research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rietveld refinement of the langbeinite-type phosphate K2Ni0.5Hf1.5(PO4)3

CROSSMARK_Color_square_no_text.svg

aCollege of Physics, Jilin University 2699 Qianjin St., 130012 Changchun, People's Republic of China, bShimUkraine LLC, 18, Chigorina Str., office 429, 01042 Kyiv, Ukraine, and cV. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Pr. Nauki, 03028 Kyiv, Ukraine
*Correspondence e-mail: zvigo@yandex.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 August 2020; accepted 1 September 2020; online 11 September 2020)

Polycrystalline potassium nickel(II) hafnium(IV) tris­(orthophosphate), a langbeinite-type phosphate, was synthesized by a solid-state method. The three-dimensional framework of the title compound is built up from two types of [MO6] octa­hedra [the M sites are occupied by Hf:Ni in ratios of 0.754 (8):0.246 (8) and 0.746 (8):0.254 (8), respectively] and [PO4] tetra­hedra are connected via O vertices. The K+ cations are located in two positions within large cavities of the framework, having coordination numbers of 9 and 12. The Hf, Ni and K sites lie on threefold rotation axes, while the P and O atoms are situated in general positions.

1. Chemical context

Langbeinite-related complex oxides have a variety of inter­esting properties, for example, ferroelectricity or ferroelasticity (Norberg, 2002[Norberg, S. T. (2002). Acta Cryst. B58, 743-749.]). In particular, complex phosphates of this type have attracted attention for their high thermal and chemical stability, and many different combinations for structural substitutions are possible (Wulff et al., 1992[Wulff, H., Guth, U. & Loescher, B. (1992). Powder Diffr. 7, 103-106.]; Slobodyanik et al., 2012[Slobodyanik, N. S., Terebilenko, K. V., Ogorodnyk, I. V., Zatovsky, I. V., Seredyuk, M., Baumer, V. N. & Gütlich, P. (2012). Inorg. Chem. 51, 1380-1385.]). These characteristics made it possible to propose the family of langbeinite-type phosphates as successful hosts for the immobilization of radioactive waste (Orlova et al., 2011[Orlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). Radiochemistry, 53, 51-62.]). Moreover, in the last decade rare-earth (RE)-containing langbeinite-type phosphates have been studied intensively owing to their outstanding luminescent properties and applications in LEDs (Liang & Wang, 2011[Liang, W. & Wang, Y. (2011). Mater. Chem. Phys. 127, 170-173.]; Liu et al., 2016[Liu, J., Duan, X., Zhang, Y., Li, Z., Yu, F. & Jiang, H. (2016). J. Alloys Compd. 660, 356-360.]; Sadhasivam et al., 2017[Sadhasivam, S., Manivel, P., Jeganathan, K., Jayasankar, C. K. & Rajesh, N. P. (2017). Mater. Lett. 188, 399-402.]; Terebilenko et al., 2020[Terebilenko, K. V., Nedilko, S. G., Chornii, V. P., Prokopets, V. M., Slobodyanik, M. S. & Boyko, V. V. (2020). RSC Adv. 10, 25763-25772.]). Accordingly, further studies of iso- and heterovalent substitution within the cationic sites of the langbeinite structure are important. Structural data for langbeinite-type Hf-containing phosphates are scarce and include only K1.93Mn0.53Hf1.47(PO4)3 (Ogorodnyk et al., 2007a[Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007a). J. Solid State Chem. 180, 2838-2844.]) and K2YHf(PO4)3 (Ogorodnyk et al., 2009[Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2009). Acta Cryst. E65, i63-i64.]).

In this report, we describe the powder X-ray refinement using the Rietveld method for the multimetal phosphate K2Ni0.5Hf1.5(PO4)3 (I), structurally isotypic with the mineral langbeinite, K2Mg2(SO4)3 (Zemann & Zemann, 1957[Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.]).

