research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {N1,N3-bis­­[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl­­idene]-2,2-di­methyl­propane-1,3-di­amine}bis­­(thio­cyanato-κN)iron(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania, and cDepartment of General and Inorganic Chemistry, Faculty of Chemistry, Tajik State Pedagogical University, Rudaki 121, 734003 Dushanbe, Tajikistan
*Correspondence e-mail: mlseredyuk@gmail.com, soliev.lutfullo@yandex.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 August 2020; accepted 16 September 2020; online 22 September 2020)

The unit cell of the title compound, [FeII(NCS)2(C25H28N8)], consists of two charge-neutral complex mol­ecules related by an inversion centre. In the complex mol­ecule, the tetra­dentate ligand N1,N3-bis­[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl­ene]-2,2-di­methyl­propane-1,3-di­amine coordinates to the FeII ion through the N atoms of the 1,2,3-triazole moieties and aldimine groups. Two thio­cyanate anions, coordinating through their N atoms, complete the coordination sphere of the central ion. In the crystal, neighbouring mol­ecules are linked through weak C—H⋯π, C—H⋯S and C—H⋯N inter­actions into a two-dimensional network extending parallel to (011). The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H (35.2%), H⋯C/C⋯H (26.4%), H⋯S/S⋯H (19.3%) and H⋯N/N⋯H (13.9%).

1. Chemical context

Coordination complexes of 3d transition metals represent a large class of potentially applicable materials exhibiting catalytic (Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]), magnetic (Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.]) and spin-switching functionalities (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]) with easily detectable and exploitable variations of physical properties (Gural'skiy et al., 2012[Gural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946-9954.]; Suleimanov et al., 2015[Suleimanov, I., Kraieva, O., Costa, J. S., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026-5032.]).

Iron(II) complexes based on Schiff bases derived from N-substituted 1,2,3-triazole aldehydes represent an inter­esting class of coordination compounds exhibiting spin-state switching between low- and high-spin states in different temperature regions (Hagiwara et al., 2014[Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950-952.], 2016[Hagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132-17140.], 2020[Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866-9880.]; Hora & Hagiwara, 2017[Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.]). In charge-neutral mononuclear complexes of this kind described so far, the thio­cyanate anions occupy the axial position of the coordination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016[Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815-818.]; Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]).

Having ongoing inter­est in functional 3d metal complexes formed by polydentate ligands (Seredyuk et al., 2006[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385-390.], 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.], 2015[Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424-7432.], 2016[Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627-39635.]; Seredyuk, 2012[Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65-71.]; Valverde-Muñoz et al., 2020[Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem., Int. Ed. https://doi.org/10.1002anie.202006453]), we report here the synthesis and crystal structure of a new high-spin FeII complex based on the tetra­dentate ligand N1,N3-bis­[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl­ene]-2,2-di­methyl­propane-1,3-di­amine with thio­cyanate anions arranged in a cis-configuration.

[Scheme 1]

2. Structural commentary

The FeII ion of the title complex has a distorted trigonal–prismatic N6 coordination environment formed by four N atoms of the tetra­dentate Schiff-base ligand and two NCS counter-ions (Fig. 1[link]). The average bond length <Fe—N> = 2.19 (9) Å is typical for high-spin complexes with an [FeN6] chromophore (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The N—Fe—N angle between the cis-aligned thio­cyanate N atoms is 87.58 (9)°. The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]), are 453.2 and 149.38°, respectively. These values reveal a great deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0), and are significantly larger than those of similar [FeN6] high-spin trans-complexes (Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]). With the aid of continuous shape measure (CShM), the closest shape of a coordination polyhedron and its distortion can be determined numerically (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]). The calculated CShM value relative to the ideal Oh symmetry for an octa­hedron is 6.285, while it is 4.008 relative to the ideal D3h symmetry for a trigonal prism. Hence, the polyhedron is closer to the latter shape; however, it is notably distorted (for the ideal polyhedron CShM = 0). The volume of the [FeN6] coordination polyhedron is 12.4 Å3.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

