14→13 |
Tmin = 0.911, Tmax = 1.000 | l = −16→16 |
10677 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | Only H-atom displacement parameters refined |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0224P)2 + 1.1951P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
5175 reflections | Δρmax = 0.62 e Å−3 |
391 parameters | Δρmin = −0.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.46967 (4) | 0.25650 (3) | 0.15072 (2) | 0.02848 (10) | |
S1 | 0.83937 (11) | 0.13105 (7) | −0.06302 (8) | 0.0749 (3) | |
S2 | 0.93628 (8) | 0.30840 (7) | 0.26836 (6) | 0.0597 (2) | |
N1 | 0.3705 (2) | 0.40653 (16) | 0.02733 (14) | 0.0288 (4) | |
N2 | 0.3331 (2) | 0.37376 (16) | 0.22397 (14) | 0.0307 (4) | |
N3 | 0.3079 (2) | 0.37587 (17) | 0.31494 (15) | 0.0371 (5) | |
N4 | 0.2416 (2) | 0.48269 (17) | 0.30170 (15) | 0.0357 (5) | |
N5 | 0.3032 (2) | 0.17554 (16) | 0.09218 (14) | 0.0310 (4) | |
N6 | 0.3792 (2) | 0.11839 (15) | 0.28389 (14) | 0.0296 (4) | |
N7 | 0.3924 (2) | 0.08273 (16) | 0.38237 (15) | 0.0331 (5) | |
N8 | 0.2832 (2) | 0.01043 (15) | 0.42600 (14) | 0.0306 (4) | |
N9 | 0.6253 (3) | 0.2060 (2) | 0.05480 (19) | 0.0528 (6) | |
N10 | 0.6514 (2) | 0.28477 (17) | 0.21860 (16) | 0.0385 (5) | |
C1 | 0.2253 (4) | 0.3438 (3) | −0.1867 (2) | 0.0555 (8) | |
H1A | 0.193892 | 0.423117 | −0.225831 | 0.056 (9)* | |
H1B | 0.152987 | 0.294205 | −0.190475 | 0.070 (10)* | |
H1C | 0.321299 | 0.323624 | −0.213362 | 0.070 (10)* | |
C2 | 0.0854 (3) | 0.3642 (2) | −0.0346 (2) | 0.0419 (6) | |
H2A | 0.091918 | 0.352941 | 0.035621 | 0.049 (8)* | |
H2B | 0.010603 | 0.317602 | −0.040245 | 0.053 (8)* | |
H2C | 0.058264 | 0.444495 | −0.073289 | 0.058 (9)* | |
C3 | 0.2375 (3) | 0.3284 (2) | −0.07558 (17) | 0.0341 (5) | |
C4 | 0.3598 (3) | 0.4059 (2) | −0.07427 (17) | 0.0346 (6) | |
H4A | 0.455840 | 0.377726 | −0.096377 | 0.029 (6)* | |
H4B | 0.336486 | 0.484535 | −0.121707 | 0.038 (7)* | |
C5 | 0.2984 (3) | 0.48861 (19) | 0.04771 (18) | 0.0307 (5) | |
H5 | 0.256242 | 0.553702 | −0.003344 | 0.033 (6)* | |
C6 | 0.2840 (2) | 0.47738 (18) | 0.15301 (17) | 0.0290 (5) | |
C7 | 0.2245 (3) | 0.5470 (2) | 0.20293 (19) | 0.0351 (6) | |
H7 | 0.181423 | 0.622568 | 0.174611 | 0.031 (6)* | |
C8 | 0.1953 (3) | 0.5106 (3) | 0.3915 (2) | 0.0493 (7) | |
H8A | 0.190249 | 0.438538 | 0.450396 | 0.066 (9)* | |
H8B | 0.094871 | 0.548892 | 0.382656 | 0.067 (10)* | |
C9 | 0.2961 (3) | 0.5868 (2) | 0.4139 (2) | 0.0463 (7) | |