2. Structural commentary

As shown in Fig. 1[link], in the structure of (I) the K, Ni and Hf sites are localized on threefold rotation axes (Wyckoff position 4 a), while the P and all O atoms occupy general sites (12 b). Two metallic sites (Hf,Ni)1 and (Hf,Ni)2 show mixed occupancy with a Hf:Ni ratio of about 0.75:0.25 (nickel proportion 0.246 (8) for the M1 site and 0.254 (8) for the M2 site). A similar MII:MIV ratio was also observed for isostructural phosphates of general composition MIMII0.5MIV1.5(PO4)3, viz. K2Ni0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2007b[Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121-125.]), Rb2Ni0.5Ti1.5(PO4)3 (Strutynska et al., 2015[Strutynska, N. Yu., Bondarenko, M. A., Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Puzan, A. N. (2015). Cryst. Res. Technol. 50, 549-555.]), K2Co0.5Ti1.5(PO4)3 and K2Mn0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006[Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.]), K2Ni0.5Zr1.5(PO4)3 (Zatovsky, 2014[Zatovsky, I. V. (2014). Acta Cryst. E70, i41.]), K1.96Mn0.57Zr1.43(PO4)3 and K1.93Mn0.53Hf1.47(PO4)3 (Ogorodnyk et al., 2007a[Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007a). J. Solid State Chem. 180, 2838-2844.]).

[Figure 1]
Figure 1
A view of the asymmetric unit of K2Ni0.5Hf1.5(PO4)3, with displacement spheres drawn at the 50% probability level.

The (Hf,Ni)—O distances in (I) are 1.989 (15) and 2.121 (14) Å for the [(Hf,Ni)1O6] octa­hedron, and 2.131 (17) and 2.172 (16) Å for the [(Hf,Ni)2O6] octa­hedron. The two independent [(Hf,Ni)O6] octa­hedra are linked by three [PO4] tetra­hedra to form an [M2P3O18] building unit (Fig. 2[link]). These building units are arranged along three directions (threefold rotation axes) and linked together via oxygen vertices, forming a three-dimensional framework structure. Pairs of K+ cations (two independent sites) are localized in large cavities of the resulting framework. The potassium cations are found in 9- and 12-coordination by O atoms with K—O distances ranging from 2.854 (17) Å to 3.372 (18) Å (Table 1[link], Fig. 3[link]), leading to distorted polyhedra. The [PO4] tetra­hedron shows considerable distortion (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

K1—O1i 2.854 (17) K2—O4iii 3.372 (18)
K1—O4ii 3.082 (17) P1—O1 1.503 (15)
K1—O2ii 3.103 (15) P1—O2 1.533 (17)
K2—O3ii 2.944 (16) P1—O3 1.48 (2)
K2—O2iii 2.987 (18) P1—O4 1.506 (18)
K2—O4ii 3.041 (18)    
       
O1—P1—O2 110.2 (10) O2—P1—O3 112.6 (10)
O1—P1—O3 107.4 (10) O2—P1—O4 106.0 (10)
O1—P1—O4 120.1 (10) O3—P1—O4 100.3 (11)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-z+1, x+{\script{1\over 2}}, -y+{\script{3\over 2}}].
[Figure 2]
Figure 2
[M2P3O18] building unit (highlighted in red frames) for (I). K+ cations are shown as blue spheres of arbitrary radius.
[Figure 3]
Figure 3
Coordination polyhedra [K1O9] and [K2O12] for (I). Displacement spheres are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + 1, z + [{1\over 2}]; (iii) −z + [{1\over 2}], −x + 1, y + [{1\over 2}]; (iv) −y + 1, z + [{1\over 2}], −x + [{3\over 2}]; (v) y + [{1\over 2}], −z + [{1\over 2}], −x + 1; (vi) z + [{1\over 2}], −x + [{3\over 2}], −y + 1; (vii) −z + 1, x + [{1\over 2}], −y + [{3\over 2}]; (viii) −y + [{3\over 2}], −z + 1, x + [{1\over 2}]; (ix) x + [{1\over 2}], −y + [{3\over 2}], −z + 1].

For (I), the calculation of BVS (bond-valence sums) was performed using the parameters for Hf from Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), for Ni from Brown (private communication, 2001[Brown, I. D. (2001). Private communication.]) and for K, P from Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). The corresponding occupation of the M sites by Hf and Ni atoms was taken into account. The sum of BVS of the cations is +23.67 valence units (v.u.), which is close to the −24 v.u. required for the O atoms.

3. Synthesis and crystallization

Compound (I) was synthesized using a solid-state reaction method. A well-ground starting mixture of 3.157 g HfO2, 0.374 g NiO, 2.361 g KPO3 and 1.150 g NH4H2PO4 (molar ratio K:Ni:Hf:P = 4:1:3:6) was transferred to a ceramic crucible and pre-heated at 553 K for 2 h. The powder was re-ground, heated at 823 K for 3 h and then milled for 0.5 h in an agate mortar. The resulting fine powder was pressed into a pill and finally calcined at 1273 K for 100 h. The sample was ground before performing powder XRD data collection. Scanning electron microscopy (SEM, Magellan 400, recorded at 10 kV) showed that the obtained sample is an aggregate of small crystallites with a size less than 1 µm (Fig. 4[link]).

[Figure 4]
Figure 4
SEM image for (I) (Insert: image at higher magnification).

4. Refinement

The experimental, calculated and difference pattern are shown in Fig. 5[link]. Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Structure refinement was performed using K2YHf(PO4)3 (Ogorodnyk et al., 2009[Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2009). Acta Cryst. E65, i63-i64.]) as a starting model. A modified pseudo-Voigt function (Thompson et al., 1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) was used for the profile refinement. The similar shape of the transition-metal octa­hedra indicated that both M positions are occupied by Ni and Hf simultaneously. For the refinement of their occupancies their coordinates and Uiso values were constrained together, and the sum of occupancies constrained to unity for both sites.

Table 2
Experimental details

Crystal data
Chemical formula K2Ni0.5Hf1.5(PO4)3
Mr 660.19
Crystal system, space group Cubic, P213
Temperature (K) 293
a (Å) 10.12201 (5)
V3) 1037.05 (1)
Z 4
Radiation type Cu Kα1, λ = 1.540598 Å
Specimen shape, size (mm) Flat sheet, 15 × 15
 
Data collection
Diffractometer Haoyuan Instrument Co. Ltd DX-2700B
Specimen mounting Glass container
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 10.008 2θmax = 105.008 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 6.111, Rwp = 7.831, Rexp = 4.020, RBragg = 4.709, R(F) = 3.21, χ2 = 4.410
No. of parameters 107
No. of restraints 3
Computer programs: data-collection and reduction software supplied by instrument manufacturer (https://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html), FULLPROF (Rodriguez-Carvajal, 2020[Rodriguez-Carvajal, J. (2020). FULLPROF. Laboratoire Léon Brillouin (CEA-CNRS), France.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).
[Figure 5]
Figure 5
Rietveld refinement of K2Ni0.5Hf1.5(PO4)3. Experimental (dots), calculated (red curve) and difference (blue curve) data for 2θ range 10–108°.

Supporting information


Computing details top

Data collection: Software supplied by instrument manufacturer (https://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html); cell refinement: FULLPROF (Rodriguez-Carvajal, 2020); data reduction: Software supplied by instrument manufacturer (https://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html); program(s) used to solve structure: isomorphic replacement; program(s) used to refine structure: FULLPROF (Rodriguez-Carvajal, 2020); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2020), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

(I) top
Crystal data top
K2Ni0.5Hf1.5(PO4)3Dx = 4.228 Mg m3
Mr = 660.19Cu Kα radiation, λ = 1.540598 Å
Cubic, P213T = 293 K
Hall symbol: P 2ac 2ab 3Particle morphology: tetrahedra
a = 10.12201 (5) Åyellow
V = 1037.05 (1) Å3flat_sheet, 15 × 15 mm
Z = 4Specimen preparation: Prepared at 293 K and 101.3 kPa
Data collection top
Haoyuan Instrument Co. Ltd DX-2700B
diffractometer
Data collection mode: reflection
Radiation source: X-ray tube, X-rayScan method: step
Graphite monochromator2θmin = 10.008°, 2θmax = 105.008°, 2θstep = 0.020°
Specimen mounting: glass container
Refinement top
Rp = 6.111107 parameters
Rwp = 7.8313 restraints
Rexp = 4.0203 constraints
RBragg = 4.709 Standard least squares refinement
R(F) = 3.21(Δ/σ)max = 0.001
4751 data pointsBackground function: Linear Interpolation between a set background points with refinable heights
Profile function: Thompson-Cox-Hastings pseudo-Voigt * Axial divergence asymmetryPreferred orientation correction: Modified March's Function
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.7042 (5)0.7042 (5)0.7042 (5)0.028 (4)*
K20.9319 (8)0.9319 (8)0.9319 (8)0.044 (4)*
Ni10.14423 (16)0.14423 (16)0.14423 (16)0.0022 (12)*0.246 (8)
Ni20.4147 (2)0.4147 (2)0.4147 (2)0.0019 (12)*0.254 (8)
Hf10.14423 (16)0.14423 (16)0.14423 (16)0.0022 (12)*0.754 (8)
Hf20.4147 (2)0.4147 (2)0.4147 (2)0.0019 (12)*0.746 (8)
P10.4624 (6)0.2349 (10)0.1229 (9)0.004 (2)*
O10.3218 (13)0.2314 (17)0.0752 (16)0.011 (6)*
O20.5508 (14)0.3023 (16)0.0201 (15)0.008 (4)*
O30.5028 (13)0.0973 (17)0.1500 (18)0.008 (6)*
O40.4953 (16)0.2985 (17)0.2533 (14)0.009 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
???????
Geometric parameters (Å, º) top
K1—O1i2.854 (17)Hf1—O12.121 (14)
K1—O4ii3.082 (17)Hf1—O2x1.989 (15)
K1—O2ii3.103 (15)Hf1—O1xi2.121 (14)
K1—O1iii2.854 (17)Hf1—O2xii1.989 (15)
K1—O4iv3.082 (17)Hf2—O42.172 (16)
K1—O2iv3.103 (15)Hf2—O3i2.131 (17)
K1—O1v2.854 (17)Hf2—O4xi2.172 (16)
K1—O4vi3.082 (17)Hf2—O3iii2.131 (17)
K1—O2vi3.103 (15)Ni1—O12.121 (14)
K2—O3ii2.944 (16)Ni1—O2x1.989 (15)
K2—O2vii2.987 (18)Ni1—O1xi2.121 (14)
K2—O4ii3.041 (18)Ni1—O2xii1.989 (15)
K2—O4vii3.372 (18)Ni2—O42.172 (16)
K2—O3iv2.944 (16)Ni2—O3i2.131 (17)
K2—O2viii2.987 (18)Ni2—O4xi2.172 (16)
K2—O4iv3.041 (18)Ni2—O3iii2.131 (17)
K2—O4viii3.372 (18)P1—O11.503 (15)
K2—O3vi2.944 (16)P1—O21.533 (17)
K2—O2ix2.987 (18)P1—O31.48 (2)
K2—O4vi3.041 (18)P1—O41.506 (18)
K2—O4ix3.372 (18)
O1—Hf1—O2x90.8 (6)O1xi—Ni1—O2x87.8 (6)
O1—Hf1—O1xi93.7 (6)O2x—Ni1—O2xii87.7 (6)
O1—Hf1—O2xii175.2 (6)O1xi—Ni1—O2xii90.8 (6)
O1xi—Hf1—O2x87.8 (6)O3i—Ni2—O495.2 (6)
O2x—Hf1—O2xii87.7 (6)O4—Ni2—O4xi94.5 (6)
O1xi—Hf1—O2xii90.8 (6)O3iii—Ni2—O4168.5 (6)
O3i—Hf2—O495.2 (6)O3i—Ni2—O4xi78.6 (6)
O4—Hf2—O4xi94.5 (6)O3i—Ni2—O3iii92.7 (6)
O3iii—Hf2—O4168.5 (6)O3iii—Ni2—O4xi95.2 (6)
O3i—Hf2—O4xi78.6 (6)O1—P1—O2110.2 (10)
O3i—Hf2—O3iii92.7 (6)O1—P1—O3107.4 (10)
O3iii—Hf2—O4xi95.2 (6)O1—P1—O4120.1 (10)
O1—Ni1—O2x90.8 (6)O2—P1—O3112.6 (10)
O1—Ni1—O1xi93.7 (6)O2—P1—O4106.0 (10)
O1—Ni1—O2xii175.2 (6)O3—P1—O4100.3 (11)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y+1, z+1/2; (iii) z+1/2, x+1, y+1/2; (iv) y+1, z+1/2, x+3/2; (v) y+1/2, z+1/2, x+1; (vi) z+1/2, x+3/2, y+1; (vii) z+1, x+1/2, y+3/2; (viii) y+3/2, z+1, x+1/2; (ix) x+1/2, y+3/2, z+1; (x) x1/2, y+1/2, z; (xi) z, x, y; (xii) z, x1/2, y+1/2.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2001). Private communication.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiang, W. & Wang, Y. (2011). Mater. Chem. Phys. 127, 170–173.  Web of Science CrossRef CAS Google Scholar
First citationLiu, J., Duan, X., Zhang, Y., Li, Z., Yu, F. & Jiang, H. (2016). J. Alloys Compd. 660, 356–360.  Web of Science CrossRef CAS Google Scholar
First citationNorberg, S. T. (2002). Acta Cryst. B58, 743–749.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007a). J. Solid State Chem. 180, 2838–2844.  Web of Science CrossRef ICSD CAS Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.  Web of Science CrossRef Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2009). Acta Cryst. E65, i63–i64.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationOgorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.  Web of Science CrossRef ICSD CAS Google Scholar
First citationOrlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). Radiochemistry, 53, 51–62.  CrossRef CAS Google Scholar
First citationRodriguez-Carvajal, J. (2020). FULLPROF. Laboratoire Léon Brillouin (CEA–CNRS), France.  Google Scholar
First citationSadhasivam, S., Manivel, P., Jeganathan, K., Jayasankar, C. K. & Rajesh, N. P. (2017). Mater. Lett. 188, 399–402.  Web of Science CrossRef CAS Google Scholar
First citationSlobodyanik, N. S., Terebilenko, K. V., Ogorodnyk, I. V., Zatovsky, I. V., Seredyuk, M., Baumer, V. N. & Gütlich, P. (2012). Inorg. Chem. 51, 1380–1385.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrutynska, N. Yu., Bondarenko, M. A., Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Puzan, A. N. (2015). Cryst. Res. Technol. 50, 549–555.  Web of Science CrossRef ICSD CAS Google Scholar
First citationTerebilenko, K. V., Nedilko, S. G., Chornii, V. P., Prokopets, V. M., Slobodyanik, M. S. & Boyko, V. V. (2020). RSC Adv. 10, 25763–25772.  Web of Science CrossRef CAS Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationWulff, H., Guth, U. & Loescher, B. (1992). Powder Diffr. 7, 103–106.  CrossRef ICSD CAS Google Scholar
First citationZatovsky, I. V. (2014). Acta Cryst. E70, i41.  CrossRef ICSD IUCr Journals Google Scholar
First citationZemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds