research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The novel high-pressure/high-temperature compound Co12P7 determined from synchrotron data

CROSSMARK_Color_square_no_text.svg

aUniversity of Chicago, Department of the Geophysical Sciences, 5734 S. Ellis Ave, Chicago IL, 60637, USA, bX-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA, and cUniversity of Chicago, GeoSoilEnviro Center for Advanced Radiation Sources, Chicago, IL 60637, USA
*Correspondence e-mail: czurkowski@uchicago.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 August 2020; accepted 17 September 2020; online 22 September 2020)

The structural properties of cobalt phosphides were investigated at high pressures and temperatures to better understand the behavior of metal-rich phosphides in Earth and planetary inter­iors. Using single-crystal X-ray diffraction synchrotron data and a laser-heated diamond anvil cell, we discovered a new high pressure–temperature (HP–HT) cobalt phosphide, Co12P7, dodeca­cobalt hepta­phosphide, synthesized at 27 GPa and 1740 K, and at 48 GPa and 1790 K. Co12P7 adopts a structure initially proposed for Cr12P7 (space-group type P[\overline{6}], Z =1), consisting of chains of edge-sharing CoP5 square pyramids and chains of corner-sharing CoP4 tetra­hedra. This arrangement leaves space for trigonal–prismatic channels running parallel to the c axis. Coupled disordering of metal and phospho­rus atoms has been observed in this structure for related M12P7 (M = Cr, V) compounds, but all Co and P sites are ordered in Co12P7. All atomic sites in this crystal structure are situated on special positions. Upon decompression to ambient conditions, peak broadening and loss of reflections at high angles was observed, suggesting phase instability.

1. Chemical context

Cobalt phosphides have previously been examined in the context of binary phase relations and thermodynamics (Okamoto & Massalski, 1990[Okamoto, H. & Massalski, T. B. (1990). Editors. Binary Alloy Phase Diagrams. OH, USA: ASM International.]; Schlesinger, 2002[Schlesinger, M. E. (2002). Chem. Rev. 102, 4267-4302.]) and have gained attention for their unique conductive properties (Prins & Bussell, 2012[Prins, R. & Bussell, M. E. (2012). Catal. Lett. 142, 1413-1436.]; Popczun et al., 2014[Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. (2014). Angew. Chem. 126, 5531-5534.]; Pan et al., 2016[Pan, Y., Lin, Y., Chen, Y., Liu, Y. & Liu, C. (2016). J. Mater. Chem. A, 4, 4745-4754.]; Pramanik et al., 2017[Pramanik, M., Tominaka, S., Wang, Z. L., Takei, T. & Yamauchi, Y. (2017). Angew. Chem. 129, 13693-13697.]), magnetic properties (Fujii et al., 1988[Fujii, S., Ishida, S. & Asano, S. (1988). J. Phys. F: Met. Phys. 18, 971-980.]; Jeitschko et al., 1978[Jeitschko, W., Braun, D. J., Ashcraft, R. H. & Marchand, R. (1978). J. Solid State Chem. 25, 309-313.]; Jeitschko & Jaberg, 1980[Jeitschko, W. & Jaberg, B. (1980). Z. Anorg. Allg. Chem. 467, 95-104.]; Reehuis & Jeitschko, 1989[Reehuis, M. & Jeitschko, W. (1989). J. Phys. Chem. Solids, 50, 563-569.]), and ability to store lanthanide cations (Jeitschko et al., 1978[Jeitschko, W., Braun, D. J., Ashcraft, R. H. & Marchand, R. (1978). J. Solid State Chem. 25, 309-313.]). Cobalt phosphides also serve as structural analogs to iron-rich phosphides and sulfides in planetary core-forming alloys. Previous studies of CoP and Co2P indicate that their phase relations tend to precede in pressure the stability of isostructural Fe-phosphides and Fe-sulfides (Rundqvist, 1960[Rundqvist, S. (1960). Acta Chem. Scand. 14, 1961-1979.]; Ellner & Mittemeijer, 2001[Ellner, M. & Mittemeijer, E. J. (2001). Z. Anorg. Allg. Chem. 627, 2257-2260.]; Dera et al., 2008[Dera, P., Lavina, B., Borkowski, L. A., Prakapenka, V. B., Sutton, S. R., Rivers, M. L., Downs, R. T., Boctor, N. Z. & Prewitt, C. T. (2008). Geophys. Res. Lett. 35, l10301.]; Tateno et al., 2019[Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I-Kawaguchi, S. & Hirao, N. (2019). Geophys. Res. Lett. 46, 11944-11949.]; Rundqvist, 1962[Rundqvist, S. (1962). Acta Chem. Scand. 16, 1-19.]; Ono & Kikegawa, 2006[Ono, S. & Kikegawa, T. (2006). Am. Mineral. 91, 1941-1944.]; Ono et al. 2008[Ono, S., Oganov, A. R., Brodholt, J. P., Vočadlo, L., Wood, I. G., Lyakhov, A., Glass, C. W., Côté, A. S. & Price, G. D. (2008). Earth Planet. Sci. Lett. 272, 481-487.]). Hence, understanding the behavior of cobalt phosphides at high pressures provides insight into the ultra-high pressure behavior of iron sulfides and phosphides.

There are few structures reported in the literature for transition-metal phosphides with the composition M12P7. Baurecht et al. (1971[Baurecht, H. E., Boller, H. & Nowotny, H. (1971). Monats. Chem. 102, 373-384.]) first examined Cr12P7 and determined that it adopts a hexa­gonal lattice with space group P[\overline{6}], Z = 1. The structure consists of columns of alternating tetra­hedral and pyramidal polyhedra and columns of stacked triangular–prismatic polyhedra extending along the c-axis direction. Chromium atoms occupy half of all possible tetra­hedral and pyramidal sites while the triangular–prismatic sites are empty (Baurecht et al., 1971[Baurecht, H. E., Boller, H. & Nowotny, H. (1971). Monats. Chem. 102, 373-384.]). The polyhedra in the unit cell can be described as Cr9PCr3T[] 2PrP7 (P = pyramidal, T = tetra­hedral, Pr = trigonal–prismatic, [] = empty site) (Maaref et al., 1981[Maaref, S., Madar, R., Chaudouet, P., Senateur, J. P. & Fruchart, R. (1981). J. Solid State Chem. 40, 131-135.]). Coupled disordering of two half-atoms of the corresponding metal with two half-atoms of phospho­rus within the tetra­hedral and pyramidal sites has been observed in this structure for compounds Th7S12, V12P7, and Cr12P7, increasing the symmetry to the P63/m space group (Zachariasen, 1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 288-291.]; Olofsson & Ganglberger 1970[Olofsson, O. & Ganglberger, E. (1970). Acta Chem. Scand. 24, 2389-2396.]; Chun & Carpenter, 1979[Chun, H. K. & Carpenter, G. B. (1979). Acta Cryst. B35, 30-33.]).

At ambient conditions the M12P7 composition is not observed in the binary systems with M = Co, Ni, Fe. Dhahri (1996[Dhahri, E. (1996). J. Phys. Condens. Matter, 8, 4351-4360.]) concluded that Co12P7, Ni12P7 and Fe12P7 do not occur in the Cr12P7 structure type at ambient conditions because, unlike Cr and V, the elements Co, Ni and Fe do not preferentially occupy pyramidal sites. In support of this conclusion, the Zn2Fe12P7 structure type (P[\overline{6}], Z = 1) with many structural similarities to the Cr12P7 structure type, has been observed in Ln2M12P7 (Ln = rare-earth element; M = Co, Ni, Fe) compounds where the pyramidal-to-tetra­hedral site ratio is 1:3 (Jeitschko et al., 1978[Jeitschko, W., Braun, D. J., Ashcraft, R. H. & Marchand, R. (1978). J. Solid State Chem. 25, 309-313.]; Jeitschko & Jaberg, 1980[Jeitschko, W. & Jaberg, B. (1980). Z. Anorg. Allg. Chem. 467, 95-104.]; Reehuis & Jeitschko, 1989[Reehuis, M. & Jeitschko, W. (1989). J. Phys. Chem. Solids, 50, 563-569.]). Ordering is present in the Co-, Fe-, Ni-rich Zn2Fe12P7 isomorphs (Jeitschko et al., 1984[Jeitschko, W., Meisen, U. & Scholz, U. D. (1984). J. Solid State Chem. 55, 331-336.]). No other structure types for the composition M12P7 (M = Co, Ni, Fe) have been reported so far.

The effect of pressure and temperature on stabilizing Co in both the tetra­hedral and pyramidal sites and ordering of Co and P in the Cr12P7-type structure has not been examined previously. In the current study, we report the synthesis of a Co12P7 phase at 27 GPa and 1750 K, and at 48 GPa and 1790 K; both phases are isostructural and crystallize in space group P[\overline{6}]. Structure refinements revealed that Co and P sites are ordered in the high P–T structure and Co atoms occupy tetra­hedral and pyramidal coordinations. Using single-crystal diffraction techniques, we report refined atomic coordinate sites of Co12P7 at 48 GPa and 15 GPa.

2. Structural commentary

Refinement of the structure confirms that Co12P7 assumes the ordered Cr12P7 structure type (Baurecht et al., 1971[Baurecht, H. E., Boller, H. & Nowotny, H. (1971). Monats. Chem. 102, 373-384.]; Chun & Carpenter, 1979[Chun, H. K. & Carpenter, G. B. (1979). Acta Cryst. B35, 30-33.]). Two of the Co sites (Co0, Co1) occupy Wyckoff position 3 j (point group symmetry m..), the other two Co sites (Co2, Co3) Wyckoff position 3 k (m..), one P site (P5) Wyckoff position 3 j, one P site (P4) Wyckoff position 3 k, and one P site (P6) Wyckoff position 1 a ([\overline{6}]..). The Co sites occupy tetra­hedral (cyan) and pyramidal (violet) sites as imaged in Fig. 1[link]. Chains of edge-sharing CoP5 square pyramids and chains of corner-sharing CoP4 tetra­hedra build up the framework with trigonal–prismatic channels running parallel to the c axis.

[Figure 1]
Figure 1
Crystal structure of Co12P7 based on the 48 GPa data set with atoms of the asymmetric unit labeled. CoP4 tetra­hedra are shaded in cyan and CoP5 square pyramids are shaded in violet.

Ranges of inter­atomic Co—P distances and polyhedral volumes are provided in Table 1[link] and Fig. 2[link] with CoP4 tetra­hedra represented by a cyan polyhedron and CoP5 pyramids represented by violet polyhedra. Co0 atoms occupy a distorted tetra­hedral site with one P atom at a short distance, two at inter­mediate distances and one at a long distance (Table 1[link], Fig. 2[link]). Co1 and Co2 atoms occupy square pyramids with two inter­mediate and two long inter­atomic distances at the base. Co3 atoms occupy a less distorted square pyramid with two elongated and two truncated bonds at the base (Fig. 2[link]). Inter­atomic distances at 48 GPa range from 2.063 (2)–2.102 (2) Å in the tetra­hedral polyhedra, 2.147 (4)–2.220 (4) Å for Co1—P polyhedra, 2.197 (4)–2.317 (2) Å for Co2—P polyhedra and 2.194 (3)–2.219 (3) Å for Co3—P polyhedra (Table 1[link]). These inter­atomic distances are comparable to those observed in Co2P and CoP (Rundqvist 1960[Rundqvist, S. (1960). Acta Chem. Scand. 14, 1961-1979.], 1962[Rundqvist, S. (1962). Acta Chem. Scand. 16, 1-19.]).

Table 1
Selected structural parameters for Co12P7 at 48 GPa

Group Maximal bond length (Å) minimal bond length (Å) Polyhedron volume (Å3) Distortion index
CoP4 (Co0—P4, —P5, —P6) 2.102 (2) 2.063 (2) 4.5433 0.00656
CoP5 (Co1—P4, —P5) 2.220 (4) 2.147 (4) 8.1257 0.01085
CoP5 (Co2—P4, —P5, —P6) 2.317 (2) 2.197 (4) 9.0766 0.01432
CoP5 (Co3—P4, —P5) 2.219 (3) 2.194 (3) 8.3239 0.00514
[Figure 2]
Figure 2
Co—P polyhedra as observed in the Co12P7 structure (48 GPa data set) showing varying degrees of volume and distortion, qu­anti­fied in Table 1[link]. CoP4 tetra­hedra are shaded in cyan and CoP5 square pyramids are shaded in violet. Displacement ellipsoids are drawn at the 50% probability level.

A grain of Co12P7 was decompressed to ambient conditions where 44 total reflections were identified in reciprocal space and indexed to a unit cell of a = 8.47 (1) Å, c = 3.37 (1) Å. These unit-cell parameters are in agreement with the pressure–volume trend observed, but peak broadening and loss of reflections at high angles may reflect the onset of phase instability on decompression.

3. Synthesis and crystallization

The synthesis of Co12P7 was performed at high pressures and temperatures in a laser-heated diamond anvil cell (LHDAC). Two samples were loaded for this study in which Co12P7 was synthesized at 26.9 (8) GPa and 1740 (110) K and 48.2 (5) GPa and 1790 (200) K, respectively. Pressure was generated in BX-90-type (70° angular opening) diamond anvil cells (DACs) with 300 µm culet, Boehler–Almax type diamonds and seats. Co–P samples and a ruby sphere for pressure calibration were loaded into a sample chamber drilled from a rhenium gasket. The chamber was subsequently filled with compressed neon gas (Rivers et al., 2008[Rivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, C. M. & Jacobsen, S. D. (2008). High Pressure Res. 28, 273-292.]). Pressure was determined using the ruby fluorescence scale and the Ne equation of state (Mao & Bell, 1976[Mao, H. K. & Bell, P. M. (1976). Science, 191, 851-852.]; Fei et al., 2007[Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G. & Prakapenka, V. (2007). PNAS, 104, 9182-9186.]).

Samples were heated from both sides with 100W Yb-doped fiber lasers at beamline 13-ID-D (GeoSoilEnviroCARS) of the Advanced Photon Source (APS), Argonne National Laboratory. Heating cycles typically lasted ∼15 minutes at target temperatures prior to quench. The lasers were shaped with ∼15 µm flat tops and temperature was measured spectroradiometrically from a 6 µm central region of the laser heated spot using a gray body approximation (Heinz & Jeanloz, 1987[Heinz, D. L. & Jeanloz, R. (1987). High Press. Res. Miner. Phys. 2, 113-127.]). Axial temperature gradients through the sample were accounted for by applying a 3% correction on temperature measurements (Campbell et al., 2007[Campbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G. & Prakapenka, V. B. (2007). Phys. Earth Planet. Inter. 162, 119-128.], 2009[Campbell, A. J., Danielson, L., Righter, K., Seagle, C. T., Wang, Y. & Prakapenka, V. B. (2009). Earth Planet. Sci. Lett. 286, 556-564.]).

Upon quench from high temperatures, high-pressure samples consisted of agglomerates of Co12P7 and Pnma Co2P (Rundqvist, 1960[Rundqvist, S. (1960). Acta Chem. Scand. 14, 1961-1979.]) crystals of variable grain sizes up to ∼5 µm in diameter. Grains of target phases were identified in reciprocal space and sorted out from the scattering contribution of other grains, neon and diamond. Diffraction data were processed using Dioptas (Prescher & Prakapenka, 2015[Prescher, C. & Prakapenka, V. B. (2015). High. Press. Res. 35, 223-230.]) and CrysAlis Pro (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]). Decompression data were collected for both samples in two experimental stations; here we report two selected refinements of the Co12P7 structure at 48.2 (5) GPa and 15.4 (2) GPa.

4. Refinement

Crystal data, data collection and structure refinement details at 48 GPa and 15 GPa are summarized in Table 2[link].

Table 2
Experimental details

  48 GPa 15 GPa
Crystal data
Chemical formula Co12P7 Co12P7
Mr 923.95 923.95
Crystal system, space group Hexagonal, P[\overline{6}] Hexagonal, P[\overline{6}]
Temperature (K) 293 293
a, c (Å) 7.9700 (14), 3.2034 (4) 8.253 (5), 3.2902 (18)
V3) 176.22 (7) 194.1 (3)
Z 1 1
Radiation type Synchrotron, λ = 0.29521 Å Synchrotron, λ = 0.3344 Å
μ (mm−1) 2.47 3.17
Crystal size (mm) 0.01 × 0.01 × 0.01 0.01 × 0.01 × 0.01
 
Data collection
Diffractometer 13IDD @ APS 13BMD @ APS
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.789, 1.000 0.546, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 336, 292, 279 592, 321, 253
Rint 0.006 0.055
(sin θ/λ)max−1) 0.874 0.762
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.12 0.053, 0.105, 1.11
No. of reflections 292 321
No. of parameters 32 32
Δρmax, Δρmin (e Å−3) 2.35, −1.81 1.70, −1.74
Absolute structure Flack x determined using 75 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 78 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.42 (6) 0.4 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Monochromatic X-ray diffraction measurements took place at beamlines 13-ID-D (2 µm x 3 µm beam, λ = 0.2952 Å) and 13-BM-D (5 µm × 8 µm beam, λ = 0.3344 Å) at APS (Table 2[link]). Diffraction measurements were collected at synthesis pressures and upon decompression. At target pressure steps, 10 x 10 µm still image maps were collected in 2 µm steps around the heated region. At selected map locations exhibiting the largest crystallites, rotation images were collected spanning ±30° at a rate of 1s per 0.5° step.

Grains of Co12P7 identified in reciprocal space were indexed to a primitive hexa­gonal lattice. Analysis of systematic absences indicated space group P[\overline{6}] with Z = 1. Two grains from distinct loadings and measured at different beamlines were selected for structural refinements as they showed the largest number of observed reflections and good statistical parameters (Table 2[link]). Structure factors measured in microdiffraction in the LHDAC show some well-known limitations, such as limited resolution and redundancy, reflections overlapped by parasitic scattering, diamond diffraction (Loveday et al., 1990[Loveday, J. S., McMahon, M. I. & Nelmes, R. J. (1990). J. Appl. Cryst. 23, 392-396.]) and, more notably, variable volume of illuminated crystal during rotation. As could be expected, we identified eight and five outlier reflections in the refinements for the 48 GPa and 15 GPa data sets, respectively, and omitted them in the final calculations. Based on the ratio `observed reflections/refined parameters' and statistical tests (Hamilton, 1965[Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.]), we concluded that the P sites should be refined with isotropic displacement parameters (Uiso) whereas the Co sites could be refined with anisotropic displacement parameters. After convergence, site occupancies of Co atoms and P atoms were released in alternate runs. Within uncertainty (< 1.2% for Co and < 1.3% for P), all sites are fully occupied.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Dodecacobalt heptaphosphide (Co12P7_at_48GPa) top
Crystal data top
Co12P7Dx = 8.706 Mg m3
Mr = 923.95Synchrotron radiation, λ = 0.29521 Å
Hexagonal, P6Cell parameters from 292 reflections
a = 7.9700 (14) Åθ = 2.3–14.9°
c = 3.2034 (4) ŵ = 2.47 mm1
V = 176.22 (7) Å3T = 293 K
Z = 1Irregular, black
F(000) = 4290.01 × 0.01 × 0.01 mm
Data collection top
13IDD @ APS
diffractometer
279 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.006
ω scansθmax = 15.0°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 68
Tmin = 0.789, Tmax = 1.000k = 109
336 measured reflectionsl = 55
292 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0802P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max < 0.001
wR(F2) = 0.096Δρmax = 2.35 e Å3
S = 1.12Δρmin = 1.81 e Å3
292 reflectionsAbsolute structure: Flack x determined using 75 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
32 parametersAbsolute structure parameter: 0.42 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co00.0185 (3)0.2676 (3)0.00000.0047 (4)
Co10.1313 (3)0.6239 (3)0.00000.0047 (4)
Co20.2161 (3)0.2037 (4)0.50000.0071 (4)
Co30.5185 (3)0.1341 (3)0.50000.0051 (4)
P40.1693 (5)0.4529 (5)0.50000.0062 (6)*
P50.4454 (5)0.2795 (6)0.00000.0050 (6)*
P60.00000.00000.00000.0069 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co00.0044 (8)0.0030 (8)0.0062 (5)0.0015 (7)0.0000.000
Co10.0038 (8)0.0024 (7)0.0071 (8)0.0009 (6)0.0000.000
Co20.0081 (8)0.0069 (9)0.0079 (6)0.0049 (7)0.0000.000
Co30.0038 (8)0.0028 (8)0.0069 (7)0.0005 (6)0.0000.000
Geometric parameters (Å, º) top
Co0—P62.0629 (18)Co2—Co32.730 (2)
Co0—P5i2.091 (4)Co3—P5xi2.194 (3)
Co0—P42.102 (2)Co3—P5xii2.194 (3)
Co0—P4ii2.102 (2)Co3—P4viii2.197 (5)
Co0—Co3iii2.458 (2)Co3—P5vii2.218 (3)
Co0—Co3i2.458 (2)Co3—P52.219 (3)
Co0—Co2ii2.4710 (19)Co3—Co0viii2.458 (2)
Co0—Co22.4710 (19)Co3—Co0ix2.458 (2)
Co0—Co2iii2.497 (2)Co3—Co3xii2.474 (3)
Co0—Co2i2.497 (2)Co3—Co3xiii2.475 (3)
Co0—Co12.514 (3)Co3—Co1viii2.578 (2)
Co0—Co1iv2.515 (2)Co3—Co1ix2.578 (2)
Co1—P5v2.147 (4)P4—Co0vii2.102 (2)
Co1—P4v2.180 (3)P4—Co1x2.180 (3)
Co1—P4vi2.180 (3)P4—Co1iv2.180 (3)
Co1—P4ii2.220 (3)P4—Co3i2.197 (5)
Co1—P42.220 (3)P4—Co1vii2.220 (3)
Co1—Co0v2.515 (2)P4—P4iv2.674 (6)
Co1—Co1v2.546 (3)P4—P4v2.674 (6)
Co1—Co1iv2.546 (3)P5—Co0viii2.091 (4)
Co1—Co3iii2.578 (2)P5—Co1iv2.147 (4)
Co1—Co3i2.578 (2)P5—Co3xiii2.194 (3)
Co1—Co2v2.639 (2)P5—Co3xiv2.194 (3)
Co2—P42.197 (4)P5—Co3ii2.218 (3)
Co2—P52.273 (3)P5—Co2ii2.273 (3)
Co2—P5vii2.273 (3)P6—Co0i2.0629 (18)
Co2—P62.3174 (17)P6—Co0viii2.0629 (18)
Co2—P6vii2.3174 (17)P6—Co2xv2.3174 (17)
Co2—Co0vii2.4710 (19)P6—Co2viii2.3174 (17)
Co2—Co0viii2.497 (2)P6—Co2ii2.3174 (17)
Co2—Co0ix2.497 (2)P6—Co2iii2.3175 (17)
Co2—Co1x2.639 (2)P6—Co2i2.3175 (17)
Co2—Co1iv2.639 (2)
P6—Co0—P5i96.84 (13)P4—Co2—Co3138.57 (14)
P6—Co0—P4116.54 (11)P5—Co2—Co351.66 (8)
P5i—Co0—P4114.33 (11)P5vii—Co2—Co351.66 (8)
P6—Co0—P4ii116.54 (11)P6—Co2—Co3106.26 (8)
P5i—Co0—P4ii114.33 (11)P6vii—Co2—Co3106.26 (8)
P4—Co0—P4ii99.31 (14)Co0vii—Co2—Co3139.47 (4)
P6—Co0—Co3iii126.74 (6)Co0—Co2—Co3139.47 (4)
P5i—Co0—Co3iii57.69 (9)Co0viii—Co2—Co355.89 (7)
P4—Co0—Co3iii116.61 (12)Co0ix—Co2—Co355.89 (7)
P4ii—Co0—Co3iii56.96 (11)Co1x—Co2—Co396.63 (8)
P6—Co0—Co3i126.74 (6)Co1iv—Co2—Co396.63 (8)
P5i—Co0—Co3i57.69 (9)P5xi—Co3—P5xii93.78 (15)
P4—Co0—Co3i56.96 (11)P5xi—Co3—P4viii107.43 (14)
P4ii—Co0—Co3i116.61 (12)P5xii—Co3—P4viii107.43 (14)
Co3iii—Co0—Co3i81.31 (9)P5xi—Co3—P5vii77.38 (14)
P6—Co0—Co2ii60.69 (6)P5xii—Co3—P5vii146.69 (16)
P5i—Co0—Co2ii129.60 (8)P4viii—Co3—P5vii105.86 (14)
P4—Co0—Co2ii116.07 (13)P5xi—Co3—P5146.69 (16)
P4ii—Co0—Co2ii56.73 (11)P5xii—Co3—P577.38 (14)
Co3iii—Co0—Co2ii98.20 (5)P4viii—Co3—P5105.86 (14)
Co3i—Co0—Co2ii170.85 (9)P5vii—Co3—P592.44 (15)
P6—Co0—Co260.69 (6)P5xi—Co3—Co0viii160.35 (15)
P5i—Co0—Co2129.60 (8)P5xii—Co3—Co0viii89.46 (9)
P4—Co0—Co256.73 (11)P4viii—Co3—Co0viii53.31 (7)
P4ii—Co0—Co2116.07 (13)P5vii—Co3—Co0viii109.66 (12)
Co3iii—Co0—Co2170.85 (9)P5—Co3—Co0viii52.82 (11)
Co3i—Co0—Co298.20 (5)P5xi—Co3—Co0ix89.46 (9)
Co2ii—Co0—Co280.81 (8)P5xii—Co3—Co0ix160.35 (15)
P6—Co0—Co2iii60.19 (6)P4viii—Co3—Co0ix53.31 (7)
P5i—Co0—Co2iii58.60 (11)P5vii—Co3—Co0ix52.82 (11)
P4—Co0—Co2iii169.97 (10)P5—Co3—Co0ix109.66 (12)
P4ii—Co0—Co2iii90.40 (8)Co0viii—Co3—Co0ix81.32 (9)
Co3iii—Co0—Co2iii66.85 (7)P5xi—Co3—Co3xii56.36 (10)
Co3i—Co0—Co2iii116.27 (10)P5xii—Co3—Co3xii56.36 (10)
Co2ii—Co0—Co2iii71.44 (10)P4viii—Co3—Co3xii151.84 (16)
Co2—Co0—Co2iii120.88 (10)P5vii—Co3—Co3xii93.38 (11)
P6—Co0—Co2i60.19 (6)P5—Co3—Co3xii93.38 (11)
P5i—Co0—Co2i58.60 (11)Co0viii—Co3—Co3xii138.36 (5)
P4—Co0—Co2i90.40 (8)Co0ix—Co3—Co3xii138.36 (5)
P4ii—Co0—Co2i169.97 (10)P5xi—Co3—Co3xiii93.99 (11)
Co3iii—Co0—Co2i116.27 (10)P5xii—Co3—Co3xiii93.99 (11)
Co3i—Co0—Co2i66.85 (7)P4viii—Co3—Co3xiii148.16 (16)
Co2ii—Co0—Co2i120.88 (10)P5vii—Co3—Co3xiii55.42 (11)
Co2—Co0—Co2i71.44 (10)P5—Co3—Co3xiii55.42 (11)
Co2iii—Co0—Co2i79.79 (9)Co0viii—Co3—Co3xiii105.12 (10)
P6—Co0—Co1165.52 (9)Co0ix—Co3—Co3xiii105.12 (10)
P5i—Co0—Co197.64 (13)Co3xii—Co3—Co3xiii60.0
P4—Co0—Co156.65 (9)P5xi—Co3—Co1viii107.55 (12)
P4ii—Co0—Co156.65 (9)P5xii—Co3—Co1viii52.72 (10)
Co3iii—Co0—Co162.44 (6)P4viii—Co3—Co1viii54.71 (8)
Co3i—Co0—Co162.44 (6)P5vii—Co3—Co1viii160.55 (15)
Co2ii—Co0—Co1109.16 (7)P5—Co3—Co1viii92.62 (8)
Co2—Co0—Co1109.16 (7)Co0viii—Co3—Co1viii59.83 (7)
Co2iii—Co0—Co1128.86 (7)Co0ix—Co3—Co1viii107.89 (10)
Co2i—Co0—Co1128.86 (7)Co3xii—Co3—Co1viii105.04 (11)
P6—Co0—Co1iv104.70 (9)Co3xiii—Co3—Co1viii140.36 (4)
P5i—Co0—Co1iv158.46 (14)P5xi—Co3—Co1ix52.72 (10)
P4—Co0—Co1iv55.49 (9)P5xii—Co3—Co1ix107.55 (12)
P4ii—Co0—Co1iv55.49 (9)P4viii—Co3—Co1ix54.71 (8)
Co3iii—Co0—Co1iv107.42 (7)P5vii—Co3—Co1ix92.62 (8)
Co3i—Co0—Co1iv107.42 (7)P5—Co3—Co1ix160.55 (15)
Co2ii—Co0—Co1iv63.90 (7)Co0viii—Co3—Co1ix107.89 (10)
Co2—Co0—Co1iv63.90 (7)Co0ix—Co3—Co1ix59.83 (7)
Co2iii—Co0—Co1iv133.74 (7)Co3xii—Co3—Co1ix105.04 (11)
Co2i—Co0—Co1iv133.74 (7)Co3xiii—Co3—Co1ix140.36 (4)
Co1—Co0—Co1iv60.82 (8)Co1viii—Co3—Co1ix76.82 (8)
P5v—Co1—P4v108.68 (12)P5xi—Co3—Co2130.38 (8)
P5v—Co1—P4vi108.68 (12)P5xii—Co3—Co2130.38 (8)
P4v—Co1—P4vi94.55 (18)P4viii—Co3—Co282.57 (13)
P5v—Co1—P4ii108.29 (12)P5vii—Co3—Co253.49 (10)
P4v—Co1—P4ii143.01 (13)P5—Co3—Co253.49 (10)
P4vi—Co1—P4ii74.85 (14)Co0viii—Co3—Co257.26 (7)
P5v—Co1—P4108.29 (12)Co0ix—Co3—Co257.26 (7)
P4v—Co1—P474.85 (14)Co3xii—Co3—Co2125.59 (11)
P4vi—Co1—P4143.01 (13)Co3xiii—Co3—Co265.59 (11)
P4ii—Co1—P492.36 (16)Co1viii—Co3—Co2116.75 (8)
P5v—Co1—Co089.08 (13)Co1ix—Co3—Co2116.75 (8)
P4v—Co1—Co0127.10 (9)Co0—P4—Co0vii99.31 (14)
P4vi—Co1—Co0127.10 (9)Co0—P4—Co1x144.1 (2)
P4ii—Co1—Co052.26 (8)Co0vii—P4—Co1x71.92 (7)
P4—Co1—Co052.26 (8)Co0—P4—Co1iv71.92 (7)
P5v—Co1—Co0v91.74 (12)Co0vii—P4—Co1iv144.1 (2)
P4v—Co1—Co0v52.58 (9)Co1x—P4—Co1iv94.55 (17)
P4vi—Co1—Co0v52.58 (9)Co0—P4—Co270.15 (11)
P4ii—Co1—Co0v127.40 (9)Co0vii—P4—Co270.15 (11)
P4—Co1—Co0v127.40 (9)Co1x—P4—Co274.16 (12)
Co0—Co1—Co0v179.18 (8)Co1iv—P4—Co274.16 (12)
P5v—Co1—Co1v151.31 (16)Co0—P4—Co3i69.73 (11)
P4v—Co1—Co1v55.38 (11)Co0vii—P4—Co3i69.73 (11)
P4vi—Co1—Co1v55.38 (11)Co1x—P4—Co3i132.68 (9)
P4ii—Co1—Co1v91.21 (10)Co1iv—P4—Co3i132.68 (9)
P4—Co1—Co1v91.21 (10)Co2—P4—Co3i116.01 (16)
Co0—Co1—Co1v119.61 (8)Co0—P4—Co171.09 (7)
Co0v—Co1—Co1v59.56 (10)Co0vii—P4—Co1140.9 (2)
P5v—Co1—Co1iv148.69 (16)Co1x—P4—Co1136.84 (16)
P4v—Co1—Co1iv92.13 (10)Co1iv—P4—Co170.69 (9)
P4vi—Co1—Co1iv92.13 (10)Co2—P4—Co1133.80 (8)
P4ii—Co1—Co1iv53.93 (10)Co3i—P4—Co171.42 (12)
P4—Co1—Co1iv53.93 (10)Co0—P4—Co1vii140.9 (2)
Co0—Co1—Co1iv59.61 (8)Co0vii—P4—Co1vii71.09 (7)
Co0v—Co1—Co1iv119.56 (10)Co1x—P4—Co1vii70.69 (9)
Co1v—Co1—Co1iv60.0Co1iv—P4—Co1vii136.84 (17)
P5v—Co1—Co3iii54.42 (8)Co2—P4—Co1vii133.80 (8)
P4v—Co1—Co3iii163.07 (13)Co3i—P4—Co1vii71.42 (12)
P4vi—Co1—Co3iii92.51 (9)Co1—P4—Co1vii92.36 (16)
P4ii—Co1—Co3iii53.87 (11)Co0—P4—P4iv125.14 (14)
P4—Co1—Co3iii107.88 (12)Co0vii—P4—P4iv125.14 (14)
Co0—Co1—Co3iii57.72 (8)Co1x—P4—P4iv53.25 (12)
Co0v—Co1—Co3iii122.84 (8)Co1iv—P4—P4iv53.25 (12)
Co1v—Co1—Co3iii139.67 (4)Co2—P4—P4iv94.4 (2)
Co1iv—Co1—Co3iii102.97 (11)Co3i—P4—P4iv149.6 (2)
P5v—Co1—Co3i54.42 (8)Co1—P4—P4iv87.91 (10)
P4v—Co1—Co3i92.51 (9)Co1vii—P4—P4iv87.91 (10)
P4vi—Co1—Co3i163.07 (13)Co0—P4—P4v122.98 (14)
P4ii—Co1—Co3i107.88 (12)Co0vii—P4—P4v122.98 (14)
P4—Co1—Co3i53.87 (11)Co1x—P4—P4v88.73 (10)
Co0—Co1—Co3i57.72 (8)Co1iv—P4—P4v88.73 (10)
Co0v—Co1—Co3i122.84 (8)Co2—P4—P4v154.4 (2)
Co1v—Co1—Co3i139.67 (4)Co3i—P4—P4v89.6 (2)
Co1iv—Co1—Co3i102.97 (11)Co1—P4—P4v51.90 (11)
Co3iii—Co1—Co3i76.82 (8)Co1vii—P4—P4v51.90 (11)
P5v—Co1—Co2v55.58 (8)P4iv—P4—P4v60.0
P4v—Co1—Co2v53.20 (10)Co0viii—P5—Co1iv126.72 (19)
P4vi—Co1—Co2v107.02 (11)Co0viii—P5—Co3xiii132.10 (9)
P4ii—Co1—Co2v163.76 (12)Co1iv—P5—Co3xiii72.86 (12)
P4—Co1—Co2v94.83 (9)Co0viii—P5—Co3xiv132.10 (9)
Co0—Co1—Co2v123.33 (7)Co1iv—P5—Co3xiv72.86 (12)
Co0v—Co1—Co2v57.23 (6)Co3xiii—P5—Co3xiv93.78 (15)
Co1v—Co1—Co2v103.16 (10)Co0viii—P5—Co3ii69.48 (13)
Co1iv—Co1—Co2v140.65 (5)Co1iv—P5—Co3ii133.45 (8)
Co3iii—Co1—Co2v109.96 (9)Co3xiii—P5—Co3ii133.08 (18)
Co3i—Co1—Co2v65.62 (7)Co3xiv—P5—Co3ii68.22 (10)
P4—Co2—P5103.71 (12)Co0viii—P5—Co369.48 (13)
P4—Co2—P5vii103.71 (12)Co1iv—P5—Co3133.45 (8)
P5—Co2—P5vii89.59 (15)Co3xiii—P5—Co368.22 (10)
P4—Co2—P6103.35 (9)Co3xiv—P5—Co3133.08 (18)
P5—Co2—P685.20 (8)Co3ii—P5—Co392.44 (15)
P5vii—Co2—P6152.92 (13)Co0viii—P5—Co269.66 (13)
P4—Co2—P6vii103.35 (9)Co1iv—P5—Co273.26 (11)
P5—Co2—P6vii152.92 (13)Co3xiii—P5—Co278.50 (8)
P5vii—Co2—P6vii85.20 (8)Co3xiv—P5—Co2146.03 (19)
P6—Co2—P6vii87.44 (8)Co3ii—P5—Co2139.1 (2)
P4—Co2—Co0vii53.12 (8)Co3—P5—Co274.85 (8)
P5—Co2—Co0vii155.85 (14)Co0viii—P5—Co2ii69.66 (13)
P5vii—Co2—Co0vii89.95 (7)Co1iv—P5—Co2ii73.25 (11)
P6—Co2—Co0vii105.40 (8)Co3xiii—P5—Co2ii146.03 (19)
P6vii—Co2—Co0vii50.91 (5)Co3xiv—P5—Co2ii78.50 (8)
P4—Co2—Co053.12 (8)Co3ii—P5—Co2ii74.85 (8)
P5—Co2—Co089.95 (7)Co3—P5—Co2ii139.1 (2)
P5vii—Co2—Co0155.85 (14)Co2—P5—Co2ii89.59 (15)
P6—Co2—Co050.91 (5)Co0i—P6—Co0120.0
P6vii—Co2—Co0105.40 (8)Co0i—P6—Co0viii120.0
Co0vii—Co2—Co080.81 (8)Co0—P6—Co0viii120.0
P4—Co2—Co0viii140.08 (4)Co0i—P6—Co2xv69.24 (6)
P5—Co2—Co0viii51.74 (11)Co0—P6—Co2xv136.27 (4)
P5vii—Co2—Co0viii106.53 (11)Co0viii—P6—Co2xv68.40 (6)
P6—Co2—Co0viii50.57 (5)Co0i—P6—Co2viii69.24 (6)
P6vii—Co2—Co0viii104.56 (10)Co0—P6—Co2viii136.27 (4)
Co0vii—Co2—Co0viii149.98 (11)Co0viii—P6—Co2viii68.40 (6)
Co0—Co2—Co0viii91.97 (7)Co2xv—P6—Co2viii87.45 (8)
P4—Co2—Co0ix140.08 (4)Co0i—P6—Co2136.27 (4)
P5—Co2—Co0ix106.54 (11)Co0—P6—Co268.40 (6)
P5vii—Co2—Co0ix51.74 (11)Co0viii—P6—Co269.24 (6)
P6—Co2—Co0ix104.56 (10)Co2xv—P6—Co2137.63 (3)
P6vii—Co2—Co0ix50.57 (5)Co2viii—P6—Co277.49 (6)
Co0vii—Co2—Co0ix91.97 (7)Co0i—P6—Co2ii136.27 (4)
Co0—Co2—Co0ix149.98 (11)Co0—P6—Co2ii68.40 (6)
Co0viii—Co2—Co0ix79.79 (9)Co0viii—P6—Co2ii69.24 (6)
P4—Co2—Co1x52.64 (9)Co2xv—P6—Co2ii77.49 (6)
P5—Co2—Co1x103.19 (12)Co2viii—P6—Co2ii137.64 (3)
P5vii—Co2—Co1x51.16 (10)Co2—P6—Co2ii87.44 (8)
P6—Co2—Co1x155.65 (9)Co0i—P6—Co2iii68.40 (6)
P6vii—Co2—Co1x94.13 (4)Co0—P6—Co2iii69.24 (6)
Co0vii—Co2—Co1x58.87 (6)Co0viii—P6—Co2iii136.27 (4)
Co0—Co2—Co1x105.65 (9)Co2xv—P6—Co2iii77.49 (6)
Co0viii—Co2—Co1x149.97 (10)Co2viii—P6—Co2iii137.63 (3)
Co0ix—Co2—Co1x95.00 (6)Co2—P6—Co2iii137.63 (3)
P4—Co2—Co1iv52.64 (9)Co2ii—P6—Co2iii77.49 (6)
P5—Co2—Co1iv51.16 (10)Co0i—P6—Co2i68.40 (6)
P5vii—Co2—Co1iv103.19 (13)Co0—P6—Co2i69.24 (6)
P6—Co2—Co1iv94.13 (4)Co0viii—P6—Co2i136.27 (4)
P6vii—Co2—Co1iv155.65 (9)Co2xv—P6—Co2i137.63 (3)
Co0vii—Co2—Co1iv105.65 (9)Co2viii—P6—Co2i77.49 (6)
Co0—Co2—Co1iv58.87 (6)Co2—P6—Co2i77.49 (6)
Co0viii—Co2—Co1iv95.00 (6)Co2ii—P6—Co2i137.63 (3)
Co0ix—Co2—Co1iv149.97 (10)Co2iii—P6—Co2i87.44 (8)
Co1x—Co2—Co1iv74.74 (7)
Symmetry codes: (i) y, xy, z; (ii) x, y, z1; (iii) y, xy, z1; (iv) y+1, xy+1, z; (v) x+y, x+1, z; (vi) x+y, x+1, z1; (vii) x, y, z+1; (viii) x+y, x, z; (ix) x+y, x, z+1; (x) y+1, xy+1, z+1; (xi) y+1, xy, z+1; (xii) y+1, xy, z; (xiii) x+y+1, x+1, z; (xiv) x+y+1, x+1, z1; (xv) x+y, x, z1.
(Co12P7_at_15GPa) top
Crystal data top
Co12P7Dx = 7.905 Mg m3
Mr = 923.95Synchrotron radiation, λ = 0.3344 Å
Hexagonal, P6Cell parameters from 249 reflections
a = 8.253 (5) Åθ = 2.9–14.7°
c = 3.2902 (18) ŵ = 3.17 mm1
V = 194.1 (3) Å3T = 293 K
Z = 1Irregular, black
F(000) = 4290.01 × 0.01 × 0.01 mm
Data collection top
13BMD @ APS
diffractometer
253 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.055
/w scanθmax = 14.8°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1112
Tmin = 0.546, Tmax = 1.000k = 98
592 measured reflectionsl = 44
321 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0219P)2 + 2.8589P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.053(Δ/σ)max < 0.001
wR(F2) = 0.105Δρmax = 1.70 e Å3
S = 1.11Δρmin = 1.74 e Å3
321 reflectionsAbsolute structure: Flack x determined using 78 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
32 parametersAbsolute structure parameter: 0.4 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co00.0153 (6)0.2651 (6)0.00000.0114 (8)
Co10.1320 (7)0.6234 (7)0.00000.0123 (9)
Co20.2135 (6)0.2038 (8)0.50000.0151 (9)
Co30.5195 (7)0.1363 (7)0.50000.0107 (9)
P40.1656 (11)0.4503 (11)0.50000.0102 (15)*
P50.4425 (12)0.2809 (13)0.00000.0086 (15)*
P60.00000.00000.00000.012 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co00.014 (2)0.016 (2)0.0072 (18)0.009 (2)0.0000.000
Co10.019 (2)0.016 (2)0.003 (2)0.0101 (18)0.0000.000
Co20.024 (2)0.020 (3)0.005 (2)0.014 (2)0.0000.000
Co30.011 (2)0.012 (2)0.008 (2)0.0052 (16)0.0000.000
Geometric parameters (Å, º) top
Co0—P62.128 (5)Co2—Co1iv2.731 (5)
Co0—P5i2.148 (10)Co2—Co32.846 (7)
Co0—P42.165 (6)Co3—P5xi2.263 (7)
Co0—P4ii2.165 (6)Co3—P5xii2.263 (7)
Co0—Co3iii2.538 (5)Co3—P4viii2.266 (10)
Co0—Co3i2.538 (5)Co3—P5vii2.301 (8)
Co0—Co2ii2.543 (6)Co3—P52.301 (8)
Co0—Co22.543 (6)Co3—Co3xiii2.536 (9)
Co0—Co2iii2.571 (6)Co3—Co3xii2.536 (9)
Co0—Co2i2.571 (6)Co3—Co0viii2.538 (5)
Co0—Co12.612 (7)Co3—Co0ix2.538 (5)
Co0—Co1iv2.634 (7)Co3—Co1viii2.674 (5)
Co1—P5v2.202 (10)Co3—Co1ix2.674 (5)
Co1—P4v2.266 (7)P4—Co0vii2.165 (6)
Co1—P4vi2.266 (7)P4—Co1x2.266 (7)
Co1—P4ii2.284 (7)P4—Co1iv2.266 (7)
Co1—P42.285 (7)P4—Co3i2.266 (10)
Co1—Co1v2.624 (9)P4—Co1vii2.285 (7)
Co1—Co1iv2.624 (9)P5—Co0viii2.148 (10)
Co1—Co0v2.634 (7)P5—Co1iv2.202 (10)
Co1—Co3iii2.674 (5)P5—Co3xiii2.263 (7)
Co1—Co3i2.674 (5)P5—Co3xiv2.263 (7)
Co1—Co2v2.731 (5)P5—Co3ii2.301 (8)
Co2—P42.258 (9)P5—Co2ii2.341 (7)
Co2—P5vii2.341 (7)P6—Co0i2.128 (5)
Co2—P52.341 (7)P6—Co0viii2.128 (5)
Co2—P62.383 (4)P6—Co2xv2.383 (4)
Co2—P6vii2.383 (4)P6—Co2iii2.383 (4)
Co2—Co0vii2.543 (6)P6—Co2i2.383 (4)
Co2—Co0viii2.571 (6)P6—Co2viii2.383 (4)
Co2—Co0ix2.571 (6)P6—Co2ii2.383 (4)
Co2—Co1x2.731 (5)
P6—Co0—P5i96.9 (3)P5vii—Co2—Co1iv102.3 (3)
P6—Co0—P4116.4 (2)P5—Co2—Co1iv50.7 (2)
P5i—Co0—P4114.7 (3)P6—Co2—Co1iv94.84 (11)
P6—Co0—P4ii116.4 (2)P6vii—Co2—Co1iv156.4 (2)
P5i—Co0—P4ii114.7 (3)Co0vii—Co2—Co1iv106.0 (2)
P4—Co0—P4ii98.9 (4)Co0—Co2—Co1iv59.81 (15)
P6—Co0—Co3iii127.43 (16)Co0viii—Co2—Co1iv94.89 (12)
P5i—Co0—Co3iii58.1 (2)Co0ix—Co2—Co1iv148.9 (2)
P4—Co0—Co3iii116.1 (3)Co1x—Co2—Co1iv74.08 (17)
P4ii—Co0—Co3iii56.9 (2)P4—Co2—Co3138.5 (3)
P6—Co0—Co3i127.43 (16)P5vii—Co2—Co351.6 (2)
P5i—Co0—Co3i58.1 (2)P5—Co2—Co351.6 (2)
P4—Co0—Co3i56.9 (2)P6—Co2—Co3106.1 (2)
P4ii—Co0—Co3i116.1 (3)P6vii—Co2—Co3106.1 (2)
Co3iii—Co0—Co3i80.8 (2)Co0vii—Co2—Co3139.57 (11)
P6—Co0—Co2ii60.57 (16)Co0—Co2—Co3139.58 (11)
P5i—Co0—Co2ii129.6 (2)Co0viii—Co2—Co355.61 (16)
P4—Co0—Co2ii115.7 (3)Co0ix—Co2—Co355.61 (16)
P4ii—Co0—Co2ii56.6 (2)Co1x—Co2—Co395.9 (2)
Co3iii—Co0—Co2ii98.44 (12)Co1iv—Co2—Co395.9 (2)
Co3i—Co0—Co2ii170.2 (3)P5xi—Co3—P5xii93.3 (4)
P6—Co0—Co260.57 (16)P5xi—Co3—P4viii106.5 (3)
P5i—Co0—Co2129.6 (2)P5xii—Co3—P4viii106.5 (3)
P4—Co0—Co256.6 (2)P5xi—Co3—P5vii79.0 (4)
P4ii—Co0—Co2115.7 (3)P5xii—Co3—P5vii148.1 (4)
Co3iii—Co0—Co2170.2 (3)P4viii—Co3—P5vii105.3 (3)
Co3i—Co0—Co298.44 (12)P5xi—Co3—P5148.1 (4)
Co2ii—Co0—Co280.6 (2)P5xii—Co3—P579.0 (4)
P6—Co0—Co2iii60.07 (15)P4viii—Co3—P5105.3 (3)
P5i—Co0—Co2iii58.7 (2)P5vii—Co3—P591.3 (4)
P4—Co0—Co2iii170.1 (3)P5xi—Co3—Co3xiii95.1 (3)
P4ii—Co0—Co2iii90.7 (2)P5xii—Co3—Co3xiii95.1 (3)
Co3iii—Co0—Co2iii67.70 (14)P4viii—Co3—Co3xiii148.1 (4)
Co3i—Co0—Co2iii116.8 (2)P5vii—Co3—Co3xiii55.5 (3)
Co2ii—Co0—Co2iii71.4 (2)P5—Co3—Co3xiii55.5 (3)
Co2—Co0—Co2iii120.6 (2)P5xi—Co3—Co3xii57.0 (3)
P6—Co0—Co2i60.07 (15)P5xii—Co3—Co3xii57.0 (3)
P5i—Co0—Co2i58.7 (2)P4viii—Co3—Co3xii151.9 (4)
P4—Co0—Co2i90.7 (2)P5vii—Co3—Co3xii94.1 (3)
P4ii—Co0—Co2i170.1 (3)P5—Co3—Co3xii94.1 (3)
Co3iii—Co0—Co2i116.8 (2)Co3xiii—Co3—Co3xii60.0
Co3i—Co0—Co2i67.70 (14)P5xi—Co3—Co0viii159.3 (3)
Co2ii—Co0—Co2i120.6 (2)P5xii—Co3—Co0viii89.59 (18)
Co2—Co0—Co2i71.4 (2)P4viii—Co3—Co0viii53.20 (19)
Co2iii—Co0—Co2i79.6 (2)P5vii—Co3—Co0viii108.5 (3)
P6—Co0—Co1164.3 (3)P5—Co3—Co0viii52.4 (2)
P5i—Co0—Co198.8 (3)Co3xiii—Co3—Co0viii105.1 (2)
P4—Co0—Co156.2 (2)Co3xii—Co3—Co0viii138.58 (11)
P4ii—Co0—Co156.2 (2)P5xi—Co3—Co0ix89.59 (18)
Co3iii—Co0—Co162.53 (14)P5xii—Co3—Co0ix159.3 (3)
Co3i—Co0—Co162.53 (14)P4viii—Co3—Co0ix53.20 (19)
Co2ii—Co0—Co1108.4 (2)P5vii—Co3—Co0ix52.4 (2)
Co2—Co0—Co1108.4 (2)P5—Co3—Co0ix108.5 (3)
Co2iii—Co0—Co1129.67 (15)Co3xiii—Co3—Co0ix105.1 (2)
Co2i—Co0—Co1129.67 (15)Co3xii—Co3—Co0ix138.58 (11)
P6—Co0—Co1iv104.29 (19)Co0viii—Co3—Co0ix80.8 (2)
P5i—Co0—Co1iv158.8 (3)P5xi—Co3—Co1viii106.4 (3)
P4—Co0—Co1iv55.3 (2)P5xii—Co3—Co1viii52.2 (2)
P4ii—Co0—Co1iv55.3 (2)P4viii—Co3—Co1viii54.34 (19)
Co3iii—Co0—Co1iv107.12 (19)P5vii—Co3—Co1viii159.6 (3)
Co3i—Co0—Co1iv107.12 (19)P5—Co3—Co1viii93.3 (2)
Co2ii—Co0—Co1iv63.65 (16)Co3xiii—Co3—Co1viii140.83 (9)
Co2—Co0—Co1iv63.65 (16)Co3xii—Co3—Co1viii105.3 (2)
Co2iii—Co0—Co1iv133.59 (16)Co0viii—Co3—Co1viii60.09 (15)
Co2i—Co0—Co1iv133.59 (16)Co0ix—Co3—Co1viii107.4 (2)
Co1—Co0—Co1iv60.0 (2)P5xi—Co3—Co1ix52.2 (2)
P5v—Co1—P4v108.1 (2)P5xii—Co3—Co1ix106.4 (3)
P5v—Co1—P4vi108.1 (2)P4viii—Co3—Co1ix54.34 (19)
P4v—Co1—P4vi93.1 (4)P5vii—Co3—Co1ix93.3 (2)
P5v—Co1—P4ii108.0 (3)P5—Co3—Co1ix159.6 (3)
P4v—Co1—P4ii144.0 (3)Co3xiii—Co3—Co1ix140.83 (9)
P4vi—Co1—P4ii76.3 (3)Co3xii—Co3—Co1ix105.3 (2)
P5v—Co1—P4108.0 (3)Co0viii—Co3—Co1ix107.4 (2)
P4v—Co1—P476.3 (3)Co0ix—Co3—Co1ix60.09 (15)
P4vi—Co1—P4144.0 (3)Co1viii—Co3—Co1ix75.95 (16)
P4ii—Co1—P492.1 (4)P5xi—Co3—Co2131.18 (19)
P5v—Co1—Co089.0 (3)P5xii—Co3—Co2131.18 (19)
P4v—Co1—Co0128.2 (2)P4viii—Co3—Co282.0 (3)
P4vi—Co1—Co0128.2 (2)P5vii—Co3—Co252.8 (2)
P4ii—Co1—Co051.9 (2)P5—Co3—Co252.8 (2)
P4—Co1—Co051.9 (2)Co3xiii—Co3—Co266.1 (3)
P5v—Co1—Co1v150.6 (4)Co3xii—Co3—Co2126.1 (3)
P4v—Co1—Co1v55.1 (2)Co0viii—Co3—Co256.70 (15)
P4vi—Co1—Co1v55.1 (2)Co0ix—Co3—Co256.70 (15)
P4ii—Co1—Co1v92.1 (2)Co1viii—Co3—Co2116.37 (18)
P4—Co1—Co1v92.1 (2)Co1ix—Co3—Co2116.37 (18)
Co0—Co1—Co1v120.4 (2)Co0—P4—Co0vii98.9 (4)
P5v—Co1—Co1iv149.4 (4)Co0—P4—Co270.2 (2)
P4v—Co1—Co1iv92.6 (2)Co0vii—P4—Co270.2 (2)
P4vi—Co1—Co1iv92.6 (2)Co0—P4—Co1x144.1 (4)
P4ii—Co1—Co1iv54.4 (2)Co0vii—P4—Co1x72.93 (17)
P4—Co1—Co1iv54.4 (2)Co2—P4—Co1x74.3 (3)
Co0—Co1—Co1iv60.4 (2)Co0—P4—Co1iv72.93 (17)
Co1v—Co1—Co1iv60.0Co0vii—P4—Co1iv144.1 (4)
P5v—Co1—Co0v91.0 (3)Co2—P4—Co1iv74.3 (3)
P4v—Co1—Co0v51.8 (2)Co1x—P4—Co1iv93.1 (4)
P4vi—Co1—Co0v51.8 (2)Co0—P4—Co3i69.9 (3)
P4ii—Co1—Co0v128.0 (2)Co0vii—P4—Co3i69.9 (3)
P4—Co1—Co0v128.0 (2)Co2—P4—Co3i116.5 (4)
Co0—Co1—Co0v180.0 (2)Co1x—P4—Co3i133.35 (18)
Co1v—Co1—Co0v59.6 (2)Co1iv—P4—Co3i133.35 (18)
Co1iv—Co1—Co0v119.6 (2)Co0—P4—Co171.84 (17)
P5v—Co1—Co3iii54.26 (19)Co0vii—P4—Co1141.5 (4)
P4v—Co1—Co3iii162.3 (3)Co2—P4—Co1133.94 (18)
P4vi—Co1—Co3iii93.40 (17)Co1x—P4—Co1135.3 (4)
P4ii—Co1—Co3iii53.7 (2)Co1iv—P4—Co170.4 (2)
P4—Co1—Co3iii107.1 (3)Co3i—P4—Co172.0 (3)
Co0—Co1—Co3iii57.38 (16)Co0—P4—Co1vii141.5 (4)
Co1v—Co1—Co3iii140.25 (9)Co0vii—P4—Co1vii71.84 (17)
Co1iv—Co1—Co3iii103.5 (2)Co2—P4—Co1vii133.94 (18)
Co0v—Co1—Co3iii122.64 (18)Co1x—P4—Co1vii70.4 (2)
P5v—Co1—Co3i54.26 (19)Co1iv—P4—Co1vii135.3 (4)
P4v—Co1—Co3i93.40 (17)Co3i—P4—Co1vii72.0 (3)
P4vi—Co1—Co3i162.3 (3)Co1—P4—Co1vii92.1 (4)
P4ii—Co1—Co3i107.1 (3)Co0viii—P5—Co1iv127.8 (5)
P4—Co1—Co3i53.7 (2)Co0viii—P5—Co3xiii131.9 (2)
Co0—Co1—Co3i57.38 (15)Co1iv—P5—Co3xiii73.6 (3)
Co1v—Co1—Co3i140.25 (9)Co0viii—P5—Co3xiv131.9 (2)
Co1iv—Co1—Co3i103.5 (2)Co1iv—P5—Co3xiv73.6 (3)
Co0v—Co1—Co3i122.64 (18)Co3xiii—P5—Co3xiv93.3 (4)
Co3iii—Co1—Co3i75.95 (16)Co0viii—P5—Co369.5 (3)
P5v—Co1—Co2v55.41 (19)Co1iv—P5—Co3133.9 (2)
P4v—Co1—Co2v52.7 (2)Co3xiii—P5—Co367.5 (2)
P4vi—Co1—Co2v105.6 (3)Co3xiv—P5—Co3131.1 (4)
P4ii—Co1—Co2v163.3 (3)Co0viii—P5—Co3ii69.5 (3)
P4—Co1—Co2v95.17 (19)Co1iv—P5—Co3ii133.9 (2)
Co0—Co1—Co2v123.5 (2)Co3xiii—P5—Co3ii131.1 (4)
Co1v—Co1—Co2v102.6 (2)Co3xiv—P5—Co3ii67.5 (2)
Co1iv—Co1—Co2v140.73 (11)Co3—P5—Co3ii91.3 (4)
Co0v—Co1—Co2v56.54 (14)Co0viii—P5—Co269.7 (3)
Co3iii—Co1—Co2v109.6 (2)Co1iv—P5—Co273.8 (2)
Co3i—Co1—Co2v66.10 (15)Co3xiii—P5—Co279.62 (16)
P4—Co2—P5vii103.7 (3)Co3xiv—P5—Co2147.3 (4)
P4—Co2—P5103.7 (3)Co3—P5—Co275.6 (2)
P5vii—Co2—P589.3 (3)Co3ii—P5—Co2139.2 (4)
P4—Co2—P6103.6 (2)Co0viii—P5—Co2ii69.7 (3)
P5vii—Co2—P6152.7 (3)Co1iv—P5—Co2ii73.8 (2)
P5—Co2—P685.31 (18)Co3xiii—P5—Co2ii147.3 (4)
P4—Co2—P6vii103.6 (2)Co3xiv—P5—Co2ii79.62 (16)
P5vii—Co2—P6vii85.30 (18)Co3—P5—Co2ii139.2 (4)
P5—Co2—P6vii152.7 (3)Co3ii—P5—Co2ii75.6 (2)
P6—Co2—P6vii87.33 (17)Co2—P5—Co2ii89.3 (3)
P4—Co2—Co0vii53.20 (19)Co0i—P6—Co0viii120.0
P5vii—Co2—Co0vii90.21 (18)Co0i—P6—Co0120.0
P5—Co2—Co0vii155.9 (3)Co0viii—P6—Co0120.0
P6—Co2—Co0vii105.4 (2)Co0i—P6—Co2xv69.23 (17)
P6vii—Co2—Co0vii51.06 (12)Co0viii—P6—Co2xv68.36 (17)
P4—Co2—Co053.20 (19)Co0—P6—Co2xv136.33 (9)
P5vii—Co2—Co0155.9 (3)Co0i—P6—Co2iii68.36 (17)
P5—Co2—Co090.21 (18)Co0viii—P6—Co2iii136.33 (9)
P6—Co2—Co051.06 (12)Co0—P6—Co2iii69.23 (17)
P6vii—Co2—Co0105.4 (2)Co2xv—P6—Co2iii77.58 (13)
Co0vii—Co2—Co080.6 (2)Co0i—P6—Co2i68.36 (17)
P4—Co2—Co0viii140.20 (12)Co0viii—P6—Co2i136.33 (9)
P5vii—Co2—Co0viii106.2 (3)Co0—P6—Co2i69.23 (17)
P5—Co2—Co0viii51.6 (2)Co2xv—P6—Co2i137.59 (6)
P6—Co2—Co0viii50.70 (12)Co2iii—P6—Co2i87.34 (17)
P6vii—Co2—Co0viii104.5 (2)Co0i—P6—Co2viii69.23 (17)
Co0vii—Co2—Co0viii150.1 (2)Co0viii—P6—Co2viii68.36 (17)
Co0—Co2—Co0viii92.22 (16)Co0—P6—Co2viii136.33 (9)
P4—Co2—Co0ix140.20 (12)Co2xv—P6—Co2viii87.34 (17)
P5vii—Co2—Co0ix51.6 (2)Co2iii—P6—Co2viii137.59 (6)
P5—Co2—Co0ix106.2 (3)Co2i—P6—Co2viii77.58 (13)
P6—Co2—Co0ix104.5 (2)Co0i—P6—Co2ii136.33 (9)
P6vii—Co2—Co0ix50.70 (12)Co0viii—P6—Co2ii69.23 (17)
Co0vii—Co2—Co0ix92.22 (16)Co0—P6—Co2ii68.37 (17)
Co0—Co2—Co0ix150.1 (2)Co2xv—P6—Co2ii77.58 (13)
Co0viii—Co2—Co0ix79.6 (2)Co2iii—P6—Co2ii77.58 (13)
P4—Co2—Co1x52.99 (19)Co2i—P6—Co2ii137.59 (6)
P5vii—Co2—Co1x50.7 (2)Co2viii—P6—Co2ii137.59 (6)
P5—Co2—Co1x102.3 (3)Co0i—P6—Co2136.33 (9)
P6—Co2—Co1x156.4 (2)Co0viii—P6—Co269.23 (17)
P6vii—Co2—Co1x94.84 (11)Co0—P6—Co268.37 (17)
Co0vii—Co2—Co1x59.81 (15)Co2xv—P6—Co2137.59 (6)
Co0—Co2—Co1x106.0 (2)Co2iii—P6—Co2137.59 (6)
Co0viii—Co2—Co1x148.9 (2)Co2i—P6—Co277.58 (13)
Co0ix—Co2—Co1x94.89 (12)Co2viii—P6—Co277.58 (13)
P4—Co2—Co1iv52.99 (19)Co2ii—P6—Co287.33 (17)
Symmetry codes: (i) y, xy, z; (ii) x, y, z1; (iii) y, xy, z1; (iv) y+1, xy+1, z; (v) x+y, x+1, z; (vi) x+y, x+1, z1; (vii) x, y, z+1; (viii) x+y, x, z; (ix) x+y, x, z+1; (x) y+1, xy+1, z+1; (xi) y+1, xy, z+1; (xii) y+1, xy, z; (xiii) x+y+1, x+1, z; (xiv) x+y+1, x+1, z1; (xv) x+y, x, z1.
Selected structural parameters for Co12P7 at 48 GPa top
GroupMaximal bond length (Å)minimal bond length (Å)Polyhedron volume (Å3)Distortion index
CoP4 (Co0—P4, —P5, —P6)2.102 (2)2.062 (2)4.54330.00656
CoP5 (Co1—P4, —P5)2.220 (3)2.147 (4)8.12570.01085
CoP5 (Co2—P4, —P5, —P6)2.317 (2)2.198 (4)9.07660.01432
CoP5 (Co3—P4, —P5)2.219 (3)2.194 (3)8.32390.00514
 

Funding information

Portions of this work were performed at GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR – 1634415) and Department of Energy – GeoSciences (DE-FG02–94ER14466). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02–06CH11357. This material is based upon work supported by a National Science Foundation Graduate Research Fellowship to CZ. This work was also supported by the National Science Foundation by grant EAR – 1651017 to AC.

References

First citationBaurecht, H. E., Boller, H. & Nowotny, H. (1971). Monats. Chem. 102, 373–384.  CrossRef ICSD CAS Google Scholar
First citationCampbell, A. J., Danielson, L., Righter, K., Seagle, C. T., Wang, Y. & Prakapenka, V. B. (2009). Earth Planet. Sci. Lett. 286, 556–564.  CrossRef CAS Google Scholar
First citationCampbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G. & Prakapenka, V. B. (2007). Phys. Earth Planet. Inter. 162, 119–128.  Web of Science CrossRef CAS Google Scholar
First citationChun, H. K. & Carpenter, G. B. (1979). Acta Cryst. B35, 30–33.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationDera, P., Lavina, B., Borkowski, L. A., Prakapenka, V. B., Sutton, S. R., Rivers, M. L., Downs, R. T., Boctor, N. Z. & Prewitt, C. T. (2008). Geophys. Res. Lett. 35, l10301.  CrossRef Google Scholar
First citationDhahri, E. (1996). J. Phys. Condens. Matter, 8, 4351–4360.  CrossRef CAS Google Scholar
First citationEllner, M. & Mittemeijer, E. J. (2001). Z. Anorg. Allg. Chem. 627, 2257–2260.  CrossRef ICSD CAS Google Scholar
First citationFei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G. & Prakapenka, V. (2007). PNAS, 104, 9182–9186.  CrossRef PubMed CAS Google Scholar
First citationFujii, S., Ishida, S. & Asano, S. (1988). J. Phys. F: Met. Phys. 18, 971–980.  Google Scholar
First citationHamilton, W. C. (1965). Acta Cryst. 18, 502–510.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHeinz, D. L. & Jeanloz, R. (1987). High Press. Res. Miner. Phys. 2, 113–127.  Google Scholar
First citationJeitschko, W., Braun, D. J., Ashcraft, R. H. & Marchand, R. (1978). J. Solid State Chem. 25, 309–313.  CrossRef ICSD CAS Google Scholar
First citationJeitschko, W. & Jaberg, B. (1980). Z. Anorg. Allg. Chem. 467, 95–104.  CrossRef ICSD CAS Google Scholar
First citationJeitschko, W., Meisen, U. & Scholz, U. D. (1984). J. Solid State Chem. 55, 331–336.  CrossRef ICSD CAS Google Scholar
First citationLoveday, J. S., McMahon, M. I. & Nelmes, R. J. (1990). J. Appl. Cryst. 23, 392–396.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaaref, S., Madar, R., Chaudouet, P., Senateur, J. P. & Fruchart, R. (1981). J. Solid State Chem. 40, 131–135.  CrossRef ICSD CAS Google Scholar
First citationMao, H. K. & Bell, P. M. (1976). Science, 191, 851–852.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkamoto, H. & Massalski, T. B. (1990). Editors. Binary Alloy Phase Diagrams. OH, USA: ASM International.  Google Scholar
First citationOlofsson, O. & Ganglberger, E. (1970). Acta Chem. Scand. 24, 2389–2396.  CrossRef ICSD CAS Google Scholar
First citationOno, S. & Kikegawa, T. (2006). Am. Mineral. 91, 1941–1944.  CrossRef CAS Google Scholar
First citationOno, S., Oganov, A. R., Brodholt, J. P., Vočadlo, L., Wood, I. G., Lyakhov, A., Glass, C. W., Côté, A. S. & Price, G. D. (2008). Earth Planet. Sci. Lett. 272, 481–487.  CrossRef CAS Google Scholar
First citationPan, Y., Lin, Y., Chen, Y., Liu, Y. & Liu, C. (2016). J. Mater. Chem. A, 4, 4745–4754.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPopczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. (2014). Angew. Chem. 126, 5531–5534.  CrossRef Google Scholar
First citationPramanik, M., Tominaka, S., Wang, Z. L., Takei, T. & Yamauchi, Y. (2017). Angew. Chem. 129, 13693–13697.  CrossRef Google Scholar
First citationPrescher, C. & Prakapenka, V. B. (2015). High. Press. Res. 35, 223–230.  Web of Science CrossRef CAS Google Scholar
First citationPrins, R. & Bussell, M. E. (2012). Catal. Lett. 142, 1413–1436.  CrossRef CAS Google Scholar
First citationReehuis, M. & Jeitschko, W. (1989). J. Phys. Chem. Solids, 50, 563–569.  CrossRef ICSD CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, C. M. & Jacobsen, S. D. (2008). High Pressure Res. 28, 273–292.  Web of Science CrossRef CAS Google Scholar
First citationRundqvist, S. (1960). Acta Chem. Scand. 14, 1961–1979.  CrossRef ICSD CAS Google Scholar
First citationRundqvist, S. (1962). Acta Chem. Scand. 16, 1–19.  CrossRef ICSD CAS Google Scholar
First citationSchlesinger, M. E. (2002). Chem. Rev. 102, 4267–4302.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTateno, S., Ozawa, H., Hirose, K., Suzuki, T., I–Kawaguchi, S. & Hirao, N. (2019). Geophys. Res. Lett. 46, 11944–11949.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZachariasen, W. H. (1949). Acta Cryst. 2, 288–291.  CrossRef ICSD IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds