research communications
The novel high-pressure/high-temperature compound Co12P7 determined from synchrotron data
aUniversity of Chicago, Department of the Geophysical Sciences, 5734 S. Ellis Ave, Chicago IL, 60637, USA, bX-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA, and cUniversity of Chicago, GeoSoilEnviro Center for Advanced Radiation Sources, Chicago, IL 60637, USA
*Correspondence e-mail: czurkowski@uchicago.edu
The structural properties of cobalt phosphides were investigated at high pressures and temperatures to better understand the behavior of metal-rich phosphides in Earth and planetary interiors. Using single-crystal X-ray diffraction synchrotron data and a laser-heated diamond anvil cell, we discovered a new high pressure–temperature (HP–HT) cobalt phosphide, Co12P7, dodecacobalt heptaphosphide, synthesized at 27 GPa and 1740 K, and at 48 GPa and 1790 K. Co12P7 adopts a structure initially proposed for Cr12P7 (space-group type P, Z =1), consisting of chains of edge-sharing CoP5 square pyramids and chains of corner-sharing CoP4 tetrahedra. This arrangement leaves space for trigonal–prismatic channels running parallel to the c axis. Coupled disordering of metal and phosphorus atoms has been observed in this structure for related M12P7 (M = Cr, V) compounds, but all Co and P sites are ordered in Co12P7. All atomic sites in this are situated on special positions. Upon decompression to ambient conditions, peak broadening and loss of reflections at high angles was observed, suggesting phase instability.
1. Chemical context
Cobalt phosphides have previously been examined in the context of binary phase relations and thermodynamics (Okamoto & Massalski, 1990; Schlesinger, 2002) and have gained attention for their unique conductive properties (Prins & Bussell, 2012; Popczun et al., 2014; Pan et al., 2016; Pramanik et al., 2017), magnetic properties (Fujii et al., 1988; Jeitschko et al., 1978; Jeitschko & Jaberg, 1980; Reehuis & Jeitschko, 1989), and ability to store lanthanide cations (Jeitschko et al., 1978). Cobalt phosphides also serve as structural analogs to iron-rich phosphides and in planetary core-forming alloys. Previous studies of CoP and Co2P indicate that their phase relations tend to precede in pressure the stability of isostructural Fe-phosphides and Fe-sulfides (Rundqvist, 1960; Ellner & Mittemeijer, 2001; Dera et al., 2008; Tateno et al., 2019; Rundqvist, 1962; Ono & Kikegawa, 2006; Ono et al. 2008). Hence, understanding the behavior of cobalt phosphides at high pressures provides insight into the ultra-high pressure behavior of iron and phosphides.
There are few structures reported in the literature for transition-metal phosphides with the composition M12P7. Baurecht et al. (1971) first examined Cr12P7 and determined that it adopts a hexagonal lattice with P, Z = 1. The structure consists of columns of alternating tetrahedral and pyramidal polyhedra and columns of stacked triangular–prismatic polyhedra extending along the c-axis direction. Chromium atoms occupy half of all possible tetrahedral and pyramidal sites while the triangular–prismatic sites are empty (Baurecht et al., 1971). The polyhedra in the can be described as Cr9PCr3T[] 2PrP7 (P = pyramidal, T = tetrahedral, Pr = trigonal–prismatic, [] = empty site) (Maaref et al., 1981). Coupled disordering of two half-atoms of the corresponding metal with two half-atoms of phosphorus within the tetrahedral and pyramidal sites has been observed in this structure for compounds Th7S12, V12P7, and Cr12P7, increasing the symmetry to the P63/m (Zachariasen, 1949; Olofsson & Ganglberger 1970; Chun & Carpenter, 1979).
At ambient conditions the M12P7 composition is not observed in the binary systems with M = Co, Ni, Fe. Dhahri (1996) concluded that Co12P7, Ni12P7 and Fe12P7 do not occur in the Cr12P7 structure type at ambient conditions because, unlike Cr and V, the elements Co, Ni and Fe do not preferentially occupy pyramidal sites. In support of this conclusion, the Zn2Fe12P7 structure type (P, Z = 1) with many structural similarities to the Cr12P7 structure type, has been observed in Ln2M12P7 (Ln = rare-earth element; M = Co, Ni, Fe) compounds where the pyramidal-to-tetrahedral site ratio is 1:3 (Jeitschko et al., 1978; Jeitschko & Jaberg, 1980; Reehuis & Jeitschko, 1989). Ordering is present in the Co-, Fe-, Ni-rich Zn2Fe12P7 isomorphs (Jeitschko et al., 1984). No other structure types for the composition M12P7 (M = Co, Ni, Fe) have been reported so far.
The effect of pressure and temperature on stabilizing Co in both the tetrahedral and pyramidal sites and ordering of Co and P in the Cr12P7-type structure has not been examined previously. In the current study, we report the synthesis of a Co12P7 phase at 27 GPa and 1750 K, and at 48 GPa and 1790 K; both phases are isostructural and crystallize in P. Structure refinements revealed that Co and P sites are ordered in the high P–T structure and Co atoms occupy tetrahedral and pyramidal coordinations. Using single-crystal diffraction techniques, we report refined atomic coordinate sites of Co12P7 at 48 GPa and 15 GPa.
2. Structural commentary
12P7 assumes the ordered Cr12P7 structure type (Baurecht et al., 1971; Chun & Carpenter, 1979). Two of the Co sites (Co0, Co1) occupy 3 j (point group symmetry m..), the other two Co sites (Co2, Co3) 3 k (m..), one P site (P5) 3 j, one P site (P4) 3 k, and one P site (P6) 1 a (..). The Co sites occupy tetrahedral (cyan) and pyramidal (violet) sites as imaged in Fig. 1. Chains of edge-sharing CoP5 square pyramids and chains of corner-sharing CoP4 tetrahedra build up the framework with trigonal–prismatic channels running parallel to the c axis.
of the structure confirms that CoRanges of interatomic Co—P distances and polyhedral volumes are provided in Table 1 and Fig. 2 with CoP4 tetrahedra represented by a cyan polyhedron and CoP5 pyramids represented by violet polyhedra. Co0 atoms occupy a distorted tetrahedral site with one P atom at a short distance, two at intermediate distances and one at a long distance (Table 1, Fig. 2). Co1 and Co2 atoms occupy square pyramids with two intermediate and two long interatomic distances at the base. Co3 atoms occupy a less distorted square pyramid with two elongated and two truncated bonds at the base (Fig. 2). Interatomic distances at 48 GPa range from 2.063 (2)–2.102 (2) Å in the tetrahedral polyhedra, 2.147 (4)–2.220 (4) Å for Co1—P polyhedra, 2.197 (4)–2.317 (2) Å for Co2—P polyhedra and 2.194 (3)–2.219 (3) Å for Co3—P polyhedra (Table 1). These interatomic distances are comparable to those observed in Co2P and CoP (Rundqvist 1960, 1962).
|
A grain of Co12P7 was decompressed to ambient conditions where 44 total reflections were identified in and indexed to a of a = 8.47 (1) Å, c = 3.37 (1) Å. These unit-cell parameters are in agreement with the pressure–volume trend observed, but peak broadening and loss of reflections at high angles may reflect the onset of phase instability on decompression.
3. Synthesis and crystallization
The synthesis of Co12P7 was performed at high pressures and temperatures in a laser-heated diamond anvil cell (LHDAC). Two samples were loaded for this study in which Co12P7 was synthesized at 26.9 (8) GPa and 1740 (110) K and 48.2 (5) GPa and 1790 (200) K, respectively. Pressure was generated in BX-90-type (70° angular opening) diamond anvil cells (DACs) with 300 µm culet, Boehler–Almax type diamonds and seats. Co–P samples and a ruby sphere for pressure calibration were loaded into a sample chamber drilled from a rhenium gasket. The chamber was subsequently filled with compressed neon gas (Rivers et al., 2008). Pressure was determined using the ruby fluorescence scale and the Ne equation of state (Mao & Bell, 1976; Fei et al., 2007).
Samples were heated from both sides with 100W Yb-doped fiber lasers at beamline 13-ID-D (GeoSoilEnviroCARS) of the Advanced Photon Source (APS), Argonne National Laboratory. Heating cycles typically lasted ∼15 minutes at target temperatures prior to quench. The lasers were shaped with ∼15 µm flat tops and temperature was measured spectroradiometrically from a 6 µm central region of the laser heated spot using a gray body approximation (Heinz & Jeanloz, 1987). Axial temperature gradients through the sample were accounted for by applying a 3% correction on temperature measurements (Campbell et al., 2007, 2009).
Upon quench from high temperatures, high-pressure samples consisted of agglomerates of Co12P7 and Pnma Co2P (Rundqvist, 1960) crystals of variable grain sizes up to ∼5 µm in diameter. Grains of target phases were identified in and sorted out from the scattering contribution of other grains, neon and diamond. Diffraction data were processed using Dioptas (Prescher & Prakapenka, 2015) and CrysAlis Pro (Rigaku OD, 2018). Decompression data were collected for both samples in two experimental stations; here we report two selected refinements of the Co12P7 structure at 48.2 (5) GPa and 15.4 (2) GPa.