Neighbouring complex mol­ecules form dimers through double weak contacts C18—H18BCgi of 3.330 (3) Å (Cg corres­ponds to the centroid of the C20–C25 phenyl ring; symmetry codes refer to Table 1[link]). The CH group of one of the triazole rings forms a weak hydrogen bond C7—H7⋯S1ii [3.755 (3) Å] with a thio­cyanate anion. This, together with the C4—H4B⋯C27ii and C4—H4B⋯N10ii inter­actions [3.709 (3) and 3.617 (3) Å] involving the C≡N group of the anion, links the dimers into a supra­molecular chain propagating parallel to [01[\overline{1}]] (Fig. 2[link]). These chains are weakly bound through double contacts between the benzyl groups and the thio­cyanate anions [C21—H21⋯C27iii = 3.603 (3) Å] and triazole groups [C19—H19A⋯N7iii = 3.311 (3) Å] of neighbouring complex mol­ecules, forming a two-dimensional supra­molecular array extending parallel to (011).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cgi 0.93 2.42 3.330 (3) 167
C19—H19A⋯N7ii 0.97 2.38 3.311 (3) 162
C21—H21⋯C27ii 0.93 2.89 3.603 (3) 134
C7—H7⋯S1iii 0.93 2.87 3.755 (3) 159
C4—H4B⋯N10iii 0.97 2.69 3.617 (3) 160
C4—H4B⋯C27iii 0.97 2.75 3.709 (3) 171
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
Weak hydrogen bonding (cyan dashed lines), resulting in the formation of chains in the packing.

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2018[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. The University of Western Australia.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.2801 (red) to 1.8236 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the inter­actions described above. The overall two-dimensional fingerprint plot is illus­trated in Fig. 3[link]. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are presented in Fig. 4[link], associated with their relative contributions to the Hirshfeld surface. At 35.2%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 26.4%, and the H⋯S/S⋯H contacts contribute 19.3% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 13.9% contribution to the Hirshfeld surface.

[Figure 3]
Figure 3
Two projections of dnorm mapped on Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent contacts shorter than the sum of the van der Waals radii, while blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are zones close to the sum of van der Waals radii.
[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD 2020, update of May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed four similar FeII thio­cyanate complexes, derivatives of a 1,3-di­amino­propanes and N-substituted 1,2,3-triazole aldehydes, viz. DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]; Hagiwara & Okada, 2016[Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815-818.]). These complexes show hysteretic spin crossover with the Fe—N distances in the range 1.931–1.959 Å for the low-spin state and 2.154–2.169 Å for the high-spin state of the FeII ions. The reported pseudo-trigonal–prismatic complexes with an [FeN6] chromophore are formed by structurally hindered rigid hexa­dentate ligands favoring a trigonal–prismatic environment of the central FeII ion in the low- or high-spin state: CABLOH (Voloshin et al., 2001[Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Polshin, E. V. & Antipin, M. Y. (2001). Polyhedron, 20, 2721-2733.]), BUNSAF (El Hajj et al., 2009[El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416-10423.]), OWIHAE (Seredyuk et al., 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.]), OTANOO (Stock et al., 2016[Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254-5265.]). For comparison purposes, Table 2[link] collates the distortion parameters Σ, Θ and CShM for the latter complexes.

Table 2
Comparison of the distortion parameters for indicated FeII complexes

Parameters for OTANOO averaged over five independent complex cations.

Compound <Fe–N> (Å) Σ (°) Θ (°) CShM (D3h)
Title compound 2.186 453.2 149.38 4.008
CABLOH 1.899 725.74 178.16 0.525
BUNSAF 2.218 703.65 201.07 1.887
OWIHAE 2.202 894.48 206.57 0.602
OTANOO 2.191 697.3 183.24 1.098

6. Synthesis and crystallization

The ligand of the title compound was obtained in situ by condensation of 1 eq. of 2,2-dimethyl-1,3-propanedi­amine with 2.2 eq. of 1-benzyl-1H-1,2,3-triazole-4-carbaldehyde in boiling methanol over 5 min and subsequent reaction with 1 eq. of [Fe(py)4(NCS)2] dissolved in a minimum amount of boiling methanol with a minimum amount of ascorbic acid. The formed yellow solution was slowly cooled to ambient temperature. The formed orange crystals were subsequently filtered off. Elemental analysis calculated (%) for C27H28FeN10S2: C, 52.94; H, 4.61; N, 22.87; S, 10.47; found: C, 52.88; H, 4.37; N, 22.40; S, 10.35. IR vKBr (cm−1): 1615 (C=N), 2071, 2115 (NCS).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions using idealized geometries, with C—H = 0.96–0.97 Å for methyl­ene and methyl groups and 0.93 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(NCS)2(C25H28N8)]
Mr 612.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 250
a, b, c (Å) 8.9656 (5), 12.5060 (6), 14.2311 (7)
α, β, γ (°) 67.552 (5), 85.106 (4), 84.087 (4)
V3) 1465.06 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.911, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10677, 5175, 4416
Rint 0.018
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.03
No. of reflections 5175
No. of parameters 391
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.62, −0.59
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

{N1,N3-Bis[(1-benzyl-1H-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato-κN)iron(II) top
Crystal data top
[Fe(NCS)2(C25H28N8)]Z = 2
Mr = 612.56F(000) = 636
Triclinic, P1Dx = 1.389 Mg m3
a = 8.9656 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5060 (6) ÅCell parameters from 4582 reflections
c = 14.2311 (7) Åθ = 1.6–28.8°
α = 67.552 (5)°µ = 0.69 mm1
β = 85.106 (4)°T = 250 K
γ = 84.087 (4)°Plate, orange
V = 1465.06 (14) Å30.4 × 0.2 × 0.2 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
5175 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1413
Tmin = 0.911, Tmax = 1.000l = 1616
10677 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037Only H-atom displacement parameters refined
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0224P)2 + 1.1951P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5175 reflectionsΔρmax = 0.62 e Å3
391 parametersΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.46967 (4)0.25650 (3)0.15072 (2)0.02848 (10)
S10.83937 (11)0.13105 (7)0.06302 (8)0.0749 (3)
S20.93628 (8)0.30840 (7)0.26836 (6)0.0597 (2)
N10.3705 (2)0.40653 (16)0.02733 (14)0.0288 (4)
N20.3331 (2)0.37376 (16)0.22397 (14)0.0307 (4)
N30.3079 (2)0.37587 (17)0.31494 (15)0.0371 (5)
N40.2416 (2)0.48269 (17)0.30170 (15)0.0357 (5)
N50.3032 (2)0.17554 (16)0.09218 (14)0.0310 (4)
N60.3792 (2)0.11839 (15)0.28389 (14)0.0296 (4)
N70.3924 (2)0.08273 (16)0.38237 (15)0.0331 (5)
N80.2832 (2)0.01043 (15)0.42600 (14)0.0306 (4)
N90.6253 (3)0.2060 (2)0.05480 (19)0.0528 (6)
N100.6514 (2)0.28477 (17)0.21860 (16)0.0385 (5)
C10.2253 (4)0.3438 (3)0.1867 (2)0.0555 (8)
H1A0.1938920.4231170.2258310.056 (9)*
H1B0.1529870.2942050.1904750.070 (10)*
H1C0.3212990.3236240.2133620.070 (10)*
C20.0854 (3)0.3642 (2)0.0346 (2)0.0419 (6)
H2A0.0919180.3529410.0356210.049 (8)*
H2B0.0106030.3176020.0402450.053 (8)*
H2C0.0582640.4444950.0732890.058 (9)*
C30.2375 (3)0.3284 (2)0.07558 (17)0.0341 (5)
C40.3598 (3)0.4059 (2)0.07427 (17)0.0346 (6)
H4A0.4558400.3777260.0963770.029 (6)*
H4B0.3364860.4845350.1217070.038 (7)*
C50.2984 (3)0.48861 (19)0.04771 (18)0.0307 (5)
H50.2562420.5537020.0033440.033 (6)*
C60.2840 (2)0.47738 (18)0.15301 (17)0.0290 (5)
C70.2245 (3)0.5470 (2)0.20293 (19)0.0351 (6)
H70.1814230.6225680.1746110.031 (6)*
C80.1953 (3)0.5106 (3)0.3915 (2)0.0493 (7)
H8A0.1902490.4385380.4503960.066 (9)*
H8B0.0948710.5488920.3826560.067 (10)*
C90.2961 (3)0.5868 (2)0.4139 (2)0.0463 (7)
C100.3637 (4)0.6766 (3)0.3392 (3)0.0616 (8)
H100.3514910.6911690.2710880.064 (9)*
C110.4509 (4)0.7463 (3)0.3655 (4)0.0805 (11)
H110.4974890.8068780.3148880.080 (12)*
C120.4680 (4)0.7252 (4)0.4664 (4)0.0851 (13)
H120.5277620.7705750.4839730.106 (14)*
C130.3976 (4)0.6382 (5)0.5402 (4)0.0874 (13)
H130.4063230.6257380.6082900.104 (14)*
C140.3135 (4)0.5684 (4)0.5147 (3)0.0666 (10)