C10 | 0.3637 (4) | 0.6766 (3) | 0.3392 (3) | 0.0616 (8) | |
H10 | 0.351491 | 0.691169 | 0.271088 | 0.064 (9)* | |
C11 | 0.4509 (4) | 0.7463 (3) | 0.3655 (4) | 0.0805 (11) | |
H11 | 0.497489 | 0.806878 | 0.314888 | 0.080 (12)* | |
C12 | 0.4680 (4) | 0.7252 (4) | 0.4664 (4) | 0.0851 (13) | |
H12 | 0.527762 | 0.770575 | 0.483973 | 0.106 (14)* | |
C13 | 0.3976 (4) | 0.6382 (5) | 0.5402 (4) | 0.0874 (13) | |
H13 | 0.406323 | 0.625738 | 0.608290 | 0.104 (14)* | |
C14 | 0.3135 (4) | 0.5684 (4) | 0.5147 (3) | 0.0666 (10) | |
H14 | 0.267676 | 0.507861 | 0.565894 | 0.104 (15)* | |
C15 | 0.2819 (3) | 0.2003 (2) | −0.01518 (18) | 0.0373 (6) | |
H15A | 0.204471 | 0.153918 | −0.019696 | 0.042 (7)* | |
H15B | 0.374371 | 0.177465 | −0.045658 | 0.038 (7)* | |
C16 | 0.2287 (3) | 0.0988 (2) | 0.15956 (18) | 0.0364 (6) | |
H16 | 0.155892 | 0.062534 | 0.142359 | 0.048 (8)* | |
C17 | 0.2622 (3) | 0.07019 (19) | 0.26449 (18) | 0.0314 (5) | |
C18 | 0.2011 (3) | 0.0009 (2) | 0.35577 (18) | 0.0357 (6) | |
H18 | 0.119557 | −0.043570 | 0.366906 | 0.042 (7)* | |
C19 | 0.2629 (3) | −0.0405 (2) | 0.53669 (17) | 0.0348 (6) | |
H19A | 0.359759 | −0.070943 | 0.565445 | 0.038 (7)* | |
H19B | 0.200022 | −0.104871 | 0.555534 | 0.019 (5)* | |
C20 | 0.1924 (2) | 0.04492 (19) | 0.58170 (17) | 0.0306 (5) | |
C21 | 0.1961 (3) | 0.0160 (2) | 0.6857 (2) | 0.0419 (6) | |
H21 | 0.247770 | −0.052834 | 0.725248 | 0.049 (8)* | |
C22 | 0.1244 (3) | 0.0879 (2) | 0.7316 (2) | 0.0506 (7) | |
H22 | 0.127846 | 0.067512 | 0.801438 | 0.053 (8)* | |
C23 | 0.0476 (3) | 0.1901 (2) | 0.6733 (2) | 0.0490 (7) | |
H23 | −0.002501 | 0.238136 | 0.704015 | 0.049 (8)* | |
C24 | 0.0450 (3) | 0.2211 (2) | 0.5698 (2) | 0.0427 (6) | |
H24 | −0.005800 | 0.290501 | 0.530513 | 0.048 (8)* | |
C25 | 0.1175 (3) | 0.1496 (2) | 0.52394 (19) | 0.0359 (6) | |
H25 | 0.116296 | 0.171620 | 0.453750 | 0.037 (7)* | |
C26 | 0.7137 (3) | 0.1742 (2) | 0.00625 (19) | 0.0368 (6) | |
C27 | 0.7700 (3) | 0.2947 (2) | 0.23968 (18) | 0.0345 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02404 (18) | 0.02930 (18) | 0.03075 (19) | −0.00346 (13) | −0.00173 (13) | −0.00939 (14) |
S1 | 0.0808 (6) | 0.0533 (5) | 0.1010 (7) | −0.0154 (4) | 0.0440 (5) | −0.0481 (5) |
S2 | 0.0373 (4) | 0.0653 (5) | 0.0640 (5) | −0.0146 (3) | −0.0200 (3) | −0.0040 (4) |
N1 | 0.0271 (10) | 0.0298 (10) | 0.0312 (10) | −0.0087 (8) | −0.0005 (8) | −0.0121 (9) |
N2 | 0.0294 (11) | 0.0304 (10) | 0.0334 (11) | −0.0020 (8) | −0.0054 (8) | −0.0124 (9) |