4. Refinement
Crystal data, data collection and structure .
details at 48 GPa and 15 GPa are summarized in Table 2Monochromatic X-ray diffraction measurements took place at beamlines 13-ID-D (2 µm x 3 µm beam, λ = 0.2952 Å) and 13-BM-D (5 µm × 8 µm beam, λ = 0.3344 Å) at APS (Table 2). Diffraction measurements were collected at synthesis pressures and upon decompression. At target pressure steps, 10 x 10 µm still image maps were collected in 2 µm steps around the heated region. At selected map locations exhibiting the largest crystallites, rotation images were collected spanning ±30° at a rate of 1s per 0.5° step.
Grains of Co12P7 identified in were indexed to a primitive hexagonal lattice. Analysis of indicated P with Z = 1. Two grains from distinct loadings and measured at different beamlines were selected for structural refinements as they showed the largest number of observed reflections and good statistical parameters (Table 2). Structure factors measured in microdiffraction in the LHDAC show some well-known limitations, such as limited resolution and redundancy, reflections overlapped by parasitic scattering, diamond diffraction (Loveday et al., 1990) and, more notably, variable volume of illuminated crystal during rotation. As could be expected, we identified eight and five outlier reflections in the refinements for the 48 GPa and 15 GPa data sets, respectively, and omitted them in the final calculations. Based on the ratio `observed reflections/refined parameters' and statistical tests (Hamilton, 1965), we concluded that the P sites should be refined with isotropic displacement parameters (Uiso) whereas the Co sites could be refined with anisotropic displacement parameters. After convergence, site occupancies of Co atoms and P atoms were released in alternate runs. Within uncertainty (< 1.2% for Co and < 1.3% for P), all sites are fully occupied.
Supporting information
https://doi.org/10.1107/S2056989020012657/wm5583sup1.cif
contains datablocks Co12P7_at_48GPa, Co12P7_at_15GPa. DOI:Structure factors: contains datablock Co12P7_at_48GPa. DOI: https://doi.org/10.1107/S2056989020012657/wm5583Co12P7_at_48GPasup2.hkl
Structure factors: contains datablock Co12P7_at_15GPa. DOI: https://doi.org/10.1107/S2056989020012657/wm5583Co12P7_at_15GPasup3.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Co12P7 | Dx = 8.706 Mg m−3 |
Mr = 923.95 | Synchrotron radiation, λ = 0.29521 Å |
Hexagonal, P6 | Cell parameters from 292 reflections |
a = 7.9700 (14) Å | θ = 2.3–14.9° |
c = 3.2034 (4) Å | µ = 2.47 mm−1 |
V = 176.22 (7) Å3 | T = 293 K |
Z = 1 | Irregular, black |
F(000) = 429 | 0.01 × 0.01 × 0.01 mm |
13IDD @ APS diffractometer | 279 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.006 |
ω scans | θmax = 15.0°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −6→8 |
Tmin = 0.789, Tmax = 1.000 | k = −10→9 |
336 measured reflections | l = −5→5 |
292 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0802P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.037 | (Δ/σ)max < 0.001 |
wR(F2) = 0.096 | Δρmax = 2.35 e Å−3 |
S = 1.12 | Δρmin = −1.81 e Å−3 |
292 reflections | Absolute structure: Flack x determined using 75 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
32 parameters | Absolute structure parameter: 0.42 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co0 | 0.0185 (3) | 0.2676 (3) | 0.0000 | 0.0047 (4) | |
Co1 | 0.1313 (3) | 0.6239 (3) | 0.0000 | 0.0047 (4) | |
Co2 | 0.2161 (3) | 0.2037 (4) | 0.5000 | 0.0071 (4) | |
Co3 | 0.5185 (3) | 0.1341 (3) | 0.5000 | 0.0051 (4) | |
P4 | 0.1693 (5) | 0.4529 (5) | 0.5000 | 0.0062 (6)* | |
P5 | 0.4454 (5) | 0.2795 (6) | 0.0000 | 0.0050 (6)* | |
P6 | 0.0000 | 0.0000 | 0.0000 | 0.0069 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co0 | 0.0044 (8) | 0.0030 (8) | 0.0062 (5) | 0.0015 (7) | 0.000 | 0.000 |
Co1 | 0.0038 (8) | 0.0024 (7) | 0.0071 (8) | 0.0009 (6) | 0.000 | 0.000 |
Co2 | 0.0081 (8) | 0.0069 (9) | 0.0079 (6) | 0.0049 (7) | 0.000 | 0.000 |
Co3 | 0.0038 (8) | 0.0028 (8) | 0.0069 (7) | 0.0005 (6) | 0.000 | 0.000 |
Co0—P6 | 2.0629 (18) | Co2—Co3 | 2.730 (2) |
Co0—P5i | 2.091 (4) | Co3—P5xi | 2.194 (3) |
Co0—P4 | 2.102 (2) | Co3—P5xii | 2.194 (3) |
Co0—P4ii | 2.102 (2) | Co3—P4viii | 2.197 (5) |
Co0—Co3iii | 2.458 (2) | Co3—P5vii | 2.218 (3) |
Co0—Co3i | 2.458 (2) | Co3—P5 | 2.219 (3) |
Co0—Co2ii | 2.4710 (19) | Co3—Co0viii | 2.458 (2) |
Co0—Co2 | 2.4710 (19) | Co3—Co0ix | 2.458 (2) |
Co0—Co2iii | 2.497 (2) | Co3—Co3xii | 2.474 (3) |
Co0—Co2i | 2.497 (2) | Co3—Co3xiii | 2.475 (3) |
Co0—Co1 | 2.514 (3) | Co3—Co1viii | 2.578 (2) |
Co0—Co1iv | 2.515 (2) | Co3—Co1ix | 2.578 (2) |
Co1—P5v | 2.147 (4) | P4—Co0vii | 2.102 (2) |
Co1—P4v | 2.180 (3) | P4—Co1x | 2.180 (3) |
Co1—P4vi | 2.180 (3) | P4—Co1iv | 2.180 (3) |
Co1—P4ii | 2.220 (3) | P4—Co3i | 2.197 (5) |
Co1—P4 | 2.220 (3) | P4—Co1vii | 2.220 (3) |
Co1—Co0v | 2.515 (2) | P4—P4iv | 2.674 (6) |
Co1—Co1v | 2.546 (3) | P4—P4v | 2.674 (6) |
Co1—Co1iv | 2.546 (3) | P5—Co0viii | 2.091 (4) |
Co1—Co3iii | 2.578 (2) | P5—Co1iv | 2.147 (4) |