H140.2676760.5078610.5658940.104 (15)*
C150.2819 (3)0.2003 (2)0.01518 (18)0.0373 (6)
H15A0.2044710.1539180.0196960.042 (7)*
H15B0.3743710.1774650.0456580.038 (7)*
C160.2287 (3)0.0988 (2)0.15956 (18)0.0364 (6)
H160.1558920.0625340.1423590.048 (8)*
C170.2622 (3)0.07019 (19)0.26449 (18)0.0314 (5)
C180.2011 (3)0.0009 (2)0.35577 (18)0.0357 (6)
H180.1195570.0435700.3669060.042 (7)*
C190.2629 (3)0.0405 (2)0.53669 (17)0.0348 (6)
H19A0.3597590.0709430.5654450.038 (7)*
H19B0.2000220.1048710.5555340.019 (5)*
C200.1924 (2)0.04492 (19)0.58170 (17)0.0306 (5)
C210.1961 (3)0.0160 (2)0.6857 (2)0.0419 (6)
H210.2477700.0528340.7252480.049 (8)*
C220.1244 (3)0.0879 (2)0.7316 (2)0.0506 (7)
H220.1278460.0675120.8014380.053 (8)*
C230.0476 (3)0.1901 (2)0.6733 (2)0.0490 (7)
H230.0025010.2381360.7040150.049 (8)*
C240.0450 (3)0.2211 (2)0.5698 (2)0.0427 (6)
H240.0058000.2905010.5305130.048 (8)*
C250.1175 (3)0.1496 (2)0.52394 (19)0.0359 (6)
H250.1162960.1716200.4537500.037 (7)*
C260.7137 (3)0.1742 (2)0.00625 (19)0.0368 (6)
C270.7700 (3)0.2947 (2)0.23968 (18)0.0345 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02404 (18)0.02930 (18)0.03075 (19)0.00346 (13)0.00173 (13)0.00939 (14)
S10.0808 (6)0.0533 (5)0.1010 (7)0.0154 (4)0.0440 (5)0.0481 (5)
S20.0373 (4)0.0653 (5)0.0640 (5)0.0146 (3)0.0200 (3)0.0040 (4)
N10.0271 (10)0.0298 (10)0.0312 (10)0.0087 (8)0.0005 (8)0.0121 (9)
N20.0294 (11)0.0304 (10)0.0334 (11)0.0020 (8)0.0054 (8)0.0124 (9)
N30.0412 (12)0.0357 (11)0.0358 (12)0.0008 (9)0.0053 (9)0.0149 (9)
N40.0365 (12)0.0361 (11)0.0396 (12)0.0018 (9)0.0041 (9)0.0199 (10)
N50.0353 (11)0.0284 (10)0.0316 (11)0.0042 (8)0.0030 (8)0.0130 (9)
N60.0276 (10)0.0269 (10)0.0330 (11)0.0037 (8)0.0028 (8)0.0091 (9)
N70.0296 (11)0.0307 (10)0.0341 (11)0.0061 (8)0.0025 (8)0.0056 (9)
N80.0280 (10)0.0274 (10)0.0325 (11)0.0041 (8)0.0008 (8)0.0068 (9)
N90.0371 (14)0.0676 (16)0.0621 (16)0.0012 (11)0.0028 (12)0.0361 (14)
N100.0295 (12)0.0374 (12)0.0464 (13)0.0031 (9)0.0078 (9)0.0122 (10)
C10.080 (2)0.0589 (19)0.0332 (15)0.0080 (17)0.0100 (15)0.0215 (15)
C20.0385 (15)0.0481 (16)0.0431 (16)0.0039 (12)0.0114 (12)0.0196 (13)
C30.0418 (14)0.0362 (13)0.0270 (12)0.0057 (11)0.0060 (10)0.0133 (11)
C40.0412 (15)0.0341 (13)0.0278 (12)0.0075 (11)0.0019 (10)0.0104 (11)
C50.0321 (13)0.0261 (12)0.0337 (13)0.0073 (10)0.0063 (10)0.0087 (10)
C60.0257 (12)0.0245 (11)0.0373 (13)0.0031 (9)0.0070 (10)0.0108 (10)
C70.0357 (14)0.0291 (13)0.0426 (15)0.0014 (10)0.0076 (11)0.0157 (11)
C80.0528 (18)0.0564 (18)0.0449 (16)0.0012 (14)0.0061 (13)0.0287 (15)
C90.0437 (16)0.0541 (17)0.0522 (17)0.0130 (13)0.0100 (13)0.0351 (15)
C100.070 (2)0.067 (2)0.065 (2)0.0053 (17)0.0127 (17)0.0413 (18)
C110.074 (3)0.069 (2)0.118 (3)0.004 (2)0.019 (2)0.055 (3)
C120.061 (2)0.111 (3)0.132 (4)0.025 (2)0.039 (3)0.101 (3)