N3 | 0.0412 (12) | 0.0357 (11) | 0.0358 (12) | −0.0008 (9) | −0.0053 (9) | −0.0149 (9) |
N4 | 0.0365 (12) | 0.0361 (11) | 0.0396 (12) | −0.0018 (9) | −0.0041 (9) | −0.0199 (10) |
N5 | 0.0353 (11) | 0.0284 (10) | 0.0316 (11) | −0.0042 (8) | −0.0030 (8) | −0.0130 (9) |
N6 | 0.0276 (10) | 0.0269 (10) | 0.0330 (11) | −0.0037 (8) | −0.0028 (8) | −0.0091 (9) |
N7 | 0.0296 (11) | 0.0307 (10) | 0.0341 (11) | −0.0061 (8) | −0.0025 (8) | −0.0056 (9) |
N8 | 0.0280 (10) | 0.0274 (10) | 0.0325 (11) | −0.0041 (8) | 0.0008 (8) | −0.0068 (9) |
N9 | 0.0371 (14) | 0.0676 (16) | 0.0621 (16) | 0.0012 (11) | 0.0028 (12) | −0.0361 (14) |
N10 | 0.0295 (12) | 0.0374 (12) | 0.0464 (13) | −0.0031 (9) | −0.0078 (9) | −0.0122 (10) |
C1 | 0.080 (2) | 0.0589 (19) | 0.0332 (15) | −0.0080 (17) | −0.0100 (15) | −0.0215 (15) |
C2 | 0.0385 (15) | 0.0481 (16) | 0.0431 (16) | −0.0039 (12) | −0.0114 (12) | −0.0196 (13) |
C3 | 0.0418 (14) | 0.0362 (13) | 0.0270 (12) | −0.0057 (11) | −0.0060 (10) | −0.0133 (11) |
C4 | 0.0412 (15) | 0.0341 (13) | 0.0278 (12) | −0.0075 (11) | 0.0019 (10) | −0.0104 (11) |
C5 | 0.0321 (13) | 0.0261 (12) | 0.0337 (13) | −0.0073 (10) | −0.0063 (10) | −0.0087 (10) |
C6 | 0.0257 (12) | 0.0245 (11) | 0.0373 (13) | −0.0031 (9) | −0.0070 (10) | −0.0108 (10) |
C7 | 0.0357 (14) | 0.0291 (13) | 0.0426 (15) | 0.0014 (10) | −0.0076 (11) | −0.0157 (11) |
C8 | 0.0528 (18) | 0.0564 (18) | 0.0449 (16) | −0.0012 (14) | 0.0061 (13) | −0.0287 (15) |
C9 | 0.0437 (16) | 0.0541 (17) | 0.0522 (17) | 0.0130 (13) | −0.0100 (13) | −0.0351 (15) |
C10 | 0.070 (2) | 0.067 (2) | 0.065 (2) | −0.0053 (17) | −0.0127 (17) | −0.0413 (18) |
C11 | 0.074 (3) | 0.069 (2) | 0.118 (3) | −0.004 (2) | −0.019 (2) | −0.055 (3) |
C12 | 0.061 (2) | 0.111 (3) | 0.132 (4) | 0.025 (2) | −0.039 (3) | −0.101 (3) |
C13 | 0.066 (3) | 0.143 (4) | 0.090 (3) | 0.034 (3) | −0.033 (2) | −0.089 (3) |
C14 | 0.060 (2) | 0.096 (3) | 0.058 (2) | 0.0226 (19) | −0.0177 (17) | −0.049 (2) |
C15 | 0.0471 (16) | 0.0363 (13) | 0.0335 (13) | −0.0077 (11) | −0.0022 (11) | −0.0176 (11) |
C16 | 0.0400 (14) | 0.0351 (13) | 0.0395 (14) | −0.0119 (11) | −0.0038 (11) | −0.0174 (12) |
C17 | 0.0312 (13) | 0.0275 (12) | 0.0371 (13) | −0.0065 (10) | −0.0023 (10) | −0.0127 (10) |
C18 | 0.0332 (14) | 0.0358 (13) | 0.0375 (14) | −0.0137 (11) | −0.0005 (11) | −0.0107 (11) |
C19 | 0.0339 (14) | 0.0301 (13) | 0.0334 (13) | −0.0023 (10) | −0.0007 (10) | −0.0044 (11) |
C20 | 0.0259 (12) | 0.0291 (12) | 0.0336 (13) | −0.0070 (9) | −0.0018 (10) | −0.0072 (10) |
C21 | 0.0439 (16) | 0.0387 (14) | 0.0409 (15) | 0.0017 (12) | −0.0129 (12) | −0.0116 (12) |
C22 | 0.0627 (19) | 0.0567 (18) | 0.0413 (16) | −0.0051 (14) | −0.0105 (14) | −0.0265 (14) |
C23 | 0.0525 (18) | 0.0435 (16) | 0.0619 (19) | −0.0059 (13) | −0.0020 (14) | −0.0317 (15) |
C24 | 0.0394 (15) | 0.0281 (13) | 0.0569 (18) | −0.0023 (11) | −0.0001 (12) | −0.0122 (13) |
C25 | 0.0329 (14) | 0.0325 (13) | 0.0342 (14) | −0.0055 (10) | 0.0006 (10) | −0.0033 (11) |
C26 | 0.0356 (14) | 0.0337 (13) | 0.0429 (15) | −0.0039 (11) | −0.0030 (12) | −0.0160 (12) |
C27 | 0.0349 (15) | 0.0296 (12) | 0.0315 (13) | −0.0023 (10) | −0.0025 (10) | −0.0028 (10) |
Fe1—N1 | 2.1911 (19) | C5—C6 | 1.446 (3) |
Fe1—N2 | 2.306 (2) | C6—C7 | 1.364 (3) |
Fe1—N5 | 2.2618 (19) | C7—H7 | 0.9300 |
Fe1—N6 | 2.1817 (18) | C8—H8A | 0.9700 |
Fe1—N9 | 2.088 (2) | C8—H8B | 0.9700 |
Fe1—N10 | 2.088 (2) | C8—C9 | 1.511 (4) |
S1—C26 | 1.620 (3) | C9—C10 | 1.370 (4) |
S2—C27 | 1.621 (3) | C9—C14 | 1.383 (4) |
N1—C4 | 1.460 (3) | C10—H10 | 0.9300 |
N1—C5 | 1.271 (3) | C10—C11 | 1.397 (4) |
N2—N3 | 1.305 (3) | C11—H11 | 0.9300 |
N2—C6 | 1.361 (3) | C11—C12 | 1.376 (6) |
N3—N4 | 1.355 (3) | C12—H12 | 0.9300 |
N4—C7 | 1.339 (3) | C12—C13 | 1.357 (6) |
N4—C8 | 1.466 (3) | C13—H13 | 0.9300 |
N5—C15 | 1.464 (3) | C13—C14 | 1.373 (5) |
N5—C16 | 1.267 (3) | C14—H14 | 0.9300 |
N6—N7 | 1.310 (3) | C15—H15A | 0.9700 |
N6—C17 | 1.359 (3) | C15—H15B | 0.9700 |
N7—N8 | 1.345 (2) | C16—H16 | 0.9300 |
N8—C18 | 1.338 (3) | C16—C17 | 1.447 (3) |
N8—C19 | 1.459 (3) | C17—C18 | 1.362 (3) |
N9—C26 | 1.147 (3) | C18—H18 | 0.9300 |
N10—C27 | 1.161 (3) | C19—H19A | 0.9700 |
C1—H1A | 0.9600 | C19—H19B | 0.9700 |
C1—H1B | 0.9600 | C19—C20 | 1.505 (3) |
C1—H1C | 0.9600 | C20—C21 | 1.386 (3) |
C1—C3 | 1.530 (3) | C20—C25 | 1.390 (3) |
C2—H2A | 0.9600 | C21—H21 | 0.9300 |
C2—H2B | 0.9600 | C21—C22 | 1.380 (4) |
C2—H2C | 0.9600 | C22—H22 | 0.9300 |
C2—C3 | 1.529 (3) | C22—C23 | 1.380 (4) |
C3—C4 | 1.543 (3) | C23—H23 | 0.9300 |
C3—C15 | 1.530 (3) | C23—C24 | 1.374 (4) |
C4—H4A | 0.9700 | C24—H24 | 0.9300 |
C4—H4B | 0.9700 | C24—C25 | 1.379 (4) |
C5—H5 | 0.9300 | C25—H25 | 0.9300 |
N1—Fe1—N2 | 72.65 (7) | N4—C7—H7 | 127.6 |
N1—Fe1—N5 | 77.61 (7) | C6—C7—H7 | 127.6 |
N5—Fe1—N2 | 107.15 (7) | N4—C8—H8A | 108.4 |
N6—Fe1—N1 | 134.53 (7) | N4—C8—H8B | 108.4 |
N6—Fe1—N2 | 82.74 (7) | N4—C8—C9 | 115.4 (2) |
N6—Fe1—N5 | 73.95 (7) | H8A—C8—H8B | 107.5 |
N9—Fe1—N1 | 94.52 (9) | C9—C8—H8A | 108.4 |
N9—Fe1—N2 | 159.71 (8) | C9—C8—H8B | 108.4 |
N9—Fe1—N5 | 84.55 (8) | C10—C9—C8 | 123.0 (3) |
N9—Fe1—N6 | 116.89 (9) | C10—C9—C14 | 118.9 (3) |
N10—Fe1—N1 | 116.78 (7) | C14—C9—C8 | 118.0 (3) |
N10—Fe1—N2 | 84.55 (8) | C9—C10—H10 | 120.0 |
N10—Fe1—N5 | 164.17 (7) | C9—C10—C11 | 120.0 (3) |
N10—Fe1—N6 | 97.64 (7) | C11—C10—H10 | 120.0 |
N10—Fe1—N9 | 87.58 (9) | C10—C11—H11 | 120.0 |
C4—N1—Fe1 | 121.79 (15) | C12—C11—C10 | 120.0 (4) |
C5—N1—Fe1 | 119.40 (16) | C12—C11—H11 | 120.0 |
C5—N1—C4 | 117.8 (2) | C11—C12—H12 | 120.0 |
N3—N2—Fe1 | 137.20 (15) | C13—C12—C11 | 119.9 (4) |
N3—N2—C6 | 109.88 (19) | C13—C12—H12 | 120.0 |
C6—N2—Fe1 | 111.96 (15) | C12—C13—H13 | 119.9 |
N2—N3—N4 | 106.06 (18) | C12—C13—C14 | 120.3 (4) |
N3—N4—C8 | 119.0 (2) | C14—C13—H13 | 119.9 |
C7—N4—N3 | 111.3 (2) | C9—C14—H14 | 119.5 |
C7—N4—C8 | 129.7 (2) | C13—C14—C9 | 120.9 (4) |
C15—N5—Fe1 | 125.38 (14) | C13—C14—H14 | 119.5 |
C16—N5—Fe1 | 115.78 (16) | N5—C15—C3 | 112.87 (19) |
C16—N5—C15 | 118.8 (2) | N5—C15—H15A | 109.0 |
N7—N6—Fe1 | 135.01 (15) | N5—C15—H15B | 109.0 |
N7—N6—C17 | 109.86 (18) | C3—C15—H15A | 109.0 |
C17—N6—Fe1 | 113.90 (14) | C3—C15—H15B | 109.0 |
N6—N7—N8 | 106.19 (18) | H15A—C15—H15B | 107.8 |
N7—N8—C19 | 119.86 (19) | N5—C16—H16 | 121.5 |
C18—N8—N7 | 111.16 (19) | N5—C16—C17 | 116.9 (2) |
C18—N8—C19 | 128.89 (19) | C17—C16—H16 | 121.5 |
C26—N9—Fe1 | 176.7 (2) | N6—C17—C16 | 118.5 (2) |
C27—N10—Fe1 | 165.1 (2) | N6—C17—C18 | 107.5 (2) |
H1A—C1—H1B | 109.5 | C18—C17—C16 | 134.0 (2) |
H1A—C1—H1C | 109.5 | N8—C18—C17 | 105.3 (2) |
H1B—C1—H1C | 109.5 | N8—C18—H18 | 127.3 |
C3—C1—H1A | 109.5 | C17—C18—H18 | 127.3 |
C3—C1—H1B | 109.5 | N8—C19—H19A | 109.0 |
C3—C1—H1C | 109.5 | N8—C19—H19B | 109.0 |
H2A—C2—H2B | 109.5 | N8—C19—C20 | 113.00 (18) |
H2A—C2—H2C | 109.5 | H19A—C19—H19B | 107.8 |
H2B—C2—H2C | 109.5 | C20—C19—H19A | 109.0 |
C3—C2—H2A | 109.5 | C20—C19—H19B | 109.0 |
C3—C2—H2B | 109.5 | C21—C20—C19 | 118.8 (2) |
C3—C2—H2C | 109.5 | C21—C20—C25 | 118.4 (2) |
C1—C3—C4 | 106.8 (2) | C25—C20—C19 | 122.7 (2) |
C2—C3—C1 | 109.2 (2) | C20—C21—H21 | 119.5 |
C2—C3—C4 | 111.5 (2) | C22—C21—C20 | 121.0 (2) |
C2—C3—C15 | 110.2 (2) | C22—C21—H21 | 119.5 |
C15—C3—C1 | 107.8 (2) | C21—C22—H22 | 120.1 |
C15—C3—C4 | 111.2 (2) | C21—C22—C23 | 119.7 (3) |
N1—C4—C3 | 111.39 (18) | C23—C22—H22 | 120.1 |
N1—C4—H4A | 109.4 | C22—C23—H23 | 120.0 |
N1—C4—H4B | 109.4 | C24—C23—C22 | 120.0 (3) |
C3—C4—H4A | 109.4 | C24—C23—H23 | 120.0 |
C3—C4—H4B | 109.4 | C23—C24—H24 | 119.9 |
H4A—C4—H4B | 108.0 | C23—C24—C25 | 120.2 (2) |
N1—C5—H5 | 121.1 | C25—C24—H24 | 119.9 |
N1—C5—C6 | 117.7 (2) | C20—C25—H25 | 119.7 |
C6—C5—H5 | 121.1 | C24—C25—C20 | 120.6 (2) |
N2—C6—C5 | 117.2 (2) | C24—C25—H25 | 119.7 |
N2—C6—C7 | 107.9 (2) | N9—C26—S1 | 179.2 (3) |
C7—C6—C5 | 134.9 (2) | N10—C27—S2 | 179.6 (3) |
N4—C7—C6 | 104.9 (2) | ||
Fe1—N1—C4—C3 | 73.0 (2) | C1—C3—C15—N5 | 177.6 (2) |
Fe1—N1—C5—C6 | −0.8 (3) | C2—C3—C4—N1 | 55.2 (3) |
Fe1—N2—N3—N4 | 167.35 (16) | C2—C3—C15—N5 | −63.3 (3) |
Fe1—N2—C6—C5 | 11.4 (2) | C4—N1—C5—C6 | 167.84 (19) |
Fe1—N2—C6—C7 | −171.13 (15) | C4—C3—C15—N5 | 60.8 (3) |
Fe1—N5—C15—C3 | −59.1 (3) | C5—N1—C4—C3 | −95.4 (2) |
Fe1—N5—C16—C17 | −1.8 (3) | C5—C6—C7—N4 | 177.4 (2) |
Fe1—N6—N7—N8 | 166.53 (16) | C6—N2—N3—N4 | 0.0 (2) |
Fe1—N6—C17—C16 | 10.7 (3) | C7—N4—C8—C9 | −79.0 (3) |
Fe1—N6—C17—C18 | −169.65 (16) | C8—N4—C7—C6 | −178.2 (2) |
N1—C5—C6—N2 | −7.7 (3) | C8—C9—C10—C11 | 177.6 (3) |
N1—C5—C6—C7 | 175.7 (2) | C8—C9—C14—C13 | −176.8 (3) |
N2—N3—N4—C7 | 0.4 (3) | C9—C10—C11—C12 | −0.5 (5) |
N2—N3—N4—C8 | 178.3 (2) | C10—C9—C14—C13 | −0.3 (5) |
N2—C6—C7—N4 | 0.6 (3) | C10—C11—C12—C13 | −1.3 (6) |
N3—N2—C6—C5 | −177.83 (19) | C11—C12—C13—C14 | 2.3 (6) |
N3—N2—C6—C7 | −0.4 (3) | C12—C13—C14—C9 | −1.5 (5) |
N3—N4—C7—C6 | −0.6 (3) | C14—C9—C10—C11 | 1.3 (5) |
N3—N4—C8—C9 | 103.5 (3) | C15—N5—C16—C17 | 175.0 (2) |
N4—C8—C9—C10 | 37.7 (4) | C15—C3—C4—N1 | −68.1 (3) |
N4—C8—C9—C14 | −146.0 (3) | C16—N5—C15—C3 | 124.5 (2) |
N5—C16—C17—N6 | −6.0 (3) | C16—C17—C18—N8 | 179.7 (3) |
N5—C16—C17—C18 | 174.4 (3) | C17—N6—N7—N8 | 0.4 (2) |
N6—N7—N8—C18 | −0.4 (3) | C18—N8—C19—C20 | −102.2 (3) |
N6—N7—N8—C19 | −177.12 (19) | C19—N8—C18—C17 | 176.5 (2) |
N6—C17—C18—N8 | 0.1 (3) | C19—C20—C21—C22 | −175.6 (2) |
N7—N6—C17—C16 | 180.0 (2) | C19—C20—C25—C24 | 175.1 (2) |
N7—N6—C17—C18 | −0.4 (3) | C20—C21—C22—C23 | 0.0 (4) |
N7—N8—C18—C17 | 0.1 (3) | C21—C20—C25—C24 | −1.9 (3) |
N7—N8—C19—C20 | 74.0 (3) | C21—C22—C23—C24 | −1.2 (4) |
N8—C19—C20—C21 | −166.2 (2) | C22—C23—C24—C25 | 0.8 (4) |
N8—C19—C20—C25 | 16.8 (3) | C23—C24—C25—C20 | 0.8 (4) |
C1—C3—C4—N1 | 174.4 (2) | C25—C20—C21—C22 | 1.5 (4) |
Cg is the centroid of the C20–C25 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cgi | 0.93 | 2.42 | 3.330 (3) | 167 |
C19—H19A···N7ii | 0.97 | 2.38 | 3.311 (3) | 162 |
C21—H21···C27ii | 0.93 | 2.89 | 3.603 (3) | 134 |
C7—H7···S1iii | 0.93 | 2.87 | 3.755 (3) | 159 |
C4—H4B···N10iii | 0.97 | 2.69 | 3.617 (3) | 160 |
C4—H4B···C27iii | 0.97 | 2.75 | 3.709 (3) | 171 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z. |
Parameters for OTANOO averaged over five independent complex cations. |
Compound | <Fe–N> (Å) | Σ (°) | Θ (°) | CShM (D3h) |
Title compound | 2.186 | 453.2 | 149.38 | 4.008 |
CABLOH | 1.899 | 725.74 | 178.16 | 0.525 |
BUNSAF | 2.218 | 703.65 | 201.07 | 1.887 |
OWIHAE | 2.202 | 894.48 | 206.57 | 0.602 |
OTANOO | 2.191 | 697.3 | 183.24 | 1.098 |
Funding information
Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 734322).
References
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416–10423. CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946–9954. Web of Science CAS PubMed Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47. Google Scholar
Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006–6019. CSD CrossRef CAS Google Scholar
Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952. Web of Science CSD CrossRef CAS Google Scholar
Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866–9880. CSD CrossRef CAS PubMed Google Scholar
Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815–818. CSD CrossRef CAS Google Scholar
Hagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132–17140. CSD CrossRef CAS PubMed Google Scholar
Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49. CrossRef Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. CSD CrossRef CAS Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CSD CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390. Web of Science CrossRef Google Scholar
Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef PubMed Google Scholar
Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254–5265. CSD CrossRef CAS PubMed Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Suleimanov, I., Kraieva, O., Costa, J. S., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032. CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. The University of Western Australia. Google Scholar
Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem., Int. Ed. https://doi.org/10.1002anie.202006453 Google Scholar
Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Polshin, E. V. & Antipin, M. Y. (2001). Polyhedron, 20, 2721–2733. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.