Co1—Co3i | 2.578 (2) | P5—Co3xiii | 2.194 (3) |
Co1—Co2v | 2.639 (2) | P5—Co3xiv | 2.194 (3) |
Co2—P4 | 2.197 (4) | P5—Co3ii | 2.218 (3) |
Co2—P5 | 2.273 (3) | P5—Co2ii | 2.273 (3) |
Co2—P5vii | 2.273 (3) | P6—Co0i | 2.0629 (18) |
Co2—P6 | 2.3174 (17) | P6—Co0viii | 2.0629 (18) |
Co2—P6vii | 2.3174 (17) | P6—Co2xv | 2.3174 (17) |
Co2—Co0vii | 2.4710 (19) | P6—Co2viii | 2.3174 (17) |
Co2—Co0viii | 2.497 (2) | P6—Co2ii | 2.3174 (17) |
Co2—Co0ix | 2.497 (2) | P6—Co2iii | 2.3175 (17) |
Co2—Co1x | 2.639 (2) | P6—Co2i | 2.3175 (17) |
Co2—Co1iv | 2.639 (2) | ||
P6—Co0—P5i | 96.84 (13) | P4—Co2—Co3 | 138.57 (14) |
P6—Co0—P4 | 116.54 (11) | P5—Co2—Co3 | 51.66 (8) |
P5i—Co0—P4 | 114.33 (11) | P5vii—Co2—Co3 | 51.66 (8) |
P6—Co0—P4ii | 116.54 (11) | P6—Co2—Co3 | 106.26 (8) |
P5i—Co0—P4ii | 114.33 (11) | P6vii—Co2—Co3 | 106.26 (8) |
P4—Co0—P4ii | 99.31 (14) | Co0vii—Co2—Co3 | 139.47 (4) |
P6—Co0—Co3iii | 126.74 (6) | Co0—Co2—Co3 | 139.47 (4) |
P5i—Co0—Co3iii | 57.69 (9) | Co0viii—Co2—Co3 | 55.89 (7) |
P4—Co0—Co3iii | 116.61 (12) | Co0ix—Co2—Co3 | 55.89 (7) |
P4ii—Co0—Co3iii | 56.96 (11) | Co1x—Co2—Co3 | 96.63 (8) |
P6—Co0—Co3i | 126.74 (6) | Co1iv—Co2—Co3 | 96.63 (8) |
P5i—Co0—Co3i | 57.69 (9) | P5xi—Co3—P5xii | 93.78 (15) |
P4—Co0—Co3i | 56.96 (11) | P5xi—Co3—P4viii | 107.43 (14) |
P4ii—Co0—Co3i | 116.61 (12) | P5xii—Co3—P4viii | 107.43 (14) |
Co3iii—Co0—Co3i | 81.31 (9) | P5xi—Co3—P5vii | 77.38 (14) |
P6—Co0—Co2ii | 60.69 (6) | P5xii—Co3—P5vii | 146.69 (16) |
P5i—Co0—Co2ii | 129.60 (8) | P4viii—Co3—P5vii | 105.86 (14) |
P4—Co0—Co2ii | 116.07 (13) | P5xi—Co3—P5 | 146.69 (16) |
P4ii—Co0—Co2ii | 56.73 (11) | P5xii—Co3—P5 | 77.38 (14) |
Co3iii—Co0—Co2ii | 98.20 (5) | P4viii—Co3—P5 | 105.86 (14) |
Co3i—Co0—Co2ii | 170.85 (9) | P5vii—Co3—P5 | 92.44 (15) |
P6—Co0—Co2 | 60.69 (6) | P5xi—Co3—Co0viii | 160.35 (15) |
P5i—Co0—Co2 | 129.60 (8) | P5xii—Co3—Co0viii | 89.46 (9) |
P4—Co0—Co2 | 56.73 (11) | P4viii—Co3—Co0viii | 53.31 (7) |
P4ii—Co0—Co2 | 116.07 (13) | P5vii—Co3—Co0viii | 109.66 (12) |
Co3iii—Co0—Co2 | 170.85 (9) | P5—Co3—Co0viii | 52.82 (11) |
Co3i—Co0—Co2 | 98.20 (5) | P5xi—Co3—Co0ix | 89.46 (9) |
Co2ii—Co0—Co2 | 80.81 (8) | P5xii—Co3—Co0ix | 160.35 (15) |
P6—Co0—Co2iii | 60.19 (6) | P4viii—Co3—Co0ix | 53.31 (7) |
P5i—Co0—Co2iii | 58.60 (11) | P5vii—Co3—Co0ix | 52.82 (11) |
P4—Co0—Co2iii | 169.97 (10) | P5—Co3—Co0ix | 109.66 (12) |
P4ii—Co0—Co2iii | 90.40 (8) | Co0viii—Co3—Co0ix | 81.32 (9) |
Co3iii—Co0—Co2iii | 66.85 (7) | P5xi—Co3—Co3xii | 56.36 (10) |
Co3i—Co0—Co2iii | 116.27 (10) | P5xii—Co3—Co3xii | 56.36 (10) |
Co2ii—Co0—Co2iii | 71.44 (10) | P4viii—Co3—Co3xii | 151.84 (16) |
Co2—Co0—Co2iii | 120.88 (10) | P5vii—Co3—Co3xii | 93.38 (11) |
P6—Co0—Co2i | 60.19 (6) | P5—Co3—Co3xii | 93.38 (11) |
P5i—Co0—Co2i | 58.60 (11) | Co0viii—Co3—Co3xii | 138.36 (5) |
P4—Co0—Co2i | 90.40 (8) | Co0ix—Co3—Co3xii | 138.36 (5) |
P4ii—Co0—Co2i | 169.97 (10) | P5xi—Co3—Co3xiii | 93.99 (11) |
Co3iii—Co0—Co2i | 116.27 (10) | P5xii—Co3—Co3xiii | 93.99 (11) |
Co3i—Co0—Co2i | 66.85 (7) | P4viii—Co3—Co3xiii | 148.16 (16) |
Co2ii—Co0—Co2i | 120.88 (10) | P5vii—Co3—Co3xiii | 55.42 (11) |
Co2—Co0—Co2i | 71.44 (10) | P5—Co3—Co3xiii | 55.42 (11) |
Co2iii—Co0—Co2i | 79.79 (9) | Co0viii—Co3—Co3xiii | 105.12 (10) |
P6—Co0—Co1 | 165.52 (9) | Co0ix—Co3—Co3xiii | 105.12 (10) |
P5i—Co0—Co1 | 97.64 (13) | Co3xii—Co3—Co3xiii | 60.0 |
P4—Co0—Co1 | 56.65 (9) | P5xi—Co3—Co1viii | 107.55 (12) |
P4ii—Co0—Co1 | 56.65 (9) | P5xii—Co3—Co1viii | 52.72 (10) |
Co3iii—Co0—Co1 | 62.44 (6) | P4viii—Co3—Co1viii | 54.71 (8) |
Co3i—Co0—Co1 | 62.44 (6) | P5vii—Co3—Co1viii | 160.55 (15) |
Co2ii—Co0—Co1 | 109.16 (7) | P5—Co3—Co1viii | 92.62 (8) |
Co2—Co0—Co1 | 109.16 (7) | Co0viii—Co3—Co1viii | 59.83 (7) |
Co2iii—Co0—Co1 | 128.86 (7) | Co0ix—Co3—Co1viii | 107.89 (10) |
Co2i—Co0—Co1 | 128.86 (7) | Co3xii—Co3—Co1viii | 105.04 (11) |
P6—Co0—Co1iv | 104.70 (9) | Co3xiii—Co3—Co1viii | 140.36 (4) |
P5i—Co0—Co1iv | 158.46 (14) | P5xi—Co3—Co1ix | 52.72 (10) |
P4—Co0—Co1iv | 55.49 (9) | P5xii—Co3—Co1ix | 107.55 (12) |
P4ii—Co0—Co1iv | 55.49 (9) | P4viii—Co3—Co1ix | 54.71 (8) |
Co3iii—Co0—Co1iv | 107.42 (7) | P5vii—Co3—Co1ix | 92.62 (8) |
Co3i—Co0—Co1iv | 107.42 (7) | P5—Co3—Co1ix | 160.55 (15) |
Co2ii—Co0—Co1iv | 63.90 (7) | Co0viii—Co3—Co1ix | 107.89 (10) |
Co2—Co0—Co1iv | 63.90 (7) | Co0ix—Co3—Co1ix | 59.83 (7) |
Co2iii—Co0—Co1iv | 133.74 (7) | Co3xii—Co3—Co1ix | 105.04 (11) |
Co2i—Co0—Co1iv | 133.74 (7) | Co3xiii—Co3—Co1ix | 140.36 (4) |
Co1—Co0—Co1iv | 60.82 (8) | Co1viii—Co3—Co1ix | 76.82 (8) |
P5v—Co1—P4v | 108.68 (12) | P5xi—Co3—Co2 | 130.38 (8) |
P5v—Co1—P4vi | 108.68 (12) | P5xii—Co3—Co2 | 130.38 (8) |
P4v—Co1—P4vi | 94.55 (18) | P4viii—Co3—Co2 | 82.57 (13) |
P5v—Co1—P4ii | 108.29 (12) | P5vii—Co3—Co2 | 53.49 (10) |
P4v—Co1—P4ii | 143.01 (13) | P5—Co3—Co2 | 53.49 (10) |
P4vi—Co1—P4ii | 74.85 (14) | Co0viii—Co3—Co2 | 57.26 (7) |
P5v—Co1—P4 | 108.29 (12) | Co0ix—Co3—Co2 | 57.26 (7) |
P4v—Co1—P4 | 74.85 (14) | Co3xii—Co3—Co2 | 125.59 (11) |
P4vi—Co1—P4 | 143.01 (13) | Co3xiii—Co3—Co2 | 65.59 (11) |
P4ii—Co1—P4 | 92.36 (16) | Co1viii—Co3—Co2 | 116.75 (8) |
P5v—Co1—Co0 | 89.08 (13) | Co1ix—Co3—Co2 | 116.75 (8) |
P4v—Co1—Co0 | 127.10 (9) | Co0—P4—Co0vii | 99.31 (14) |
P4vi—Co1—Co0 | 127.10 (9) | Co0—P4—Co1x | 144.1 (2) |
P4ii—Co1—Co0 | 52.26 (8) | Co0vii—P4—Co1x | 71.92 (7) |
P4—Co1—Co0 | 52.26 (8) | Co0—P4—Co1iv | 71.92 (7) |
P5v—Co1—Co0v | 91.74 (12) | Co0vii—P4—Co1iv | 144.1 (2) |
P4v—Co1—Co0v | 52.58 (9) | Co1x—P4—Co1iv | 94.55 (17) |
P4vi—Co1—Co0v | 52.58 (9) | Co0—P4—Co2 | 70.15 (11) |
P4ii—Co1—Co0v | 127.40 (9) | Co0vii—P4—Co2 | 70.15 (11) |
P4—Co1—Co0v | 127.40 (9) | Co1x—P4—Co2 | 74.16 (12) |
Co0—Co1—Co0v | 179.18 (8) | Co1iv—P4—Co2 | 74.16 (12) |
P5v—Co1—Co1v | 151.31 (16) | Co0—P4—Co3i | 69.73 (11) |
P4v—Co1—Co1v | 55.38 (11) | Co0vii—P4—Co3i | 69.73 (11) |
P4vi—Co1—Co1v | 55.38 (11) | Co1x—P4—Co3i | 132.68 (9) |
P4ii—Co1—Co1v | 91.21 (10) | Co1iv—P4—Co3i | 132.68 (9) |
P4—Co1—Co1v | 91.21 (10) | Co2—P4—Co3i | 116.01 (16) |
Co0—Co1—Co1v | 119.61 (8) | Co0—P4—Co1 | 71.09 (7) |
Co0v—Co1—Co1v | 59.56 (10) | Co0vii—P4—Co1 | 140.9 (2) |
P5v—Co1—Co1iv | 148.69 (16) | Co1x—P4—Co1 | 136.84 (16) |
P4v—Co1—Co1iv | 92.13 (10) | Co1iv—P4—Co1 | 70.69 (9) |
P4vi—Co1—Co1iv | 92.13 (10) | Co2—P4—Co1 | 133.80 (8) |
P4ii—Co1—Co1iv | 53.93 (10) | Co3i—P4—Co1 | 71.42 (12) |
P4—Co1—Co1iv | 53.93 (10) | Co0—P4—Co1vii | 140.9 (2) |
Co0—Co1—Co1iv | 59.61 (8) | Co0vii—P4—Co1vii | 71.09 (7) |
Co0v—Co1—Co1iv | 119.56 (10) | Co1x—P4—Co1vii | 70.69 (9) |
Co1v—Co1—Co1iv | 60.0 | Co1iv—P4—Co1vii | 136.84 (17) |
P5v—Co1—Co3iii | 54.42 (8) | Co2—P4—Co1vii | 133.80 (8) |
P4v—Co1—Co3iii | 163.07 (13) | Co3i—P4—Co1vii | 71.42 (12) |
P4vi—Co1—Co3iii | 92.51 (9) | Co1—P4—Co1vii | 92.36 (16) |
P4ii—Co1—Co3iii | 53.87 (11) | Co0—P4—P4iv | 125.14 (14) |
P4—Co1—Co3iii | 107.88 (12) | Co0vii—P4—P4iv | 125.14 (14) |
Co0—Co1—Co3iii | 57.72 (8) | Co1x—P4—P4iv | 53.25 (12) |
Co0v—Co1—Co3iii | 122.84 (8) | Co1iv—P4—P4iv | 53.25 (12) |
Co1v—Co1—Co3iii | 139.67 (4) | Co2—P4—P4iv | 94.4 (2) |
Co1iv—Co1—Co3iii | 102.97 (11) | Co3i—P4—P4iv | 149.6 (2) |
P5v—Co1—Co3i | 54.42 (8) | Co1—P4—P4iv | 87.91 (10) |
P4v—Co1—Co3i | 92.51 (9) | Co1vii—P4—P4iv | 87.91 (10) |
P4vi—Co1—Co3i | 163.07 (13) | Co0—P4—P4v | 122.98 (14) |
P4ii—Co1—Co3i | 107.88 (12) | Co0vii—P4—P4v | 122.98 (14) |
P4—Co1—Co3i | 53.87 (11) | Co1x—P4—P4v | 88.73 (10) |
Co0—Co1—Co3i | 57.72 (8) | Co1iv—P4—P4v | 88.73 (10) |
Co0v—Co1—Co3i | 122.84 (8) | Co2—P4—P4v | 154.4 (2) |
Co1v—Co1—Co3i | 139.67 (4) | Co3i—P4—P4v | 89.6 (2) |
Co1iv—Co1—Co3i | 102.97 (11) | Co1—P4—P4v | 51.90 (11) |
Co3iii—Co1—Co3i | 76.82 (8) | Co1vii—P4—P4v | 51.90 (11) |
P5v—Co1—Co2v | 55.58 (8) | P4iv—P4—P4v | 60.0 |
P4v—Co1—Co2v | 53.20 (10) | Co0viii—P5—Co1iv | 126.72 (19) |
P4vi—Co1—Co2v | 107.02 (11) | Co0viii—P5—Co3xiii | 132.10 (9) |
P4ii—Co1—Co2v | 163.76 (12) | Co1iv—P5—Co3xiii | 72.86 (12) |
P4—Co1—Co2v | 94.83 (9) | Co0viii—P5—Co3xiv | 132.10 (9) |
Co0—Co1—Co2v | 123.33 (7) | Co1iv—P5—Co3xiv | 72.86 (12) |
Co0v—Co1—Co2v | 57.23 (6) | Co3xiii—P5—Co3xiv | 93.78 (15) |
Co1v—Co1—Co2v | 103.16 (10) | Co0viii—P5—Co3ii | 69.48 (13) |
Co1iv—Co1—Co2v | 140.65 (5) | Co1iv—P5—Co3ii | 133.45 (8) |
Co3iii—Co1—Co2v | 109.96 (9) | Co3xiii—P5—Co3ii | 133.08 (18) |
Co3i—Co1—Co2v | 65.62 (7) | Co3xiv—P5—Co3ii | 68.22 (10) |
P4—Co2—P5 | 103.71 (12) | Co0viii—P5—Co3 | 69.48 (13) |
P4—Co2—P5vii | 103.71 (12) | Co1iv—P5—Co3 | 133.45 (8) |
P5—Co2—P5vii | 89.59 (15) | Co3xiii—P5—Co3 | 68.22 (10) |
P4—Co2—P6 | 103.35 (9) | Co3xiv—P5—Co3 | 133.08 (18) |
P5—Co2—P6 | 85.20 (8) | Co3ii—P5—Co3 | 92.44 (15) |
P5vii—Co2—P6 | 152.92 (13) | Co0viii—P5—Co2 | 69.66 (13) |
P4—Co2—P6vii | 103.35 (9) | Co1iv—P5—Co2 | 73.26 (11) |
P5—Co2—P6vii | 152.92 (13) | Co3xiii—P5—Co2 | 78.50 (8) |
P5vii—Co2—P6vii | 85.20 (8) | Co3xiv—P5—Co2 | 146.03 (19) |
P6—Co2—P6vii | 87.44 (8) | Co3ii—P5—Co2 | 139.1 (2) |
P4—Co2—Co0vii | 53.12 (8) | Co3—P5—Co2 | 74.85 (8) |
P5—Co2—Co0vii | 155.85 (14) | Co0viii—P5—Co2ii | 69.66 (13) |
P5vii—Co2—Co0vii | 89.95 (7) | Co1iv—P5—Co2ii | 73.25 (11) |
P6—Co2—Co0vii | 105.40 (8) | Co3xiii—P5—Co2ii | 146.03 (19) |
P6vii—Co2—Co0vii | 50.91 (5) | Co3xiv—P5—Co2ii | 78.50 (8) |
P4—Co2—Co0 | 53.12 (8) | Co3ii—P5—Co2ii | 74.85 (8) |
P5—Co2—Co0 | 89.95 (7) | Co3—P5—Co2ii | 139.1 (2) |
P5vii—Co2—Co0 | 155.85 (14) | Co2—P5—Co2ii | 89.59 (15) |
P6—Co2—Co0 | 50.91 (5) | Co0i—P6—Co0 | 120.0 |
P6vii—Co2—Co0 | 105.40 (8) | Co0i—P6—Co0viii | 120.0 |
Co0vii—Co2—Co0 | 80.81 (8) | Co0—P6—Co0viii | 120.0 |
P4—Co2—Co0viii | 140.08 (4) | Co0i—P6—Co2xv | 69.24 (6) |
P5—Co2—Co0viii | 51.74 (11) | Co0—P6—Co2xv | 136.27 (4) |
P5vii—Co2—Co0viii | 106.53 (11) | Co0viii—P6—Co2xv | 68.40 (6) |
P6—Co2—Co0viii | 50.57 (5) | Co0i—P6—Co2viii | 69.24 (6) |
P6vii—Co2—Co0viii | 104.56 (10) | Co0—P6—Co2viii | 136.27 (4) |
Co0vii—Co2—Co0viii | 149.98 (11) | Co0viii—P6—Co2viii | 68.40 (6) |
Co0—Co2—Co0viii | 91.97 (7) | Co2xv—P6—Co2viii | 87.45 (8) |
P4—Co2—Co0ix | 140.08 (4) | Co0i—P6—Co2 | 136.27 (4) |
P5—Co2—Co0ix | 106.54 (11) | Co0—P6—Co2 | 68.40 (6) |
P5vii—Co2—Co0ix | 51.74 (11) | Co0viii—P6—Co2 | 69.24 (6) |
P6—Co2—Co0ix | 104.56 (10) | Co2xv—P6—Co2 | 137.63 (3) |
P6vii—Co2—Co0ix | 50.57 (5) | Co2viii—P6—Co2 | 77.49 (6) |
Co0vii—Co2—Co0ix | 91.97 (7) | Co0i—P6—Co2ii | 136.27 (4) |
Co0—Co2—Co0ix | 149.98 (11) | Co0—P6—Co2ii | 68.40 (6) |
Co0viii—Co2—Co0ix | 79.79 (9) | Co0viii—P6—Co2ii | 69.24 (6) |
P4—Co2—Co1x | 52.64 (9) | Co2xv—P6—Co2ii | 77.49 (6) |
P5—Co2—Co1x | 103.19 (12) | Co2viii—P6—Co2ii | 137.64 (3) |
P5vii—Co2—Co1x | 51.16 (10) | Co2—P6—Co2ii | 87.44 (8) |
P6—Co2—Co1x | 155.65 (9) | Co0i—P6—Co2iii | 68.40 (6) |
P6vii—Co2—Co1x | 94.13 (4) | Co0—P6—Co2iii | 69.24 (6) |
Co0vii—Co2—Co1x | 58.87 (6) | Co0viii—P6—Co2iii | 136.27 (4) |
Co0—Co2—Co1x | 105.65 (9) | Co2xv—P6—Co2iii | 77.49 (6) |
Co0viii—Co2—Co1x | 149.97 (10) | Co2viii—P6—Co2iii | 137.63 (3) |
Co0ix—Co2—Co1x | 95.00 (6) | Co2—P6—Co2iii | 137.63 (3) |
P4—Co2—Co1iv | 52.64 (9) | Co2ii—P6—Co2iii | 77.49 (6) |
P5—Co2—Co1iv | 51.16 (10) | Co0i—P6—Co2i | 68.40 (6) |
P5vii—Co2—Co1iv | 103.19 (13) | Co0—P6—Co2i | 69.24 (6) |
P6—Co2—Co1iv | 94.13 (4) | Co0viii—P6—Co2i | 136.27 (4) |
P6vii—Co2—Co1iv | 155.65 (9) | Co2xv—P6—Co2i | 137.63 (3) |
Co0vii—Co2—Co1iv | 105.65 (9) | Co2viii—P6—Co2i | 77.49 (6) |
Co0—Co2—Co1iv | 58.87 (6) | Co2—P6—Co2i | 77.49 (6) |
Co0viii—Co2—Co1iv | 95.00 (6) | Co2ii—P6—Co2i | 137.63 (3) |
Co0ix—Co2—Co1iv | 149.97 (10) | Co2iii—P6—Co2i | 87.44 (8) |
Co1x—Co2—Co1iv | 74.74 (7) |
Symmetry codes: (i) −y, x−y, z; (ii) x, y, z−1; (iii) −y, x−y, z−1; (iv) −y+1, x−y+1, z; (v) −x+y, −x+1, z; (vi) −x+y, −x+1, z−1; (vii) x, y, z+1; (viii) −x+y, −x, z; (ix) −x+y, −x, z+1; (x) −y+1, x−y+1, z+1; (xi) −y+1, x−y, z+1; (xii) −y+1, x−y, z; (xiii) −x+y+1, −x+1, z; (xiv) −x+y+1, −x+1, z−1; (xv) −x+y, −x, z−1. |
Co12P7 | Dx = 7.905 Mg m−3 |
Mr = 923.95 | Synchrotron radiation, λ = 0.3344 Å |
Hexagonal, P6 | Cell parameters from 249 reflections |
a = 8.253 (5) Å | θ = 2.9–14.7° |
c = 3.2902 (18) Å | µ = 3.17 mm−1 |
V = 194.1 (3) Å3 | T = 293 K |
Z = 1 | Irregular, black |
F(000) = 429 | 0.01 × 0.01 × 0.01 mm |
13BMD @ APS diffractometer | 253 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.055 |
/w scan | θmax = 14.8°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −11→12 |
Tmin = 0.546, Tmax = 1.000 | k = −9→8 |
592 measured reflections | l = −4→4 |
321 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0219P)2 + 2.8589P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.053 | (Δ/σ)max < 0.001 |
wR(F2) = 0.105 | Δρmax = 1.70 e Å−3 |
S = 1.11 | Δρmin = −1.74 e Å−3 |
321 reflections | Absolute structure: Flack x determined using 78 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
32 parameters | Absolute structure parameter: 0.4 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co0 | 0.0153 (6) | 0.2651 (6) | 0.0000 | 0.0114 (8) | |
Co1 | 0.1320 (7) | 0.6234 (7) | 0.0000 | 0.0123 (9) | |
Co2 | 0.2135 (6) | 0.2038 (8) | 0.5000 | 0.0151 (9) | |
Co3 | 0.5195 (7) | 0.1363 (7) | 0.5000 | 0.0107 (9) | |
P4 | 0.1656 (11) | 0.4503 (11) | 0.5000 | 0.0102 (15)* | |
P5 | 0.4425 (12) | 0.2809 (13) | 0.0000 | 0.0086 (15)* | |
P6 | 0.0000 | 0.0000 | 0.0000 | 0.012 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co0 | 0.014 (2) | 0.016 (2) | 0.0072 (18) | 0.009 (2) | 0.000 | 0.000 |
Co1 | 0.019 (2) | 0.016 (2) | 0.003 (2) | 0.0101 (18) | 0.000 | 0.000 |
Co2 | 0.024 (2) | 0.020 (3) | 0.005 (2) | 0.014 (2) | 0.000 | 0.000 |
Co3 | 0.011 (2) | 0.012 (2) | 0.008 (2) | 0.0052 (16) | 0.000 | 0.000 |
Co0—P6 | 2.128 (5) | Co2—Co1iv | 2.731 (5) |
Co0—P5i | 2.148 (10) | Co2—Co3 | 2.846 (7) |
Co0—P4 | 2.165 (6) | Co3—P5xi | 2.263 (7) |
Co0—P4ii | 2.165 (6) | Co3—P5xii | 2.263 (7) |
Co0—Co3iii | 2.538 (5) | Co3—P4viii | 2.266 (10) |
Co0—Co3i | 2.538 (5) | Co3—P5vii | 2.301 (8) |
Co0—Co2ii | 2.543 (6) | Co3—P5 | 2.301 (8) |
Co0—Co2 | 2.543 (6) | Co3—Co3xiii | 2.536 (9) |
Co0—Co2iii | 2.571 (6) | Co3—Co3xii | 2.536 (9) |
Co0—Co2i | 2.571 (6) | Co3—Co0viii | 2.538 (5) |
Co0—Co1 | 2.612 (7) | Co3—Co0ix | 2.538 (5) |
Co0—Co1iv | 2.634 (7) | Co3—Co1viii | 2.674 (5) |
Co1—P5v | 2.202 (10) | Co3—Co1ix | 2.674 (5) |
Co1—P4v | 2.266 (7) | P4—Co0vii | 2.165 (6) |
Co1—P4vi | 2.266 (7) | P4—Co1x | 2.266 (7) |
Co1—P4ii | 2.284 (7) | P4—Co1iv | 2.266 (7) |
Co1—P4 | 2.285 (7) | P4—Co3i | 2.266 (10) |
Co1—Co1v | 2.624 (9) | P4—Co1vii | 2.285 (7) |
Co1—Co1iv | 2.624 (9) | P5—Co0viii | 2.148 (10) |
Co1—Co0v | 2.634 (7) | P5—Co1iv | 2.202 (10) |
Co1—Co3iii | 2.674 (5) | P5—Co3xiii | 2.263 (7) |
Co1—Co3i | 2.674 (5) | P5—Co3xiv | 2.263 (7) |
Co1—Co2v | 2.731 (5) | P5—Co3ii | 2.301 (8) |
Co2—P4 | 2.258 (9) | P5—Co2ii | 2.341 (7) |
Co2—P5vii | 2.341 (7) | P6—Co0i | 2.128 (5) |
Co2—P5 | 2.341 (7) | P6—Co0viii | 2.128 (5) |
Co2—P6 | 2.383 (4) | P6—Co2xv | 2.383 (4) |
Co2—P6vii | 2.383 (4) | P6—Co2iii | 2.383 (4) |
Co2—Co0vii | 2.543 (6) | P6—Co2i | 2.383 (4) |
Co2—Co0viii | 2.571 (6) | P6—Co2viii | 2.383 (4) |
Co2—Co0ix | 2.571 (6) | P6—Co2ii | 2.383 (4) |
Co2—Co1x | 2.731 (5) | ||
P6—Co0—P5i | 96.9 (3) | P5vii—Co2—Co1iv | 102.3 (3) |
P6—Co0—P4 | 116.4 (2) | P5—Co2—Co1iv | 50.7 (2) |
P5i—Co0—P4 | 114.7 (3) | P6—Co2—Co1iv | 94.84 (11) |
P6—Co0—P4ii | 116.4 (2) | P6vii—Co2—Co1iv | 156.4 (2) |
P5i—Co0—P4ii | 114.7 (3) | Co0vii—Co2—Co1iv | 106.0 (2) |
P4—Co0—P4ii | 98.9 (4) | Co0—Co2—Co1iv | 59.81 (15) |
P6—Co0—Co3iii | 127.43 (16) | Co0viii—Co2—Co1iv | 94.89 (12) |
P5i—Co0—Co3iii | 58.1 (2) | Co0ix—Co2—Co1iv | 148.9 (2) |
P4—Co0—Co3iii | 116.1 (3) | Co1x—Co2—Co1iv | 74.08 (17) |
P4ii—Co0—Co3iii | 56.9 (2) | P4—Co2—Co3 | 138.5 (3) |
P6—Co0—Co3i | 127.43 (16) | P5vii—Co2—Co3 | 51.6 (2) |
P5i—Co0—Co3i | 58.1 (2) | P5—Co2—Co3 | 51.6 (2) |
P4—Co0—Co3i | 56.9 (2) | P6—Co2—Co3 | 106.1 (2) |
P4ii—Co0—Co3i | 116.1 (3) | P6vii—Co2—Co3 | 106.1 (2) |
Co3iii—Co0—Co3i | 80.8 (2) | Co0vii—Co2—Co3 | 139.57 (11) |
P6—Co0—Co2ii | 60.57 (16) | Co0—Co2—Co3 | 139.58 (11) |
P5i—Co0—Co2ii | 129.6 (2) | Co0viii—Co2—Co3 | 55.61 (16) |
P4—Co0—Co2ii | 115.7 (3) | Co0ix—Co2—Co3 | 55.61 (16) |
P4ii—Co0—Co2ii | 56.6 (2) | Co1x—Co2—Co3 | 95.9 (2) |
Co3iii—Co0—Co2ii | 98.44 (12) | Co1iv—Co2—Co3 | 95.9 (2) |
Co3i—Co0—Co2ii | 170.2 (3) | P5xi—Co3—P5xii | 93.3 (4) |
P6—Co0—Co2 | 60.57 (16) | P5xi—Co3—P4viii | 106.5 (3) |
P5i—Co0—Co2 | 129.6 (2) | P5xii—Co3—P4viii | 106.5 (3) |
P4—Co0—Co2 | 56.6 (2) | P5xi—Co3—P5vii | 79.0 (4) |
P4ii—Co0—Co2 | 115.7 (3) | P5xii—Co3—P5vii | 148.1 (4) |
Co3iii—Co0—Co2 | 170.2 (3) | P4viii—Co3—P5vii | 105.3 (3) |
Co3i—Co0—Co2 | 98.44 (12) | P5xi—Co3—P5 | 148.1 (4) |
Co2ii—Co0—Co2 | 80.6 (2) | P5xii—Co3—P5 | 79.0 (4) |
P6—Co0—Co2iii | 60.07 (15) | P4viii—Co3—P5 | 105.3 (3) |
P5i—Co0—Co2iii | 58.7 (2) | P5vii—Co3—P5 | 91.3 (4) |
P4—Co0—Co2iii | 170.1 (3) | P5xi—Co3—Co3xiii | 95.1 (3) |
P4ii—Co0—Co2iii | 90.7 (2) | P5xii—Co3—Co3xiii | 95.1 (3) |
Co3iii—Co0—Co2iii | 67.70 (14) | P4viii—Co3—Co3xiii | 148.1 (4) |
Co3i—Co0—Co2iii | 116.8 (2) | P5vii—Co3—Co3xiii | 55.5 (3) |
Co2ii—Co0—Co2iii | 71.4 (2) | P5—Co3—Co3xiii | 55.5 (3) |
Co2—Co0—Co2iii | 120.6 (2) | P5xi—Co3—Co3xii | 57.0 (3) |
P6—Co0—Co2i | 60.07 (15) | P5xii—Co3—Co3xii | 57.0 (3) |
P5i—Co0—Co2i | 58.7 (2) | P4viii—Co3—Co3xii | 151.9 (4) |
P4—Co0—Co2i | 90.7 (2) | P5vii—Co3—Co3xii | 94.1 (3) |
P4ii—Co0—Co2i | 170.1 (3) | P5—Co3—Co3xii | 94.1 (3) |
Co3iii—Co0—Co2i | 116.8 (2) | Co3xiii—Co3—Co3xii | 60.0 |
Co3i—Co0—Co2i | 67.70 (14) | P5xi—Co3—Co0viii | 159.3 (3) |
Co2ii—Co0—Co2i | 120.6 (2) | P5xii—Co3—Co0viii | 89.59 (18) |
Co2—Co0—Co2i | 71.4 (2) | P4viii—Co3—Co0viii | 53.20 (19) |
Co2iii—Co0—Co2i | 79.6 (2) | P5vii—Co3—Co0viii | 108.5 (3) |
P6—Co0—Co1 | 164.3 (3) | P5—Co3—Co0viii | 52.4 (2) |
P5i—Co0—Co1 | 98.8 (3) | Co3xiii—Co3—Co0viii | 105.1 (2) |
P4—Co0—Co1 | 56.2 (2) | Co3xii—Co3—Co0viii | 138.58 (11) |
P4ii—Co0—Co1 | 56.2 (2) | P5xi—Co3—Co0ix | 89.59 (18) |
Co3iii—Co0—Co1 | 62.53 (14) | P5xii—Co3—Co0ix | 159.3 (3) |
Co3i—Co0—Co1 | 62.53 (14) | P4viii—Co3—Co0ix | 53.20 (19) |
Co2ii—Co0—Co1 | 108.4 (2) | P5vii—Co3—Co0ix | 52.4 (2) |
Co2—Co0—Co1 | 108.4 (2) | P5—Co3—Co0ix | 108.5 (3) |
Co2iii—Co0—Co1 | 129.67 (15) | Co3xiii—Co3—Co0ix | 105.1 (2) |
Co2i—Co0—Co1 | 129.67 (15) | Co3xii—Co3—Co0ix | 138.58 (11) |
P6—Co0—Co1iv | 104.29 (19) | Co0viii—Co3—Co0ix | 80.8 (2) |
P5i—Co0—Co1iv | 158.8 (3) | P5xi—Co3—Co1viii | 106.4 (3) |
P4—Co0—Co1iv | 55.3 (2) | P5xii—Co3—Co1viii | 52.2 (2) |
P4ii—Co0—Co1iv | 55.3 (2) | P4viii—Co3—Co1viii | 54.34 (19) |
Co3iii—Co0—Co1iv | 107.12 (19) | P5vii—Co3—Co1viii | 159.6 (3) |
Co3i—Co0—Co1iv | 107.12 (19) | P5—Co3—Co1viii | 93.3 (2) |
Co2ii—Co0—Co1iv | 63.65 (16) | Co3xiii—Co3—Co1viii | 140.83 (9) |
Co2—Co0—Co1iv | 63.65 (16) | Co3xii—Co3—Co1viii | 105.3 (2) |
Co2iii—Co0—Co1iv | 133.59 (16) | Co0viii—Co3—Co1viii | 60.09 (15) |
Co2i—Co0—Co1iv | 133.59 (16) | Co0ix—Co3—Co1viii | 107.4 (2) |
Co1—Co0—Co1iv | 60.0 (2) | P5xi—Co3—Co1ix | 52.2 (2) |
P5v—Co1—P4v | 108.1 (2) | P5xii—Co3—Co1ix | 106.4 (3) |
P5v—Co1—P4vi | 108.1 (2) | P4viii—Co3—Co1ix | 54.34 (19) |
P4v—Co1—P4vi | 93.1 (4) | P5vii—Co3—Co1ix | 93.3 (2) |
P5v—Co1—P4ii | 108.0 (3) | P5—Co3—Co1ix | 159.6 (3) |
P4v—Co1—P4ii | 144.0 (3) | Co3xiii—Co3—Co1ix | 140.83 (9) |
P4vi—Co1—P4ii | 76.3 (3) | Co3xii—Co3—Co1ix | 105.3 (2) |
P5v—Co1—P4 | 108.0 (3) | Co0viii—Co3—Co1ix | 107.4 (2) |
P4v—Co1—P4 | 76.3 (3) | Co0ix—Co3—Co1ix | 60.09 (15) |
P4vi—Co1—P4 | 144.0 (3) | Co1viii—Co3—Co1ix | 75.95 (16) |
P4ii—Co1—P4 | 92.1 (4) | P5xi—Co3—Co2 | 131.18 (19) |
P5v—Co1—Co0 | 89.0 (3) | P5xii—Co3—Co2 | 131.18 (19) |
P4v—Co1—Co0 | 128.2 (2) | P4viii—Co3—Co2 | 82.0 (3) |
P4vi—Co1—Co0 | 128.2 (2) | P5vii—Co3—Co2 | 52.8 (2) |
P4ii—Co1—Co0 | 51.9 (2) | P5—Co3—Co2 | 52.8 (2) |
P4—Co1—Co0 | 51.9 (2) | Co3xiii—Co3—Co2 | 66.1 (3) |
P5v—Co1—Co1v | 150.6 (4) | Co3xii—Co3—Co2 | 126.1 (3) |
P4v—Co1—Co1v | 55.1 (2) | Co0viii—Co3—Co2 | 56.70 (15) |
P4vi—Co1—Co1v | 55.1 (2) | Co0ix—Co3—Co2 | 56.70 (15) |
P4ii—Co1—Co1v | 92.1 (2) | Co1viii—Co3—Co2 | 116.37 (18) |
P4—Co1—Co1v | 92.1 (2) | Co1ix—Co3—Co2 | 116.37 (18) |
Co0—Co1—Co1v | 120.4 (2) | Co0—P4—Co0vii | 98.9 (4) |
P5v—Co1—Co1iv | 149.4 (4) | Co0—P4—Co2 | 70.2 (2) |
P4v—Co1—Co1iv | 92.6 (2) | Co0vii—P4—Co2 | 70.2 (2) |
P4vi—Co1—Co1iv | 92.6 (2) | Co0—P4—Co1x | 144.1 (4) |
P4ii—Co1—Co1iv | 54.4 (2) | Co0vii—P4—Co1x | 72.93 (17) |
P4—Co1—Co1iv | 54.4 (2) | Co2—P4—Co1x | 74.3 (3) |
Co0—Co1—Co1iv | 60.4 (2) | Co0—P4—Co1iv | 72.93 (17) |
Co1v—Co1—Co1iv | 60.0 | Co0vii—P4—Co1iv | 144.1 (4) |
P5v—Co1—Co0v | 91.0 (3) | Co2—P4—Co1iv | 74.3 (3) |
P4v—Co1—Co0v | 51.8 (2) | Co1x—P4—Co1iv | 93.1 (4) |
P4vi—Co1—Co0v | 51.8 (2) | Co0—P4—Co3i | 69.9 (3) |
P4ii—Co1—Co0v | 128.0 (2) | Co0vii—P4—Co3i | 69.9 (3) |
P4—Co1—Co0v | 128.0 (2) | Co2—P4—Co3i | 116.5 (4) |
Co0—Co1—Co0v | 180.0 (2) | Co1x—P4—Co3i | 133.35 (18) |
Co1v—Co1—Co0v | 59.6 (2) | Co1iv—P4—Co3i | 133.35 (18) |
Co1iv—Co1—Co0v | 119.6 (2) | Co0—P4—Co1 | 71.84 (17) |
P5v—Co1—Co3iii | 54.26 (19) | Co0vii—P4—Co1 | 141.5 (4) |
P4v—Co1—Co3iii | 162.3 (3) | Co2—P4—Co1 | 133.94 (18) |
P4vi—Co1—Co3iii | 93.40 (17) | Co1x—P4—Co1 | 135.3 (4) |
P4ii—Co1—Co3iii | 53.7 (2) | Co1iv—P4—Co1 | 70.4 (2) |
P4—Co1—Co3iii | 107.1 (3) | Co3i—P4—Co1 | 72.0 (3) |
Co0—Co1—Co3iii | 57.38 (16) | Co0—P4—Co1vii | 141.5 (4) |
Co1v—Co1—Co3iii | 140.25 (9) | Co0vii—P4—Co1vii | 71.84 (17) |
Co1iv—Co1—Co3iii | 103.5 (2) | Co2—P4—Co1vii | 133.94 (18) |
Co0v—Co1—Co3iii | 122.64 (18) | Co1x—P4—Co1vii | 70.4 (2) |
P5v—Co1—Co3i | 54.26 (19) | Co1iv—P4—Co1vii | 135.3 (4) |
P4v—Co1—Co3i | 93.40 (17) | Co3i—P4—Co1vii | 72.0 (3) |
P4vi—Co1—Co3i | 162.3 (3) | Co1—P4—Co1vii | 92.1 (4) |
P4ii—Co1—Co3i | 107.1 (3) | Co0viii—P5—Co1iv | 127.8 (5) |
P4—Co1—Co3i | 53.7 (2) | Co0viii—P5—Co3xiii | 131.9 (2) |
Co0—Co1—Co3i | 57.38 (15) | Co1iv—P5—Co3xiii | 73.6 (3) |
Co1v—Co1—Co3i | 140.25 (9) | Co0viii—P5—Co3xiv | 131.9 (2) |
Co1iv—Co1—Co3i | 103.5 (2) | Co1iv—P5—Co3xiv | 73.6 (3) |
Co0v—Co1—Co3i | 122.64 (18) | Co3xiii—P5—Co3xiv | 93.3 (4) |
Co3iii—Co1—Co3i | 75.95 (16) | Co0viii—P5—Co3 | 69.5 (3) |
P5v—Co1—Co2v | 55.41 (19) | Co1iv—P5—Co3 | 133.9 (2) |
P4v—Co1—Co2v | 52.7 (2) | Co3xiii—P5—Co3 | 67.5 (2) |
P4vi—Co1—Co2v | 105.6 (3) | Co3xiv—P5—Co3 | 131.1 (4) |
P4ii—Co1—Co2v | 163.3 (3) | Co0viii—P5—Co3ii | 69.5 (3) |
P4—Co1—Co2v | 95.17 (19) | Co1iv—P5—Co3ii | 133.9 (2) |
Co0—Co1—Co2v | 123.5 (2) | Co3xiii—P5—Co3ii | 131.1 (4) |
Co1v—Co1—Co2v | 102.6 (2) | Co3xiv—P5—Co3ii | 67.5 (2) |
Co1iv—Co1—Co2v | 140.73 (11) | Co3—P5—Co3ii | 91.3 (4) |
Co0v—Co1—Co2v | 56.54 (14) | Co0viii—P5—Co2 | 69.7 (3) |
Co3iii—Co1—Co2v | 109.6 (2) | Co1iv—P5—Co2 | 73.8 (2) |
Co3i—Co1—Co2v | 66.10 (15) | Co3xiii—P5—Co2 | 79.62 (16) |
P4—Co2—P5vii | 103.7 (3) | Co3xiv—P5—Co2 | 147.3 (4) |
P4—Co2—P5 | 103.7 (3) | Co3—P5—Co2 | 75.6 (2) |
P5vii—Co2—P5 | 89.3 (3) | Co3ii—P5—Co2 | 139.2 (4) |
P4—Co2—P6 | 103.6 (2) | Co0viii—P5—Co2ii | 69.7 (3) |
P5vii—Co2—P6 | 152.7 (3) | Co1iv—P5—Co2ii | 73.8 (2) |
P5—Co2—P6 | 85.31 (18) | Co3xiii—P5—Co2ii | 147.3 (4) |
P4—Co2—P6vii | 103.6 (2) | Co3xiv—P5—Co2ii | 79.62 (16) |
P5vii—Co2—P6vii | 85.30 (18) | Co3—P5—Co2ii | 139.2 (4) |
P5—Co2—P6vii | 152.7 (3) | Co3ii—P5—Co2ii | 75.6 (2) |
P6—Co2—P6vii | 87.33 (17) | Co2—P5—Co2ii | 89.3 (3) |
P4—Co2—Co0vii | 53.20 (19) | Co0i—P6—Co0viii | 120.0 |
P5vii—Co2—Co0vii | 90.21 (18) | Co0i—P6—Co0 | 120.0 |
P5—Co2—Co0vii | 155.9 (3) | Co0viii—P6—Co0 | 120.0 |
P6—Co2—Co0vii | 105.4 (2) | Co0i—P6—Co2xv | 69.23 (17) |
P6vii—Co2—Co0vii | 51.06 (12) | Co0viii—P6—Co2xv | 68.36 (17) |
P4—Co2—Co0 | 53.20 (19) | Co0—P6—Co2xv | 136.33 (9) |
P5vii—Co2—Co0 | 155.9 (3) | Co0i—P6—Co2iii | 68.36 (17) |
P5—Co2—Co0 | 90.21 (18) | Co0viii—P6—Co2iii | 136.33 (9) |
P6—Co2—Co0 | 51.06 (12) | Co0—P6—Co2iii | 69.23 (17) |
P6vii—Co2—Co0 | 105.4 (2) | Co2xv—P6—Co2iii | 77.58 (13) |
Co0vii—Co2—Co0 | 80.6 (2) | Co0i—P6—Co2i | 68.36 (17) |
P4—Co2—Co0viii | 140.20 (12) | Co0viii—P6—Co2i | 136.33 (9) |
P5vii—Co2—Co0viii | 106.2 (3) | Co0—P6—Co2i | 69.23 (17) |
P5—Co2—Co0viii | 51.6 (2) | Co2xv—P6—Co2i | 137.59 (6) |
P6—Co2—Co0viii | 50.70 (12) | Co2iii—P6—Co2i | 87.34 (17) |
P6vii—Co2—Co0viii | 104.5 (2) | Co0i—P6—Co2viii | 69.23 (17) |
Co0vii—Co2—Co0viii | 150.1 (2) | Co0viii—P6—Co2viii | 68.36 (17) |
Co0—Co2—Co0viii | 92.22 (16) | Co0—P6—Co2viii | 136.33 (9) |
P4—Co2—Co0ix | 140.20 (12) | Co2xv—P6—Co2viii | 87.34 (17) |
P5vii—Co2—Co0ix | 51.6 (2) | Co2iii—P6—Co2viii | 137.59 (6) |
P5—Co2—Co0ix | 106.2 (3) | Co2i—P6—Co2viii | 77.58 (13) |
P6—Co2—Co0ix | 104.5 (2) | Co0i—P6—Co2ii | 136.33 (9) |
P6vii—Co2—Co0ix | 50.70 (12) | Co0viii—P6—Co2ii | 69.23 (17) |
Co0vii—Co2—Co0ix | 92.22 (16) | Co0—P6—Co2ii | 68.37 (17) |
Co0—Co2—Co0ix | 150.1 (2) | Co2xv—P6—Co2ii | 77.58 (13) |
Co0viii—Co2—Co0ix | 79.6 (2) | Co2iii—P6—Co2ii | 77.58 (13) |
P4—Co2—Co1x | 52.99 (19) | Co2i—P6—Co2ii | 137.59 (6) |
P5vii—Co2—Co1x | 50.7 (2) | Co2viii—P6—Co2ii | 137.59 (6) |
P5—Co2—Co1x | 102.3 (3) | Co0i—P6—Co2 | 136.33 (9) |
P6—Co2—Co1x | 156.4 (2) | Co0viii—P6—Co2 | 69.23 (17) |
P6vii—Co2—Co1x | 94.84 (11) | Co0—P6—Co2 | 68.37 (17) |
Co0vii—Co2—Co1x | 59.81 (15) | Co2xv—P6—Co2 | 137.59 (6) |
Co0—Co2—Co1x | 106.0 (2) | Co2iii—P6—Co2 | 137.59 (6) |
Co0viii—Co2—Co1x | 148.9 (2) | Co2i—P6—Co2 | 77.58 (13) |
Co0ix—Co2—Co1x | 94.89 (12) | Co2viii—P6—Co2 | 77.58 (13) |
P4—Co2—Co1iv | 52.99 (19) | Co2ii—P6—Co2 | 87.33 (17) |
Symmetry codes: (i) −y, x−y, z; (ii) x, y, z−1; (iii) −y, x−y, z−1; (iv) −y+1, x−y+1, z; (v) −x+y, −x+1, z; (vi) −x+y, −x+1, z−1; (vii) x, y, z+1; (viii) −x+y, −x, z; (ix) −x+y, −x, z+1; (x) −y+1, x−y+1, z+1; (xi) −y+1, x−y, z+1; (xii) −y+1, x−y, z; (xiii) −x+y+1, −x+1, z; (xiv) −x+y+1, −x+1, z−1; (xv) −x+y, −x, z−1. |
Group | Maximal bond length (Å) | minimal bond length (Å) | Polyhedron volume (Å3) | Distortion index |
CoP4 (Co0—P4, —P5, —P6) | 2.102 (2) | 2.062 (2) | 4.5433 | 0.00656 |
CoP5 (Co1—P4, —P5) | 2.220 (3) | 2.147 (4) | 8.1257 | 0.01085 |
CoP5 (Co2—P4, —P5, —P6) | 2.317 (2) | 2.198 (4) | 9.0766 | 0.01432 |
CoP5 (Co3—P4, —P5) | 2.219 (3) | 2.194 (3) | 8.3239 | 0.00514 |
Funding information
Portions of this work were performed at GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR – 1634415) and Department of Energy – GeoSciences (DE-FG02–94ER14466). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02–06CH11357. This material is based upon work supported by a National Science Foundation Graduate Research Fellowship to CZ. This work was also supported by the National Science Foundation by grant EAR – 1651017 to AC.
References
Baurecht, H. E., Boller, H. & Nowotny, H. (1971). Monats. Chem. 102, 373–384. CrossRef ICSD CAS Google Scholar
Campbell, A. J., Danielson, L., Righter, K., Seagle, C. T., Wang, Y. & Prakapenka, V. B. (2009). Earth Planet. Sci. Lett. 286, 556–564. CrossRef CAS Google Scholar
Campbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G. & Prakapenka, V. B. (2007). Phys. Earth Planet. Inter. 162, 119–128. Web of Science CrossRef CAS Google Scholar
Chun, H. K. & Carpenter, G. B. (1979). Acta Cryst. B35, 30–33. CrossRef ICSD CAS IUCr Journals Google Scholar
Dera, P., Lavina, B., Borkowski, L. A., Prakapenka, V. B., Sutton, S. R., Rivers, M. L., Downs, R. T., Boctor, N. Z. & Prewitt, C. T. (2008). Geophys. Res. Lett. 35, l10301. CrossRef Google Scholar
Dhahri, E. (1996). J. Phys. Condens. Matter, 8, 4351–4360. CrossRef CAS Google Scholar
Ellner, M. & Mittemeijer, E. J. (2001). Z. Anorg. Allg. Chem. 627, 2257–2260. CrossRef ICSD CAS Google Scholar
Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G. & Prakapenka, V. (2007). PNAS, 104, 9182–9186. CrossRef PubMed CAS Google Scholar
Fujii, S., Ishida, S. & Asano, S. (1988). J. Phys. F: Met. Phys. 18, 971–980. Google Scholar
Hamilton, W. C. (1965). Acta Cryst. 18, 502–510. CrossRef CAS IUCr Journals Web of Science Google Scholar
Heinz, D. L. & Jeanloz, R. (1987). High Press. Res. Miner. Phys. 2, 113–127. Google Scholar
Jeitschko, W., Braun, D. J., Ashcraft, R. H. & Marchand, R. (1978). J. Solid State Chem. 25, 309–313. CrossRef ICSD CAS Google Scholar
Jeitschko, W. & Jaberg, B. (1980). Z. Anorg. Allg. Chem. 467, 95–104. CrossRef ICSD CAS Google Scholar
Jeitschko, W., Meisen, U. & Scholz, U. D. (1984). J. Solid State Chem. 55, 331–336. CrossRef ICSD CAS Google Scholar
Loveday, J. S., McMahon, M. I. & Nelmes, R. J. (1990). J. Appl. Cryst. 23, 392–396. CrossRef CAS Web of Science IUCr Journals Google Scholar
Maaref, S., Madar, R., Chaudouet, P., Senateur, J. P. & Fruchart, R. (1981). J. Solid State Chem. 40, 131–135. CrossRef ICSD CAS Google Scholar
Mao, H. K. & Bell, P. M. (1976). Science, 191, 851–852. CrossRef PubMed CAS Web of Science Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Okamoto, H. & Massalski, T. B. (1990). Editors. Binary Alloy Phase Diagrams. OH, USA: ASM International. Google Scholar
Olofsson, O. & Ganglberger, E. (1970). Acta Chem. Scand. 24, 2389–2396. CrossRef ICSD CAS Google Scholar
Ono, S. & Kikegawa, T. (2006). Am. Mineral. 91, 1941–1944. CrossRef CAS Google Scholar
Ono, S., Oganov, A. R., Brodholt, J. P., Vočadlo, L., Wood, I. G., Lyakhov, A., Glass, C. W., Côté, A. S. & Price, G. D. (2008). Earth Planet. Sci. Lett. 272, 481–487. CrossRef CAS Google Scholar
Pan, Y., Lin, Y., Chen, Y., Liu, Y. & Liu, C. (2016). J. Mater. Chem. A, 4, 4745–4754. CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. (2014). Angew. Chem. 126, 5531–5534. CrossRef Google Scholar
Pramanik, M., Tominaka, S., Wang, Z. L., Takei, T. & Yamauchi, Y. (2017). Angew. Chem. 129, 13693–13697. CrossRef Google Scholar
Prescher, C. & Prakapenka, V. B. (2015). High. Press. Res. 35, 223–230. Web of Science CrossRef CAS Google Scholar
Prins, R. & Bussell, M. E. (2012). Catal. Lett. 142, 1413–1436. CrossRef CAS Google Scholar
Reehuis, M. & Jeitschko, W. (1989). J. Phys. Chem. Solids, 50, 563–569. CrossRef ICSD CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, C. M. & Jacobsen, S. D. (2008). High Pressure Res. 28, 273–292. Web of Science CrossRef CAS Google Scholar
Rundqvist, S. (1960). Acta Chem. Scand. 14, 1961–1979. CrossRef ICSD CAS Google Scholar
Rundqvist, S. (1962). Acta Chem. Scand. 16, 1–19. CrossRef ICSD CAS Google Scholar
Schlesinger, M. E. (2002). Chem. Rev. 102, 4267–4302. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I–Kawaguchi, S. & Hirao, N. (2019). Geophys. Res. Lett. 46, 11944–11949. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zachariasen, W. H. (1949). Acta Cryst. 2, 288–291. CrossRef ICSD IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.