C130.066 (3)0.143 (4)0.090 (3)0.034 (3)0.033 (2)0.089 (3)
C140.060 (2)0.096 (3)0.058 (2)0.0226 (19)0.0177 (17)0.049 (2)
C150.0471 (16)0.0363 (13)0.0335 (13)0.0077 (11)0.0022 (11)0.0176 (11)
C160.0400 (14)0.0351 (13)0.0395 (14)0.0119 (11)0.0038 (11)0.0174 (12)
C170.0312 (13)0.0275 (12)0.0371 (13)0.0065 (10)0.0023 (10)0.0127 (10)
C180.0332 (14)0.0358 (13)0.0375 (14)0.0137 (11)0.0005 (11)0.0107 (11)
C190.0339 (14)0.0301 (13)0.0334 (13)0.0023 (10)0.0007 (10)0.0044 (11)
C200.0259 (12)0.0291 (12)0.0336 (13)0.0070 (9)0.0018 (10)0.0072 (10)
C210.0439 (16)0.0387 (14)0.0409 (15)0.0017 (12)0.0129 (12)0.0116 (12)
C220.0627 (19)0.0567 (18)0.0413 (16)0.0051 (14)0.0105 (14)0.0265 (14)
C230.0525 (18)0.0435 (16)0.0619 (19)0.0059 (13)0.0020 (14)0.0317 (15)
C240.0394 (15)0.0281 (13)0.0569 (18)0.0023 (11)0.0001 (12)0.0122 (13)
C250.0329 (14)0.0325 (13)0.0342 (14)0.0055 (10)0.0006 (10)0.0033 (11)
C260.0356 (14)0.0337 (13)0.0429 (15)0.0039 (11)0.0030 (12)0.0160 (12)
C270.0349 (15)0.0296 (12)0.0315 (13)0.0023 (10)0.0025 (10)0.0028 (10)
Geometric parameters (Å, º) top
Fe1—N12.1911 (19)C5—C61.446 (3)
Fe1—N22.306 (2)C6—C71.364 (3)
Fe1—N52.2618 (19)C7—H70.9300
Fe1—N62.1817 (18)C8—H8A0.9700
Fe1—N92.088 (2)C8—H8B0.9700
Fe1—N102.088 (2)C8—C91.511 (4)
S1—C261.620 (3)C9—C101.370 (4)
S2—C271.621 (3)C9—C141.383 (4)
N1—C41.460 (3)C10—H100.9300
N1—C51.271 (3)C10—C111.397 (4)
N2—N31.305 (3)C11—H110.9300
N2—C61.361 (3)C11—C121.376 (6)
N3—N41.355 (3)C12—H120.9300
N4—C71.339 (3)C12—C131.357 (6)
N4—C81.466 (3)C13—H130.9300
N5—C151.464 (3)C13—C141.373 (5)
N5—C161.267 (3)C14—H140.9300
N6—N71.310 (3)C15—H15A0.9700
N6—C171.359 (3)C15—H15B0.9700
N7—N81.345 (2)C16—H160.9300
N8—C181.338 (3)C16—C171.447 (3)
N8—C191.459 (3)C17—C181.362 (3)
N9—C261.147 (3)C18—H180.9300
N10—C271.161 (3)C19—H19A0.9700
C1—H1A0.9600C19—H19B0.9700
C1—H1B0.9600C19—C201.505 (3)
C1—H1C0.9600C20—C211.386 (3)
C1—C31.530 (3)C20—C251.390 (3)
C2—H2A0.9600C21—H210.9300
C2—H2B0.9600C21—C221.380 (4)
C2—H2C0.9600C22—H220.9300
C2—C31.529 (3)C22—C231.380 (4)
C3—C41.543 (3)C23—H230.9300
C3—C151.530 (3)C23—C241.374 (4)
C4—H4A0.9700C24—H240.9300
C4—H4B0.9700C24—C251.379 (4)
C5—H50.9300C25—H250.9300
N1—Fe1—N272.65 (7)N4—C7—H7127.6
N1—Fe1—N577.61 (7)C6—C7—H7127.6
N5—Fe1—N2107.15 (7)N4—C8—H8A108.4
N6—Fe1—N1134.53 (7)N4—C8—H8B108.4
N6—Fe1—N282.74 (7)N4—C8—C9115.4 (2)
N6—Fe1—N573.95 (7)H8A—C8—H8B107.5
N9—Fe1—N194.52 (9)C9—C8—H8A108.4
N9—Fe1—N2159.71 (8)C9—C8—H8B108.4
N9—Fe1—N584.55 (8)C10—C9—C8123.0 (3)
N9—Fe1—N6116.89 (9)C10—C9—C14118.9 (3)
N10—Fe1—N1116.78 (7)C14—C9—C8118.0 (3)
N10—Fe1—N284.55 (8)C9—C10—H10120.0
N10—Fe1—N5164.17 (7)C9—C10—C11120.0 (3)
N10—Fe1—N697.64 (7)C11—C10—H10120.0
N10—Fe1—N987.58 (9)C10—C11—H11120.0
C4—N1—Fe1121.79 (15)C12—C11—C10120.0 (4)
C5—N1—Fe1119.40 (16)C12—C11—H11120.0
C5—N1—C4117.8 (2)C11—C12—H12120.0
N3—N2—Fe1137.20 (15)C13—C12—C11119.9 (4)
N3—N2—C6109.88 (19)C13—C12—H12120.0
C6—N2—Fe1111.96 (15)C12—C13—H13119.9
N2—N3—N4106.06 (18)C12—C13—C14120.3 (4)
N3—N4—C8119.0 (2)C14—C13—H13119.9
C7—N4—N3111.3 (2)C9—C14—H14119.5
C7—N4—C8129.7 (2)C13—C14—C9120.9 (4)
C15—N5—Fe1125.38 (14)C13—C14—H14119.5
C16—N5—Fe1115.78 (16)N5—C15—C3112.87 (19)
C16—N5—C15118.8 (2)N5—C15—H15A109.0
N7—N6—Fe1135.01 (15)N5—C15—H15B109.0
N7—N6—C17109.86 (18)C3—C15—H15A109.0
C17—N6—Fe1113.90 (14)C3—C15—H15B109.0
N6—N7—N8106.19 (18)H15A—C15—H15B107.8
N7—N8—C19119.86 (19)N5—C16—H16121.5
C18—N8—N7111.16 (19)N5—C16—C17116.9 (2)
C18—N8—C19128.89 (19)C17—C16—H16121.5
C26—N9—Fe1176.7 (2)N6—C17—C16118.5 (2)
C27—N10—Fe1165.1 (2)N6—C17—C18107.5 (2)
H1A—C1—H1B109.5C18—C17—C16134.0 (2)
H1A—C1—H1C109.5N8—C18—C17105.3 (2)
H1B—C1—H1C109.5N8—C18—H18127.3
C3—C1—H1A109.5C17—C18—H18127.3
C3—C1—H1B109.5N8—C19—H19A109.0
C3—C1—H1C109.5N8—C19—H19B109.0
H2A—C2—H2B109.5N8—C19—C20113.00 (18)
H2A—C2—H2C109.5H19A—C19—H19B107.8
H2B—C2—H2C109.5C20—C19—H19A109.0
C3—C2—H2A109.5C20—C19—H19B109.0
C3—C2—H2B109.5C21—C20—C19118.8 (2)
C3—C2—H2C109.5C21—C20—C25118.4 (2)
C1—C3—C4106.8 (2)C25—C20—C19122.7 (2)
C2—C3—C1109.2 (2)C20—C21—H21119.5
C2—C3—C4111.5 (2)C22—C21—C20121.0 (2)
C2—C3—C15110.2 (2)C22—C21—H21119.5
C15—C3—C1107.8 (2)C21—C22—H22120.1
C15—C3—C4111.2 (2)C21—C22—C23119.7 (3)
N1—C4—C3111.39 (18)C23—C22—H22120.1
N1—C4—H4A109.4C22—C23—H23120.0
N1—C4—H4B109.4C24—C23—C22120.0 (3)
C3—C4—H4A109.4C24—C23—H23120.0
C3—C4—H4B109.4C23—C24—H24119.9
H4A—C4—H4B108.0C23—C24—C25120.2 (2)
N1—C5—H5121.1C25—C24—H24119.9
N1—C5—C6117.7 (2)C20—C25—H25119.7
C6—C5—H5121.1C24—C25—C20120.6 (2)
N2—C6—C5117.2 (2)C24—C25—H25119.7
N2—C6—C7107.9 (2)N9—C26—S1179.2 (3)
C7—C6—C5134.9 (2)N10—C27—S2179.6 (3)
N4—C7—C6104.9 (2)
Fe1—N1—C4—C373.0 (2)C1—C3—C15—N5177.6 (2)
Fe1—N1—C5—C60.8 (3)C2—C3—C4—N155.2 (3)
Fe1—N2—N3—N4167.35 (16)C2—C3—C15—N563.3 (3)
Fe1—N2—C6—C511.4 (2)C4—N1—C5—C6167.84 (19)
Fe1—N2—C6—C7171.13 (15)C4—C3—C15—N560.8 (3)
Fe1—N5—C15—C359.1 (3)C5—N1—C4—C395.4 (2)
Fe1—N5—C16—C171.8 (3)C5—C6—C7—N4177.4 (2)
Fe1—N6—N7—N8166.53 (16)C6—N2—N3—N40.0 (2)
Fe1—N6—C17—C1610.7 (3)C7—N4—C8—C979.0 (3)
Fe1—N6—C17—C18169.65 (16)C8—N4—C7—C6178.2 (2)
N1—C5—C6—N27.7 (3)C8—C9—C10—C11177.6 (3)
N1—C5—C6—C7175.7 (2)C8—C9—C14—C13176.8 (3)
N2—N3—N4—C70.4 (3)C9—C10—C11—C120.5 (5)
N2—N3—N4—C8178.3 (2)C10—C9—C14—C130.3 (5)
N2—C6—C7—N40.6 (3)C10—C11—C12—C131.3 (6)
N3—N2—C6—C5177.83 (19)C11—C12—C13—C142.3 (6)
N3—N2—C6—C70.4 (3)C12—C13—C14—C91.5 (5)
N3—N4—C7—C60.6 (3)C14—C9—C10—C111.3 (5)
N3—N4—C8—C9103.5 (3)C15—N5—C16—C17175.0 (2)
N4—C8—C9—C1037.7 (4)C15—C3—C4—N168.1 (3)
N4—C8—C9—C14146.0 (3)C16—N5—C15—C3124.5 (2)
N5—C16—C17—N66.0 (3)C16—C17—C18—N8179.7 (3)
N5—C16—C17—C18174.4 (3)C17—N6—N7—N80.4 (2)
N6—N7—N8—C180.4 (3)C18—N8—C19—C20102.2 (3)
N6—N7—N8—C19177.12 (19)C19—N8—C18—C17176.5 (2)
N6—C17—C18—N80.1 (3)C19—C20—C21—C22175.6 (2)
N7—N6—C17—C16180.0 (2)C19—C20—C25—C24175.1 (2)
N7—N6—C17—C180.4 (3)C20—C21—C22—C230.0 (4)
N7—N8—C18—C170.1 (3)C21—C20—C25—C241.9 (3)
N7—N8—C19—C2074.0 (3)C21—C22—C23—C241.2 (4)
N8—C19—C20—C21166.2 (2)C22—C23—C24—C250.8 (4)
N8—C19—C20—C2516.8 (3)C23—C24—C25—C200.8 (4)
C1—C3—C4—N1174.4 (2)C25—C20—C21—C221.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cgi0.932.423.330 (3)167
C19—H19A···N7ii0.972.383.311 (3)162
C21—H21···C27ii0.932.893.603 (3)134
C7—H7···S1iii0.932.873.755 (3)159
C4—H4B···N10iii0.972.693.617 (3)160
C4—H4B···C27iii0.972.753.709 (3)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z.
Comparison of the distortion parameters for indicated FeII complexes top
Parameters for OTANOO averaged over five independent complex cations.
Compound<Fe–N> (Å)Σ (°)Θ (°)CShM (D3h)
Title compound2.186453.2149.384.008
CABLOH1.899725.74178.160.525
BUNSAF2.218703.65201.071.887
OWIHAE2.202894.48206.570.602
OTANOO2.191697.3183.241.098
 

Funding information

Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 734322).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationEl Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416–10423.  CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGural'skiy, I. A., Quintero, C. M., Molnár, G., Fritsky, I. O., Salmon, L. & Bousseksou, A. (2012). Chem. Eur. J. 18, 9946–9954.  Web of Science CAS PubMed Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006–6019.  CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866–9880.  CSD CrossRef CAS PubMed Google Scholar
First citationHagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815–818.  CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132–17140.  CSD CrossRef CAS PubMed Google Scholar
First citationHora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.  CrossRef Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  CSD CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390.  Web of Science CrossRef Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254–5265.  CSD CrossRef CAS PubMed Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuleimanov, I., Kraieva, O., Costa, J. S., Fritsky, I. O., Molnár, G., Salmon, L. & Bousseksou, A. (2015). J. Mater. Chem. C. 3, 5026–5032.  CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. The University of Western Australia.  Google Scholar
First citationValverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem., Int. Ed. https://doi.org/10.1002anie.202006453  Google Scholar
First citationVoloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Polshin, E. V. & Antipin, M. Y. (2001). Polyhedron, 20, 2721–2733.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds