1. Chemical context
A search of the Cambridge Structural Database (Groom et al., 2016; version 5.41 with updates until August 2020) for crystal structures containing solely alkaline earth cations and 2-methylpropanoate (or isobutyrate) anions revealed hexakis[bis(μ2-2-methylpropanoato)(2-methylpropanoic acid)magnesium], refcode NAGQUI (Coker et al., 2004) and catena-poly[[triaqua(isobutyrato-kO)magnesium]-μ-isobutyrato-κ2O:O′] monohydrate, refcode VIQTOG (Malaestean et al., 2013). Although limited to these two examples, some basic structural features of these compounds can be inferred from other simple carboxylate salts. These features, among others, are illustrated by the series of structures determined by Coker et al. (2004), in which the number of carbon atoms in the carboxylate anions gradually increases.
In the crystal structure of catena-[tetrakis(μ2-formato)tetraaquadimagnesium], MGFORD03 (Coker et al., 2004), no hydrophobic organic chain is present. In the other member of this series, bis(μ2-acetato-O,O,O′)-tetrakis(μ2-acetato-O,O′)bis(acetic acid)diaquatrimagnesium acetic acid solvate, NAGQOC [Coker et al. (2004), see also the redetermination of this structure by Scheurell et al. (2012), NAGQOC02], there are sheets within the structure separated into hydrophilic parts (composed of the cations and oxygen atoms) and hydrophobic parts (composed of methyl groups). The remaining free acetic acid molecules are bound by Oacetic—H⋯O hydrogen bonds between the layers. NAGQUI is an example of a structure where the hydrophilic part is surrounded by a hydrophobic layer. The same holds for hexakis[bis(μ2-3,3-dimethylbutanato)(3,3-dimethylbutanoic acid)magnesium], NAGRET (Coker et al., 2004), as well as for bis(pivalato)tetrakis(pivalic acid)magnesium, VAMCUI01 [Coker et al. (2004), see also VAMCUI determined by Troyanov et al. (2002)]. Thus, the longer the organic chain, the more important the van der Waals forces become for molecular cohesion in structures with carboxylate anions. The different cohesion forces in the hydrophilic and the hydrophobic parts are the reason for the formation of layer-like structures or structures where an organic part completely surrounds a hydrophilic metal–oxygen sheet or a hydrophilic cluster. Likewise, the longer the hydrophobic chains, the larger is the probability of inclusion of non-coordinating water molecules into the structure because the latter can provide binding bridges between the carboxylate anions, which would otherwise be isolated. Such a situation is realised in VIQTOG where the water molecules complete a column substructure that is defined by the cation–oxygen bonds stemming from the carboxylate groups and water molecules. The growing complexity of water substructures with a growing number of carbon atoms in carboxylate anions has also been observed in the salts of the first five dicarboxylic acids with 4,6-diaminopyrimidine (Matulková et al., 2017).
The present study was undertaken to prepare dicalcium strontium hexakis(2-methylpropanoate) with the intention that the resulting crystal structure might be related to dicalcium strontium hexakis(propionate) (CASRPP06; Mishima, 1984), which exhibits interesting structural and physical properties (e.g. Itoh, 1992). However, the synthesis attempt resulted in one of the title structures, catena-poly[[μ-aqua-diaqua(μ3-2-methylpropanoato-κ4O:O,O′:O′)(calcium/strontium)] 2-methylpropanoate dihydrate], (III). We then also prepared the pure Ca and Sr compounds, i.e. (I) and (II), the crystal structures of which are also reported here.
2. Structural commentary
The structures have the same features and are composed of the respective cation, two carboxylate molecules and additional water molecules. One of the carboxylate anions and three water molecules coordinate to the cation, the remaining molecules form a substructure interconnected by hydrogen bonds only. Compound (III) is an Sr-containing solid solution of (I), and the two structures are crystal-chemically isotypic. The refined ratio of the occupationally disordered cation site is Ca:Sr = 0.7936 (16):0.2064 (16). The crystal structures of (I)/(III) and (II) are homeotypic (Lima-de-Faria et al., 1990), with similar lattice parameters and crystal-chemical features, but different space-group types.
There are three main cohesion forces present in the title structures: The first cohesion force regards the cation–oxygen interactions. For each of the crystal structures, there are eight oxygen atoms in the coordination sphere, defined by one carboxylate molecule in a bidentate bridging mode. (In VIQTOG there are two carboxylate anions coordinating in a monodentate mode and bridging to other Mg2+ cations.) In the title structures, the cation-coordinating atoms are symmetry-equivalent atoms O1 in (II), and O1 and O2 in (I) and (III), respectively. Other coordinating O atoms are the water O atoms O2, O3 and O4 in (II), and the water O atoms O3, O4 and O5 in (I) and (III). [The Sr2+ cation in (II) is located on a mirror plane (Wyckoff position 8f)]. Numerical values of the cation–oxygen bonds are listed in Tables 1, 2 and 3 for structures (I), (II) and (III), respectively. The coordination polyhedra form columns oriented parallel to the a axis. Because of the similarity of the three structures, (III) was chosen as a representative (Fig. 1a,b).
Ca1—O3 | 2.3479 (12) | Ca1—O2 | 2.4993 (11) | Ca1—O2i | 2.3653 (10) | Ca1—O1 | 2.5308 (11) | Ca1—O1ii | 2.3938 (10) | Ca1—O4ii | 2.5446 (11) | Ca1—O5 | 2.4085 (12) | Ca1—O4 | 2.6019 (11) | Symmetry codes: (i) ; (ii) . | |
Sr1—O1i | 2.4788 (10) | Sr1—O1 | 2.6561 (11) | Sr1—O1ii | 2.4788 (10) | Sr1—O1iii | 2.6561 (11) | Sr1—O3 | 2.4899 (16) | Sr1—O2 | 2.6796 (11) | Sr1—O4 | 2.5593 (18) | Sr1—O2ii | 2.6796 (11) | Symmetry codes: (i) ; (ii) ; (iii) -x+1, y, z. | |
Ca1—O3 | 2.3719 (10) | Ca1—O2 | 2.5457 (9) | Ca1—O2i | 2.3845 (9) | Ca1—O1 | 2.5714 (9) | Ca1—O1ii | 2.4091 (8) | Ca1—O4ii | 2.5747 (9) | Ca1—O5 | 2.4209 (10) | Ca1—O4 | 2.6271 (9) | Symmetry codes: (i) ; (ii) . | |
| Figure 1 (a) View of the columns along the a axis in the crystal structure of (III). The columns depicted are formed by (Ca1/Sr1) (green) and O atoms (red); the latter are also depicted with bonds to carbon C atoms (grey) and H atoms (light-grey spheres of arbitrary radius). Displacement ellipsoids are shown at the 30% probability level. (b) Perspective view of the columns in (III). |
The second type of a cohesion force in the title structures originates from O—H⋯O hydrogen bonds of moderate strength (Gilli & Gilli, 2009) that link the above mentioned columns into hydrophilic sheets parallel to (001) (Fig. 2a,b). Within a sheet, the coordinating water molecules are solely engaged as donor groups whereas the non-coordinating water molecules (Ow1 and Ow2 in (I) and (III), and Ow1 in (II)) have the functions both as donor and acceptor groups. The carboxylate acceptor atoms O6 and O7 in the structure of (I) and (III) and the pair of equivalent atoms O5 (x, y, z and 1 − x, y, z) in the structure of (II) stem from the second, non-coordinating carboxylate anion. Each of these carboxylate oxygen atoms is an acceptor of three hydrogen bonds that are donated by two coordinating and by one non-coordinating water molecules. Numerical values of these interactions are collated in Tables 4, 5 and 6 for structures (I), (II) and (III)), respectively. Fig. 3a,b depict the hydrogen-bonded substructures in (II) and (III). The graph-set motifs are R55(10) (Etter et al., 1990), which include these atoms: Ow1–Ow1xiii(−x + , y, −z + )–Ow1xiv(x + , y, −z + )–Ow1iii(−x + 1, y, z)–O3xv(−x + 1, y + , −z + ) for (II) and Ow1–Ow2v(−x − , y, −z + )–Ow1ii(x + , y, −z + )–Ow2–O3vi(−x + 1, y + , −z + ) for (III), respectively. Note the disorder of the hydrogen atoms H2ow1 and H3ow1 bound to Ow1 in the structure of (II).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H1o3⋯Ow2iii | 0.840 (13) | 2.063 (15) | 2.8754 (16) | 162.5 (15) | O3—H2o3⋯Ow1iii | 0.840 (14) | 1.954 (15) | 2.7829 (17) | 168.8 (15) | O4—H1o4⋯O6 | 0.840 (13) | 1.936 (13) | 2.7560 (15) | 165.1 (14) | O4—H2o4⋯O7i | 0.840 (14) | 1.925 (13) | 2.7431 (15) | 164.4 (14) | O5—H1o5⋯O6ii | 0.840 (13) | 1.966 (13) | 2.7805 (15) | 163.0 (18) | O5—H2o5⋯O7i | 0.840 (13) | 1.935 (13) | 2.7597 (15) | 166.9 (18) | Ow1—H1ow1⋯Ow2iv | 0.840 (5) | 1.882 (4) | 2.7192 (17) | 174 (2) | Ow1—H2ow1⋯O7 | 0.840 (13) | 1.960 (13) | 2.7872 (17) | 168.0 (18) | Ow2—H1ow2⋯O6 | 0.840 (13) | 1.969 (13) | 2.8070 (17) | 175.1 (17) | Ow2—H2ow2⋯Ow1i | 0.840 (7) | 1.886 (7) | 2.7242 (18) | 175 (2) | Symmetry codes: (i) ; (ii) ; (iii) ; (iv) x-1, y, z. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O2—H1o2⋯O5 | 0.820 (16) | 1.936 (15) | 2.7465 (14) | 169.3 (17) | O3—H1o3⋯Ow1iv | 0.827 (17) | 2.022 (17) | 2.8339 (18) | 167.1 (18) | O4—H1o4⋯O5i | 0.844 (18) | 1.964 (17) | 2.7887 (16) | 165.3 (19) | Ow1—H1ow1⋯O5iii | 0.818 (18) | 1.976 (19) | 2.7913 (18) | 174 (2) | Ow1—H2ow1⋯Ow1v | 0.82 (2) | 1.92 (3) | 2.736 (2) | 176 (5) | Ow1—H3ow1⋯Ow1vi | 0.803 (17) | 1.946 (17) | 2.747 (2) | 176 (5) | Symmetry codes: (i) ; (iii) -x+1, y, z; (iv) ; (v) ; (vi) -x, y, z. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H1o3⋯Ow2iii | 0.840 (11) | 2.061 (12) | 2.8767 (14) | 163.6 (13) | O3—H2o3⋯Ow1iii | 0.840 (12) | 1.953 (12) | 2.7842 (14) | 169.8 (13) | O4—H1o4⋯O6 | 0.840 (11) | 1.932 (10) | 2.7498 (13) | 164.2 (11) | O4—H2o4⋯O7i | 0.840 (11) | 1.920 (10) | 2.7382 (13) | 164.2 (11) | O5—H1o5⋯O6ii | 0.840 (11) | 1.964 (11) | 2.7831 (13) | 164.9 (15) | O5—H2o5⋯O7i | 0.840 (11) | 1.944 (11) | 2.7636 (13) | 165.0 (14) | Ow1—H1ow1⋯Ow2iv | 0.840 (4) | 1.888 (3) | 2.7233 (14) | 172.8 (16) | Ow1—H2ow1⋯O7 | 0.840 (10) | 1.951 (11) | 2.7836 (14) | 170.7 (15) | Ow2—H1ow2⋯O6 | 0.840 (10) | 1.967 (10) | 2.8050 (14) | 175.3 (15) | Ow2—H2ow2⋯Ow1i | 0.840 (5) | 1.887 (5) | 2.7248 (15) | 175.2 (17) | Symmetry codes: (i) ; (ii) ; (iii) ; (iv) x-1, y, z. | |
| Figure 2 View of the unit-cell content of (a) (II) and (b) (III). Hydrogen bonds are shown as yellow dashed lines; colour code as in Fig. 1. The substructures with the hydrophilic sheets and hydrogen-bonded system, which connects the columns and water molecules, are clearly discernible from the hydrophobic part of the structure composed of 2-methylethyl chains. |
| Figure 3 View of the hydrogen-bonded substructures in (a) (II) and (b) (III). The symmetry codes correspond to those given in Tables 5 and 6, respectively. Colour code is as in Fig. 1. |
The third type of cohesion force is related to van der Waals interactions between the hydrophobic parts of the layers involving the methylene and methyl groups. The shortest C⋯C distances observed in (I) and (III) are C4⋯C7(x + , −y, z + ), which are 3.762 (2) and 3.746 (2) Å, respectively. The shortest C⋯C interactions in (II) for C3b⋯C6 (x + , −y + , −z) and C3b⋯C7 (−x + , −y + , −z) are 3.569 (4) and 3.146 (5) Å, respectively. These comparatively shorter distances indicate positional disorder (see Refinement section). As a general rule, it can be inferred that the shorter the C⋯C distances between adjacent groups, the greater is the probability for the occurrence of positional disorder of the 1-methylethyl group. See also the discussion regarding the observed disorder in barium dicalcium hexakis(propanoate) (CABAPN) by Stadnicka & Glazer (1980) where, however, the methyl carbons get as close as 4.05 (2) Å.
3. Synthesis and crystallization
For (III), two molar equivalents of CaCO3 and one molar equivalent of SrCO3 were neutralized by six molar equivalents of 2-methylpropionic acid (using 0.76 g of CaCO3, 0.56 g of SrCO3 and about 2.50 g of 2-methylpropionic acid). The solution was heated at 343 K, an excess of the acid was then added until the pH was between 5 and 6. The solution was filtered and then heated at 313 K until needle-like colourless crystals appeared. The pure Ca compound, (I), and the pure Sr compound, (II), were prepared for the sake of comparison. 0.85 g of CaCO3 were neutralized by 1.5 g of 2-methylpropionic acid and 1.26 g of SrCO3 were neutralized by 1.5 g of 2-methylpropionic acid, respectively; in each case these values correspond to the molar ratio of 1:2. The solutions were heated at 343 K, an excess of the acid was then added until the pH was between 5 and 6. The solutions were filtered and then heated at 313 K until needle-like colourless crystals appeared.
We have also tried to prepare magnesium 2-methylpropanoate and barium 2-methylpropanoate in a similar way as for (I)–(III). However, it turned out that the obtained crystals of the former compound correspond to VIQTOG, while the crystal structure of the latter compound is modulated and is being solved at present. Provided that we obtain a satisfactory model, the results will be published elsewhere.
Crystal data, data collection and structure refinement details are summarized in Table 7. In all structures, the methanetriyl hydrogen atoms were placed in calculated positions and refined with Cmethanetriyl—Hmethanetriyl = 1.00 Å, Uiso(Hmethanetriyl) = 1.2Ueq(Cmethanetriyl). Methyl hydrogen atoms were discernible in difference electron-density maps and were refined with Cmethyl—Hmethyl = 0.98 Å, Uiso(Hmethyl) = 1.5Ueq(Cmethyl). Finally, difference electron density maps revealed the water hydrogen atoms, which were refined with restraints of Owater—Hwater = 0.840 (1) Å.
| (I) | (II) | (III) | Crystal data | Chemical formula | [Ca(C4H7O2)(H2O)3]·C4H7O2·2H2O | [Sr(C4H7O2)(H2O)3]·C4H7O2·2H2O | [Ca0.794Sr0.206(C4H7O2)(H2O)3]·C4H7O2·2H2O | Mr | 304.4 | 351.9 | 314.2 | Crystal system, space group | Orthorhombic, Pbca | Orthorhombic, Cmce | Orthorhombic, Pbca | Temperature (K) | 120 | 120 | 120 | a, b, c (Å) | 6.6662 (2), 19.5903 (7), 23.4286 (8) | 6.8801 (3), 19.7520 (11), 23.2734 (13) | 6.7153 (3), 19.6061 (10), 23.3498 (11) | V (Å3) | 3059.61 (18) | 3162.8 (3) | 3074.3 (3) | Z | 8 | 8 | 8 | Radiation type | Mo Kα | Mo Kα | Mo Kα | μ (mm−1) | 0.44 | 3.44 | 1.08 | Crystal size (mm) | 0.27 × 0.17 × 0.05 | 0.24 × 0.12 × 0.08 | 0.59 × 0.18 × 0.08 | | Data collection | Diffractometer | Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS | Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS | Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS | Absorption correction | Multi-scan (SADABS; Bruker, 2017) | Multi-scan (SADABS; Bruker, 2017) | Multi-scan (SADABS; Bruker, 2017) | Tmin, Tmax | 0.889, 0.980 | 0.491, 0.770 | 0.573, 0.917 | No. of measured, independent and observed [I > 3σ(I)] reflections | 25865, 3511, 2955 | 21213, 1965, 1762 | 25462, 3533, 2787 | Rint | 0.033 | 0.032 | 0.030 | (sin θ/λ)max (Å−1) | 0.649 | 0.649 | 0.651 | | Refinement | R[F > 3σ(F)], wR(F), S | 0.039, 0.081, 1.99 | 0.021, 0.055, 1.79 | 0.026, 0.062, 1.54 | No. of reflections | 3511 | 1965 | 3533 | No. of parameters | 193 | 126 | 195 | No. of restraints | 10 | 9 | 10 | H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | Δρmax, Δρmin (e Å−3) | 0.31, −0.38 | 0.37, −0.30 | 0.27, −0.25 | Computer programs: APEX2 and SAINT (Bruker, 2017), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXT (Sheldrick, 2015), JANA2006 (Petříček et al., 2014), DIAMOND (Brandenburg, 2015) and publCIF (Westrip, 2010). | |
For (II), difference electron-density maps revealed positional disorder of the 2-methylpropyl entity in both anions. This positional disorder affects the non-oxygen atoms that are not situated on the mirror plane (Wyckoff position 8f). In addition, methyl atoms C3a and C3b with their attached hydrogen atoms were first subjected to a trial refinement of their occupancies, which resulted in 0.510 (5) and 0.490 (5) for C3a and C3b and the attached hydrogen atoms, respectively. In the final model, the occupancies were fixed at 0.50 for these groups. Ow1 is situated in a general position like its hydrogen atoms. As a result of the local environment, H1ow1 was assumed to be fully occupied while H2ow1 and H3ow1 were supposed to be equally disordered over two positions. This assumption turned out to be in agreement with a trial refinement of their occupational parameters despite the very low scattering power of the hydrogen atoms.
For (III), the Ca/Sr occupation was refined [ratio 0.7936 (16):0.2064 (16)] under the assumption of the same position and the same displacement parameters for Ca and Sr and a fully occupied site. A B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) extinction correction was applied.
Supporting information
For all structures, data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for (I), (III); SHELXT (Sheldrick, 2015) for (II). For all structures, program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).
\
catena-Poly[[µ-aqua-diaqua(µ
3-2-methylpropanoato-\
κ4O:
O,
O':
O')calcium] 2-methylpropanoate dihydrate] (I)
top Crystal data top [Ca(C4H7O2)(H2O)3]·C4H7O2·2H2O | There have been used diffractions with I/σ(I)>20 for the unit cell determination. |
Mr = 304.4 | Dx = 1.321 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9916 reflections |
a = 6.6662 (2) Å | θ = 2.3–27.5° |
b = 19.5903 (7) Å | µ = 0.44 mm−1 |
c = 23.4286 (8) Å | T = 120 K |
V = 3059.61 (18) Å3 | Prism, colourless |
Z = 8 | 0.27 × 0.17 × 0.05 mm |
F(000) = 1312 | |
Data collection top Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS diffractometer | 3511 independent reflections |
Radiation source: X-ray tube | 2955 reflections with I > 3σ(I) |
Quazar Mo multilayer optic monochromator | Rint = 0.033 |
φ and ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | h = −8→8 |
Tmin = 0.889, Tmax = 0.980 | k = −24→25 |
25865 measured reflections | l = −30→30 |
Refinement top Refinement on F2 | 66 constraints |
R[F > 3σ(F)] = 0.039 | Primary atom site location: charge flipping |
wR(F) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.99 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
3511 reflections | (Δ/σ)max = 0.015 |
193 parameters | Δρmax = 0.31 e Å−3 |
10 restraints | Δρmin = −0.38 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ca1 | 0.51243 (4) | 0.148107 (15) | 0.283542 (12) | 0.01153 (9) | |
O1 | 0.67506 (14) | 0.12357 (6) | 0.18811 (5) | 0.0155 (3) | |
O2 | 0.34606 (14) | 0.12092 (6) | 0.19069 (4) | 0.0161 (3) | |
C1 | 0.5086 (2) | 0.11831 (8) | 0.16303 (6) | 0.0129 (4) | |
C2 | 0.4989 (2) | 0.10975 (8) | 0.09862 (7) | 0.0165 (4) | |
H1c2 | 0.446418 | 0.153868 | 0.083208 | 0.0198* | |
C3 | 0.3552 (3) | 0.05243 (10) | 0.08221 (7) | 0.0284 (6) | |
H1c3 | 0.349227 | 0.048592 | 0.040536 | 0.0426* | |
H2c3 | 0.403026 | 0.009271 | 0.098419 | 0.0426* | |
H3c3 | 0.221179 | 0.06258 | 0.097119 | 0.0426* | |
C4 | 0.7039 (2) | 0.09872 (10) | 0.07130 (7) | 0.0238 (5) | |
H1c4 | 0.689212 | 0.096932 | 0.029701 | 0.0357* | |
H2c4 | 0.793135 | 0.136497 | 0.081634 | 0.0357* | |
H3c4 | 0.761063 | 0.055638 | 0.084979 | 0.0357* | |
O3 | 0.49949 (16) | 0.03175 (6) | 0.30728 (6) | 0.0229 (4) | |
H1o3 | 0.3920 (16) | 0.0098 (9) | 0.3109 (8) | 0.0343* | |
H2o3 | 0.594 (2) | 0.0035 (8) | 0.3078 (8) | 0.0343* | |
O4 | 0.76674 (16) | 0.23978 (6) | 0.24860 (5) | 0.0156 (3) | |
H1o4 | 0.737 (3) | 0.2657 (8) | 0.2213 (5) | 0.0233* | |
H2o4 | 0.804 (3) | 0.2649 (8) | 0.2756 (5) | 0.0233* | |
O5 | 0.52665 (15) | 0.22166 (6) | 0.36582 (5) | 0.0168 (3) | |
H1o5 | 0.4273 (17) | 0.2477 (8) | 0.3694 (8) | 0.0252* | |
H2o5 | 0.6286 (17) | 0.2468 (8) | 0.3667 (8) | 0.0252* | |
O6 | 0.69414 (15) | 0.30599 (6) | 0.14688 (4) | 0.0181 (3) | |
O7 | 0.36106 (15) | 0.30246 (6) | 0.15020 (5) | 0.0180 (3) | |
C5 | 0.5238 (2) | 0.31076 (8) | 0.12347 (6) | 0.0137 (4) | |
C6 | 0.5131 (2) | 0.33159 (9) | 0.06102 (7) | 0.0179 (4) | |
H1c6 | 0.379623 | 0.317605 | 0.045454 | 0.0215* | |
C7 | 0.5390 (3) | 0.40883 (9) | 0.05774 (7) | 0.0268 (5) | |
H1c7 | 0.530688 | 0.42353 | 0.017824 | 0.0403* | |
H2c7 | 0.432769 | 0.431102 | 0.079868 | 0.0403* | |
H3c7 | 0.670091 | 0.421507 | 0.073409 | 0.0403* | |
C8 | 0.6681 (3) | 0.29543 (10) | 0.02414 (7) | 0.0295 (6) | |
H1c8 | 0.651725 | 0.309588 | −0.015704 | 0.0443* | |
H2c8 | 0.803143 | 0.307466 | 0.037273 | 0.0443* | |
H3c8 | 0.649309 | 0.245941 | 0.02711 | 0.0443* | |
Ow1 | 0.22518 (17) | 0.42507 (7) | 0.19654 (5) | 0.0225 (4) | |
H1ow1 | 0.1005 (5) | 0.4296 (11) | 0.1931 (8) | 0.0337* | |
H2ow1 | 0.253 (3) | 0.3889 (6) | 0.1790 (8) | 0.0337* | |
Ow2 | 0.81843 (18) | 0.43259 (7) | 0.19043 (5) | 0.0229 (4) | |
H1ow2 | 0.782 (3) | 0.3957 (5) | 0.1754 (8) | 0.0344* | |
H2ow2 | 0.791 (3) | 0.4276 (11) | 0.2252 (2) | 0.0344* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ca1 | 0.00793 (14) | 0.01282 (15) | 0.01385 (16) | 0.00014 (12) | −0.00009 (12) | −0.00034 (11) |
O1 | 0.0097 (5) | 0.0190 (6) | 0.0176 (6) | −0.0006 (4) | −0.0018 (4) | −0.0019 (5) |
O2 | 0.0099 (5) | 0.0213 (6) | 0.0173 (6) | 0.0007 (5) | 0.0010 (4) | −0.0039 (5) |
C1 | 0.0124 (7) | 0.0089 (7) | 0.0175 (7) | 0.0007 (6) | −0.0003 (6) | 0.0006 (6) |
C2 | 0.0153 (7) | 0.0187 (8) | 0.0154 (7) | −0.0004 (7) | −0.0001 (6) | 0.0011 (6) |
C3 | 0.0300 (10) | 0.0383 (12) | 0.0169 (9) | −0.0148 (9) | −0.0002 (7) | −0.0072 (8) |
C4 | 0.0217 (8) | 0.0315 (11) | 0.0182 (9) | −0.0031 (8) | 0.0042 (7) | −0.0065 (8) |
O3 | 0.0121 (5) | 0.0141 (6) | 0.0424 (7) | 0.0006 (5) | 0.0006 (5) | 0.0027 (5) |
O4 | 0.0172 (5) | 0.0150 (6) | 0.0145 (6) | 0.0002 (5) | −0.0009 (4) | 0.0004 (5) |
O5 | 0.0114 (5) | 0.0183 (6) | 0.0207 (6) | −0.0007 (4) | 0.0009 (5) | −0.0028 (5) |
O6 | 0.0151 (5) | 0.0217 (7) | 0.0175 (6) | 0.0018 (5) | −0.0029 (4) | 0.0010 (5) |
O7 | 0.0142 (5) | 0.0200 (6) | 0.0198 (6) | −0.0016 (5) | 0.0029 (4) | 0.0009 (5) |
C5 | 0.0160 (7) | 0.0078 (7) | 0.0173 (7) | 0.0001 (6) | 0.0002 (6) | −0.0013 (6) |
C6 | 0.0149 (7) | 0.0217 (8) | 0.0170 (8) | −0.0021 (7) | −0.0017 (6) | 0.0014 (6) |
C7 | 0.0380 (10) | 0.0210 (9) | 0.0215 (9) | 0.0040 (8) | −0.0008 (8) | 0.0061 (7) |
C8 | 0.0419 (11) | 0.0276 (11) | 0.0191 (9) | 0.0059 (9) | 0.0078 (8) | 0.0003 (8) |
Ow1 | 0.0164 (6) | 0.0178 (7) | 0.0333 (7) | 0.0000 (5) | 0.0021 (5) | −0.0035 (5) |
Ow2 | 0.0213 (6) | 0.0194 (7) | 0.0280 (7) | 0.0000 (5) | −0.0028 (5) | −0.0035 (6) |
Geometric parameters (Å, º) top Ca1—O3 | 2.3479 (12) | C8—H1c8 | 0.98 |
Ca1—O2i | 2.3653 (10) | C8—H2c8 | 0.98 |
Ca1—O1ii | 2.3938 (10) | C8—H3c8 | 0.98 |
Ca1—O5 | 2.4085 (12) | O3—H1o3 | 0.840 (13) |
Ca1—O2 | 2.4993 (11) | O3—H2o3 | 0.840 (14) |
Ca1—O1 | 2.5308 (11) | O4—H1o4 | 0.840 (13) |
Ca1—O4ii | 2.5446 (11) | O4—H2o4 | 0.840 (14) |
Ca1—O4 | 2.6019 (11) | O5—H1o5 | 0.840 (13) |
O1—C1 | 1.2597 (17) | O5—H2o5 | 0.840 (13) |
O2—C1 | 1.2637 (17) | Ow1—H1ow1 | 0.840 (5) |
C1—C2 | 1.520 (2) | Ow1—H2ow1 | 0.840 (13) |
C2—H1c2 | 1 | Ow2—H1ow2 | 0.840 (13) |
C2—C3 | 1.525 (2) | Ow2—H2ow2 | 0.840 (7) |
C2—C4 | 1.524 (2) | C2—C6 | 4.435 (2) |
C3—H1c3 | 0.98 | C2—C8 | 4.189 (2) |
C3—H2c3 | 0.98 | C2—C8iii | 4.073 (2) |
C3—H3c3 | 0.98 | C3—C4iv | 4.443 (2) |
C4—H1c4 | 0.98 | C3—C7iii | 3.971 (2) |
C4—H2c4 | 0.98 | C3—C7v | 3.892 (3) |
C4—H3c4 | 0.98 | C3—C8iii | 4.080 (3) |
O6—C5 | 1.2643 (18) | C4—C6vi | 3.965 (2) |
O7—C5 | 1.2634 (18) | C4—C7vi | 3.762 (2) |
C5—C6 | 1.520 (2) | C4—C7vii | 4.108 (3) |
C6—H1c6 | 1 | C4—C8 | 4.016 (3) |
C6—C7 | 1.525 (2) | C4—C8vi | 4.345 (2) |
C6—C8 | 1.522 (2) | C6—C8iii | 3.932 (2) |
C7—H1c7 | 0.98 | C8—C8iii | 3.944 (3) |
C7—H2c7 | 0.98 | C8—C8vi | 3.944 (3) |
C7—H3c7 | 0.98 | | |
| | | |
O1—Ca1—O1ii | 127.55 (4) | H1c2—C2—C4 | 106.53 |
O1—Ca1—O2 | 51.73 (3) | C3—C2—C4 | 110.65 (14) |
O1—Ca1—O2i | 77.29 (3) | C2—C3—H1c3 | 109.47 |
O1—Ca1—O3 | 92.33 (4) | C2—C3—H2c3 | 109.47 |
O1—Ca1—O4 | 64.79 (4) | C2—C3—H3c3 | 109.47 |
O1—Ca1—O4ii | 98.53 (4) | H1c3—C3—H2c3 | 109.47 |
O1—Ca1—O5 | 143.49 (4) | H1c3—C3—H3c3 | 109.47 |
O1ii—Ca1—O2 | 77.40 (3) | H2c3—C3—H3c3 | 109.47 |
O1ii—Ca1—O2i | 140.12 (4) | C2—C4—H1c4 | 109.47 |
O1ii—Ca1—O3 | 72.83 (4) | C2—C4—H2c4 | 109.47 |
O1ii—Ca1—O4 | 146.94 (4) | C2—C4—H3c4 | 109.47 |
O1ii—Ca1—O4ii | 67.61 (4) | H1c4—C4—H2c4 | 109.47 |
O1ii—Ca1—O5 | 86.28 (4) | H1c4—C4—H3c4 | 109.47 |
O2—Ca1—O2i | 126.26 (4) | H2c4—C4—H3c4 | 109.47 |
O2—Ca1—O3 | 89.03 (4) | C5—C6—H1c6 | 108.62 |
O2—Ca1—O4 | 99.34 (4) | C5—C6—C7 | 108.04 (13) |
O2—Ca1—O4ii | 66.87 (4) | C5—C6—C8 | 112.92 (13) |
O2—Ca1—O5 | 147.31 (4) | H1c6—C6—C7 | 110.74 |
O2i—Ca1—O3 | 75.85 (4) | H1c6—C6—C8 | 105.64 |
O2i—Ca1—O4 | 67.86 (4) | C7—C6—C8 | 110.89 (14) |
O2i—Ca1—O4ii | 147.11 (4) | C6—C7—H1c7 | 109.47 |
O2i—Ca1—O5 | 83.88 (4) | C6—C7—H2c7 | 109.47 |
O3—Ca1—O4 | 140.23 (4) | C6—C7—H3c7 | 109.47 |
O3—Ca1—O4ii | 137.03 (4) | H1c7—C7—H2c7 | 109.47 |
O3—Ca1—O5 | 113.12 (4) | H1c7—C7—H3c7 | 109.47 |
O4—Ca1—O4ii | 80.74 (3) | H2c7—C7—H3c7 | 109.47 |
O4—Ca1—O5 | 79.23 (4) | C6—C8—H1c8 | 109.47 |
O4ii—Ca1—O5 | 80.79 (4) | C6—C8—H2c8 | 109.47 |
Ca1—O1—Ca1i | 96.85 (4) | C6—C8—H3c8 | 109.47 |
Ca1—O2—Ca1ii | 98.46 (4) | H1c8—C8—H2c8 | 109.47 |
Ca1—O4—Ca1i | 91.45 (4) | H1c8—C8—H3c8 | 109.47 |
O1—C1—O2 | 120.85 (13) | H2c8—C8—H3c8 | 109.47 |
O1—C1—C2 | 120.64 (12) | H1o3—O3—H2o3 | 107.6 (15) |
O2—C1—C2 | 118.50 (12) | H1o4—O4—H2o4 | 106.8 (14) |
C1—C2—H1c2 | 106.15 | H1o5—O5—H2o5 | 106.3 (14) |
C1—C2—C3 | 111.00 (13) | H1ow1—Ow1—H2ow1 | 105 (2) |
C1—C2—C4 | 113.24 (12) | H1ow2—Ow2—H2ow2 | 104.1 (19) |
H1c2—C2—C3 | 108.99 | | |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x−1/2, y, −z+1/2; (iii) x−1/2, −y+1/2, −z; (iv) x−1, y, z; (v) −x+1/2, y−1/2, z; (vi) x+1/2, −y+1/2, −z; (vii) −x+3/2, y−1/2, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1o3···Ow2viii | 0.840 (13) | 2.063 (15) | 2.8754 (16) | 162.5 (15) |
O3—H2o3···Ow1viii | 0.840 (14) | 1.954 (15) | 2.7829 (17) | 168.8 (15) |
O4—H1o4···O6 | 0.840 (13) | 1.936 (13) | 2.7560 (15) | 165.1 (14) |
O4—H2o4···O7i | 0.840 (14) | 1.925 (13) | 2.7431 (15) | 164.4 (14) |
O5—H1o5···O6ii | 0.840 (13) | 1.966 (13) | 2.7805 (15) | 163.0 (18) |
O5—H2o5···O7i | 0.840 (13) | 1.935 (13) | 2.7597 (15) | 166.9 (18) |
Ow1—H1ow1···Ow2iv | 0.840 (5) | 1.882 (4) | 2.7192 (17) | 174 (2) |
Ow1—H2ow1···O7 | 0.840 (13) | 1.960 (13) | 2.7872 (17) | 168.0 (18) |
Ow2—H1ow2···O6 | 0.840 (13) | 1.969 (13) | 2.8070 (17) | 175.1 (17) |
Ow2—H2ow2···Ow1i | 0.840 (7) | 1.886 (7) | 2.7242 (18) | 175 (2) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x−1/2, y, −z+1/2; (iv) x−1, y, z; (viii) −x+1, y−1/2, −z+1/2. |
catena-Poly[[µ-aqua-diaqua(µ
3-2-methylpropanoato-\
κ4O:
O,
O':
O')strontium] 2-methylpropanoate dihydrate] (II)
top Crystal data top [Sr(C4H7O2)(H2O)3]·C4H7O2·2H2O | There have been used diffractions with I/σ(I)>20 for the unit cell determination. |
Mr = 351.9 | Dx = 1.478 Mg m−3 |
Orthorhombic, Cmce | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2bc 2 | Cell parameters from 9972 reflections |
a = 6.8801 (3) Å | θ = 2.2–27.5° |
b = 19.7520 (11) Å | µ = 3.44 mm−1 |
c = 23.2734 (13) Å | T = 120 K |
V = 3162.8 (3) Å3 | Prism, colourless |
Z = 8 | 0.24 × 0.12 × 0.08 mm |
F(000) = 1456 | |
Data collection top Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS diffractometer | 1965 independent reflections |
Radiation source: X-ray tube | 1762 reflections with I > 3σ(I) |
Quazar Mo multilayer optic monochromator | Rint = 0.032 |
φ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | h = −8→8 |
Tmin = 0.491, Tmax = 0.770 | k = −25→25 |
21213 measured reflections | l = −30→27 |
Refinement top Refinement on F2 | 62 constraints |
R[F > 3σ(F)] = 0.021 | Primary atom site location: dual-space method |
wR(F) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.79 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
1965 reflections | (Δ/σ)max = 0.050 |
126 parameters | Δρmax = 0.37 e Å−3 |
9 restraints | Δρmin = −0.30 e Å−3 |
Special details top Refinement. The positions of the methyl hydrogen atoms s H1C6, H2C6 and H3C6 were restrained by the angle restraints 56.250?(1) ° for the angles H1c6—C6—H2c6iii, H2c6—C6—H2c6iii, H2c6—C6—H2c6iii, H3c6—C6—H3c6iii ((iii) x + 1, y, z). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Sr1 | 0.5 | 0.145526 (9) | 0.287511 (8) | 0.01228 (6) | |
O1 | 0.65991 (15) | 0.11785 (5) | 0.18632 (5) | 0.0166 (3) | |
C1 | 0.5 | 0.11399 (10) | 0.15989 (9) | 0.0130 (6) | |
C2 | 0.5 | 0.10609 (11) | 0.09535 (10) | 0.0163 (6) | |
H1c2 | 0.44623 | 0.149367 | 0.079711 | 0.0196* | 0.5 |
C3a | 0.3722 (5) | 0.04613 (19) | 0.07858 (15) | 0.0299 (11) | 0.5 |
H1c3a | 0.429281 | 0.004234 | 0.093548 | 0.0448* | 0.5 |
H2c3a | 0.241896 | 0.052214 | 0.094806 | 0.0448* | 0.5 |
H3c3a | 0.363233 | 0.043419 | 0.036618 | 0.0448* | 0.5 |
C3b | 0.7010 (5) | 0.09931 (18) | 0.06811 (14) | 0.0233 (10) | 0.5 |
H1c3b | 0.778228 | 0.139682 | 0.076891 | 0.035* | 0.5 |
H2c3b | 0.766218 | 0.059155 | 0.08359 | 0.035* | 0.5 |
H3c3b | 0.687385 | 0.094733 | 0.026376 | 0.035* | 0.5 |
O2 | 0.75 | 0.23969 (8) | 0.25 | 0.0159 (4) | |
H1o2 | 0.717 (3) | 0.2627 (9) | 0.2223 (6) | 0.0238* | |
O3 | 0.5 | 0.02368 (8) | 0.31496 (8) | 0.0218 (5) | |
H1o3 | 0.599 (2) | −0.0003 (10) | 0.3152 (9) | 0.0328* | |
O4 | 0.5 | 0.22986 (9) | 0.37100 (8) | 0.0276 (6) | |
H1o4 | 0.597 (2) | 0.2558 (10) | 0.3707 (9) | 0.0414* | |
O5 | 0.66149 (19) | 0.30397 (6) | 0.14868 (5) | 0.0267 (4) | |
C4 | 0.5 | 0.31058 (11) | 0.12363 (10) | 0.0204 (7) | |
C5 | 0.5 | 0.33102 (9) | 0.06050 (8) | 0.0185 (6) | |
H1c5 | 0.378186 | 0.314569 | 0.041672 | 0.0222* | 0.5 |
C6 | 0.5 | 0.40764 (9) | 0.05703 (8) | 0.0570 (13) | |
H1c6 | 0.365706 | 0.424153 | 0.056282 | 0.0855* | 0.5 |
H2c6 | 0.56715 | 0.426313 | 0.090613 | 0.0855* | 0.5 |
H3c6 | 0.567143 | 0.421994 | 0.021948 | 0.0855* | 0.5 |
C7 | 0.6601 (5) | 0.2941 (2) | 0.02353 (15) | 0.0302 (12) | 0.5 |
H1c7 | 0.788041 | 0.313174 | 0.032479 | 0.0452* | 0.5 |
H2c7 | 0.659677 | 0.245607 | 0.032529 | 0.0452* | 0.5 |
H3c7 | 0.632122 | 0.300485 | −0.017398 | 0.0452* | 0.5 |
Ow1 | 0.1996 (2) | 0.42598 (7) | 0.19314 (6) | 0.0323 (4) | |
H1ow1 | 0.233 (3) | 0.3890 (8) | 0.1810 (10) | 0.0484* | |
H2ow1 | 0.228 (8) | 0.424 (2) | 0.2273 (9) | 0.0484* | 0.5 |
H3ow1 | 0.083 (2) | 0.424 (2) | 0.1927 (19) | 0.0484* | 0.5 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sr1 | 0.01072 (11) | 0.01255 (11) | 0.01357 (12) | 0 | 0 | −0.00006 (8) |
O1 | 0.0105 (5) | 0.0232 (6) | 0.0160 (6) | 0.0002 (4) | −0.0021 (4) | −0.0048 (5) |
C1 | 0.0139 (10) | 0.0088 (9) | 0.0163 (11) | 0 | 0 | −0.0014 (8) |
C2 | 0.0160 (11) | 0.0193 (11) | 0.0137 (11) | 0 | 0 | 0.0003 (9) |
C3a | 0.0282 (19) | 0.044 (2) | 0.0176 (17) | −0.0197 (17) | 0.0033 (15) | −0.0109 (16) |
C3b | 0.0209 (16) | 0.0328 (19) | 0.0164 (16) | −0.0053 (14) | 0.0062 (13) | −0.0033 (14) |
O2 | 0.0209 (8) | 0.0128 (7) | 0.0140 (8) | 0 | −0.0028 (7) | 0 |
O3 | 0.0114 (8) | 0.0127 (8) | 0.0415 (11) | 0 | 0 | 0.0013 (7) |
O4 | 0.0419 (12) | 0.0215 (9) | 0.0194 (9) | 0 | 0 | −0.0014 (7) |
O5 | 0.0430 (8) | 0.0199 (6) | 0.0172 (6) | 0.0072 (6) | −0.0088 (5) | 0.0004 (5) |
C4 | 0.0384 (14) | 0.0081 (9) | 0.0145 (11) | 0 | 0 | −0.0002 (8) |
C5 | 0.0226 (12) | 0.0198 (11) | 0.0132 (11) | 0 | 0 | 0.0012 (9) |
C6 | 0.128 (3) | 0.0216 (14) | 0.0217 (15) | 0 | 0 | 0.0094 (12) |
C7 | 0.041 (2) | 0.034 (2) | 0.0162 (17) | 0.0110 (17) | 0.0050 (16) | −0.0005 (15) |
Ow1 | 0.0426 (8) | 0.0220 (7) | 0.0322 (7) | −0.0113 (6) | 0.0130 (7) | −0.0072 (6 |
Geometric parameters (Å, º) top Sr1—O1i | 2.4788 (10) | C5—C7iii | 1.577 (4) |
Sr1—O1ii | 2.4788 (10) | C6—H1c6 | 0.98 |
Sr1—O3 | 2.4899 (16) | C6—H1c6iii | 0.98 |
Sr1—O4 | 2.5593 (18) | C6—H2c6 | 0.98 |
Sr1—O1 | 2.6561 (11) | C6—H2c6iii | 0.98 |
Sr1—O1iii | 2.6561 (11) | C6—H3c6 | 0.98 |
Sr1—O2 | 2.6796 (11) | C6—H3c6iii | 0.98 |
Sr1—O2ii | 2.6796 (11) | C7—H1c7 | 0.98 |
O1—C1 | 1.2629 (15) | C7—H2c7 | 0.98 |
C1—C2 | 1.510 (3) | C7—H3c7 | 0.98 |
C2—H1c2 | 1 | Ow1—H1ow1 | 0.818 (18) |
C2—H1c2iii | 1 | Ow1—H2ow1 | 0.82 (2) |
C2—C3a | 1.526 (4) | Ow1—H3ow1 | 0.803 (17) |
C2—C3aiii | 1.526 (4) | C2—C7 | 4.217 (4) |
C2—C3b | 1.527 (3) | C2—C7iv | 4.124 (4) |
C2—C3biii | 1.527 (3) | C2—C7v | 4.124 (4) |
C3a—H1c3a | 0.98 | C2—C7iii | 4.217 (4) |
C3a—H2c3a | 0.98 | C3a—C3avi | 4.087 (5) |
C3a—H3c3a | 0.98 | C3a—C3avii | 4.449 (5) |
C3b—H1c3b | 0.98 | C3a—C3bvii | 4.491 (5) |
C3b—H2c3b | 0.98 | C3a—C6viii | 3.781 (4) |
C3b—H3c3b | 0.98 | C3a—C6iv | 4.166 (4) |
O2—H1o2 | 0.820 (16) | C3a—C7iv | 4.212 (5) |
O2—H1o2i | 0.820 (16) | C3b—C3bix | 4.115 (5) |
O3—H1o3 | 0.827 (17) | C3b—C5x | 3.884 (4) |
O3—H1o3iii | 0.827 (17) | C3b—C6xi | 4.317 (4) |
O4—H1o4 | 0.844 (18) | C3b—C6x | 3.569 (4) |
O4—H1o4iii | 0.844 (18) | C3b—C7 | 3.993 (5) |
O5—C4 | 1.2615 (16) | C3b—C7x | 4.356 (5) |
C4—C5 | 1.524 (3) | C3b—C7v | 3.146 (5) |
C5—H1c5 | 1 | C5—C7iv | 3.923 (4) |
C5—H1c5iii | 1 | C5—C7v | 3.923 (4) |
C5—C6 | 1.516 (3) | C7—C7iv | 4.007 (5) |
C5—C7 | 1.577 (4) | C7—C7x | 4.007 (5) |
| | | |
O1—Sr1—O1i | 77.38 (3) | C2—C3a—H3c3a | 109.47 |
O1—Sr1—O1ii | 124.29 (3) | H1c3a—C3a—H2c3a | 109.47 |
O1—Sr1—O1iii | 48.94 (3) | H1c3a—C3a—H3c3a | 109.47 |
O1—Sr1—O2 | 65.67 (3) | H1c3aiii—C3a—H3c3a | 103.72 |
O1—Sr1—O2ii | 96.88 (2) | H2c3a—C3a—H3c3a | 109.47 |
O1—Sr1—O3 | 91.64 (5) | C2—C3b—H1c3b | 109.47 |
O1—Sr1—O4 | 143.81 (4) | C2—C3b—H2c3b | 109.47 |
O1i—Sr1—O1ii | 141.45 (4) | C2—C3b—H3c3b | 109.47 |
O1i—Sr1—O1iii | 124.29 (3) | H1c3b—C3b—H2c3b | 109.47 |
O1i—Sr1—O2 | 68.11 (3) | H1c3b—C3b—H3c3b | 109.47 |
O1i—Sr1—O2ii | 147.04 (3) | H2c3b—C3b—H3c3b | 109.47 |
O1i—Sr1—O3 | 73.97 (3) | H1o2—O2—H1o2i | 112.6 (16) |
O1i—Sr1—O4 | 87.54 (3) | H1o3—O3—H1o3iii | 110.2 (17) |
O1ii—Sr1—O1iii | 77.38 (3) | H1o4—O4—H1o4iii | 105.2 (18) |
O1ii—Sr1—O2 | 147.04 (3) | O5—C4—O5iii | 123.46 (19) |
O1ii—Sr1—O2ii | 68.11 (3) | O5—C4—C5 | 118.23 (10) |
O1ii—Sr1—O3 | 73.97 (3) | O5iii—C4—C5 | 118.23 (10) |
O1ii—Sr1—O4 | 87.54 (3) | C4—C5—H1c5 | 109.66 |
O1iii—Sr1—O2 | 96.88 (2) | C4—C5—H1c5iii | 109.66 |
O1iii—Sr1—O2ii | 65.67 (3) | C4—C5—C6 | 108.42 (15) |
O1iii—Sr1—O3 | 91.64 (5) | C4—C5—C7 | 113.80 (17) |
O1iii—Sr1—O4 | 143.81 (4) | C4—C5—C7iii | 113.80 (17) |
O2—Sr1—O2ii | 79.87 (3) | H1c5—C5—H1c5iii | 113.88 |
O2—Sr1—O3 | 138.98 (2) | H1c5—C5—C6 | 107.52 |
O2—Sr1—O4 | 78.21 (3) | C5—C6—H1c6 | 109.47 |
O2ii—Sr1—O3 | 138.98 (2) | C5—C6—H1c6iii | 109.47 |
O2ii—Sr1—O4 | 78.21 (3) | C5—C6—H2c6 | 109.47 |
O3—Sr1—O4 | 115.74 (6) | C5—C6—H2c6iii | 109.47 |
Sr1—O1—Sr1i | 97.34 (4) | C5—C6—H3c6 | 109.47 |
Sr1—O2—Sr1i | 92.08 (5) | C5—C6—H3c6iii | 109.47 |
O1—C1—O1iii | 121.20 (18) | H1c6—C6—H2c6 | 109.47 |
O1—C1—C2 | 119.39 (10) | H1c6—C6—H3c6 | 109.47 |
O1iii—C1—C2 | 119.39 (10) | H1c6iii—C6—H2c6iii | 109.47 |
C1—C2—H1c2 | 105.88 | H1c6iii—C6—H3c6iii | 109.47 |
C1—C2—H1c2iii | 105.88 | H2c6—C6—H3c6 | 109.47 |
C1—C2—C3a | 109.54 (19) | H2c6iii—C6—H3c6iii | 109.47 |
C1—C2—C3aiii | 109.54 (19) | H1c7—C7—H2c7 | 109.47 |
C1—C2—C3b | 114.96 (14) | H1c7—C7—H3c7 | 109.47 |
C1—C2—C3biii | 114.96 (14) | H2c7—C7—H3c7 | 109.47 |
H1c2—C2—C3a | 110.93 | H1c7—H3c7—H2c7 | 60 |
H1c2—C2—C3b | 105.01 | H1ow1—Ow1—H2ow1 | 103 (4) |
H1c2iii—C2—C3aiii | 110.93 | H1ow1—Ow1—H3ow1 | 104 (4) |
C2—C3a—H1c3a | 109.47 | H2ow1—Ow1—H3ow1 | 104 (5) |
C2—C3a—H2c3a | 109.47 | | |
Symmetry codes: (i) −x+3/2, y, −z+1/2; (ii) x−1/2, y, −z+1/2; (iii) −x+1, y, z; (iv) x−1/2, −y+1/2, −z; (v) −x+3/2, −y+1/2, −z; (vi) x, −y, −z; (vii) −x+1, −y, −z; (viii) x−1/2, y−1/2, z; (ix) −x+2, y, z; (x) x+1/2, −y+1/2, −z; (xi) x+1/2, y−1/2, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1o2···O5 | 0.820 (16) | 1.936 (15) | 2.7465 (14) | 169.3 (17) |
O3—H1o3···Ow1xii | 0.827 (17) | 2.022 (17) | 2.8339 (18) | 167.1 (18) |
O4—H1o4···O5i | 0.844 (18) | 1.964 (17) | 2.7887 (16) | 165.3 (19) |
Ow1—H1ow1···O5iii | 0.818 (18) | 1.976 (19) | 2.7913 (18) | 174 (2) |
Ow1—H2ow1···Ow1xiii | 0.82 (2) | 1.92 (3) | 2.736 (2) | 176 (5) |
Ow1—H3ow1···Ow1xiv | 0.803 (17) | 1.946 (17) | 2.747 (2) | 176 (5) |
Symmetry codes: (i) −x+3/2, y, −z+1/2; (iii) −x+1, y, z; (xii) −x+1, y−1/2, −z+1/2; (xiii) −x+1/2, y, −z+1/2; (xiv) −x, y, z. |
catena-Poly[[µ-aqua-diaqua(µ
3-2-methylpropanoato-\
κ4O:
O,
O':
O')(calcium/strontium)] 2-methylpropanoate dihydrate] (III)
top Crystal data top [Ca0.794Sr0.206(C4H7O2)(H2O)3]·C4H7O2·2H2O | There have been used diffractions with I/σ(I)>20 for the unit cell determination. |
Mr = 314.2 | Dx = 1.358 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: –P 2ac 2ab | Cell parameters from 9952 reflections |
a = 6.7153 (3) Å | θ = 2.3–27.5° |
b = 19.6061 (10) Å | µ = 1.08 mm−1 |
c = 23.3498 (11) Å | T = 120 K |
V = 3074.3 (3) Å3 | Prism, colourless |
Z = 8 | 0.59 × 0.18 × 0.08 mm |
F(000) = 1342 | |
Data collection top Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS diffractometer | 3533 independent reflections |
Radiation source: X-ray tube | 2787 reflections with I > 3σ(I) |
Quazar Mo multilayer optic monochromator | Rint = 0.030 |
φ and ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | h = −8→8 |
Tmin = 0.573, Tmax = 0.917 | k = −25→24 |
25462 measured reflections | l = −30→30 |
Refinement top Refinement on F2 | Primary atom site location: charge flipping |
R[F > 3σ(F)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F) = 0.062 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
S = 1.54 | (Δ/σ)max = 0.041 |
3533 reflections | Δρmax = 0.27 e Å−3 |
195 parameters | Δρmin = −0.25 e Å−3 |
10 restraints | Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) |
75 constraints | Extinction coefficient: 3100 (900) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Ca1 | 0.51172 (3) | 0.147275 (10) | 0.285280 (8) | 0.01318 (7) | 0.7936 (16) |
Sr1 | 0.51172 (3) | 0.147275 (10) | 0.285280 (8) | 0.01318 (7) | 0.2064 (16) |
O1 | 0.67331 (12) | 0.12224 (5) | 0.18768 (4) | 0.0183 (3) | |
O2 | 0.34659 (12) | 0.11963 (5) | 0.18993 (4) | 0.0193 (3) | |
C1 | 0.50850 (17) | 0.11708 (6) | 0.16238 (5) | 0.0157 (4) | |
C2 | 0.49970 (18) | 0.10867 (7) | 0.09788 (6) | 0.0197 (4) | |
H1c2 | 0.446005 | 0.152571 | 0.082499 | 0.0236* | |
C3 | 0.3591 (2) | 0.05083 (8) | 0.08122 (6) | 0.0329 (5) | |
H1c3 | 0.350464 | 0.047978 | 0.039391 | 0.0494* | |
H2c3 | 0.410119 | 0.00765 | 0.096456 | 0.0494* | |
H3c3 | 0.22658 | 0.059708 | 0.097106 | 0.0494* | |
C4 | 0.7032 (2) | 0.09886 (8) | 0.07048 (6) | 0.0271 (5) | |
H1c4 | 0.688453 | 0.096553 | 0.02877 | 0.0407* | |
H2c4 | 0.789504 | 0.137344 | 0.080535 | 0.0407* | |
H3c4 | 0.762668 | 0.056376 | 0.084481 | 0.0407* | |
O3 | 0.49864 (13) | 0.02977 (5) | 0.30914 (5) | 0.0278 (3) | |
H1o3 | 0.3934 (13) | 0.0071 (7) | 0.3132 (7) | 0.0417* | |
H2o3 | 0.5919 (16) | 0.0012 (6) | 0.3097 (7) | 0.0417* | |
O4 | 0.76561 (13) | 0.23946 (5) | 0.24874 (4) | 0.0186 (3) | |
H1o4 | 0.734 (2) | 0.2655 (6) | 0.2217 (4) | 0.0279* | |
H2o4 | 0.807 (2) | 0.2641 (6) | 0.2757 (4) | 0.0279* | |
O5 | 0.52603 (13) | 0.22321 (5) | 0.36693 (4) | 0.0223 (3) | |
H1o5 | 0.4290 (15) | 0.2502 (6) | 0.3690 (7) | 0.0335* | |
H2o5 | 0.6251 (14) | 0.2493 (6) | 0.3680 (6) | 0.0335* | |
O6 | 0.69194 (12) | 0.30554 (5) | 0.14705 (4) | 0.0194 (3) | |
O7 | 0.36161 (13) | 0.30221 (5) | 0.15020 (4) | 0.0197 (3) | |
C5 | 0.52316 (17) | 0.31043 (6) | 0.12361 (5) | 0.0151 (3) | |
C6 | 0.51349 (18) | 0.33128 (7) | 0.06086 (5) | 0.0198 (4) | |
H1c6 | 0.381257 | 0.317376 | 0.044996 | 0.0237* | |
C7 | 0.5386 (2) | 0.40842 (7) | 0.05757 (6) | 0.0296 (5) | |
H1c7 | 0.434506 | 0.430552 | 0.080392 | 0.0444* | |
H2c7 | 0.669669 | 0.421115 | 0.072612 | 0.0444* | |
H3c7 | 0.527634 | 0.423207 | 0.017606 | 0.0444* | |
C8 | 0.6670 (2) | 0.29505 (8) | 0.02419 (6) | 0.0333 (5) | |
H1c8 | 0.649839 | 0.308533 | −0.015923 | 0.05* | |
H2c8 | 0.800974 | 0.307583 | 0.037063 | 0.05* | |
H3c8 | 0.649318 | 0.245608 | 0.027732 | 0.05* | |
Ow1 | 0.22415 (14) | 0.42437 (5) | 0.19632 (5) | 0.0245 (3) | |
H1ow1 | 0.1006 (4) | 0.4288 (9) | 0.1920 (7) | 0.0368* | |
H2ow1 | 0.253 (2) | 0.3873 (4) | 0.1804 (6) | 0.0368* | |
Ow2 | 0.81968 (14) | 0.43158 (5) | 0.19043 (4) | 0.0247 (3) | |
H1ow2 | 0.787 (2) | 0.3938 (4) | 0.1763 (6) | 0.0371* | |
H2ow2 | 0.793 (2) | 0.4272 (9) | 0.22542 (17) | 0.0371* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ca1 | 0.01013 (11) | 0.01378 (12) | 0.01565 (12) | 0.00007 (8) | −0.00019 (8) | −0.00028 (8) |
Sr1 | 0.01013 (11) | 0.01378 (12) | 0.01565 (12) | 0.00007 (8) | −0.00019 (8) | −0.00028 (8) |
O1 | 0.0151 (4) | 0.0226 (5) | 0.0172 (5) | −0.0002 (4) | −0.0021 (4) | −0.0025 (4) |
O2 | 0.0155 (5) | 0.0251 (5) | 0.0174 (5) | −0.0001 (4) | 0.0011 (4) | −0.0033 (4) |
C1 | 0.0187 (6) | 0.0096 (6) | 0.0190 (6) | 0.0001 (5) | −0.0004 (5) | −0.0004 (5) |
C2 | 0.0224 (7) | 0.0211 (7) | 0.0155 (6) | −0.0011 (6) | −0.0007 (5) | 0.0007 (5) |
C3 | 0.0371 (9) | 0.0443 (10) | 0.0173 (7) | −0.0170 (8) | −0.0002 (6) | −0.0081 (7) |
C4 | 0.0282 (8) | 0.0356 (9) | 0.0174 (7) | −0.0058 (7) | 0.0041 (6) | −0.0059 (7) |
O3 | 0.0155 (5) | 0.0175 (5) | 0.0504 (7) | 0.0009 (4) | −0.0001 (5) | −0.0016 (5) |
O4 | 0.0240 (5) | 0.0167 (5) | 0.0151 (5) | −0.0007 (4) | −0.0006 (4) | 0.0003 (4) |
O5 | 0.0154 (5) | 0.0276 (6) | 0.0240 (5) | −0.0002 (4) | 0.0007 (4) | 0.0028 (4) |
O6 | 0.0168 (4) | 0.0239 (5) | 0.0176 (5) | 0.0003 (4) | −0.0022 (4) | 0.0013 (4) |
O7 | 0.0174 (5) | 0.0223 (5) | 0.0194 (5) | −0.0011 (4) | 0.0029 (4) | 0.0017 (4) |
C5 | 0.0179 (6) | 0.0107 (6) | 0.0167 (6) | −0.0006 (5) | 0.0000 (5) | −0.0013 (5) |
C6 | 0.0187 (6) | 0.0247 (7) | 0.0159 (6) | −0.0023 (6) | −0.0016 (5) | 0.0012 (5) |
C7 | 0.0421 (9) | 0.0257 (8) | 0.0210 (7) | 0.0039 (7) | −0.0007 (6) | 0.0075 (6) |
C8 | 0.0479 (9) | 0.0339 (9) | 0.0181 (7) | 0.0067 (8) | 0.0086 (7) | 0.0007 (7) |
Ow1 | 0.0189 (5) | 0.0206 (6) | 0.0341 (6) | −0.0002 (4) | 0.0022 (4) | −0.0031 (5) |
Ow2 | 0.0237 (5) | 0.0235 (6) | 0.0269 (6) | 0.0002 (4) | −0.0025 (4) | −0.0035 (5) |
Geometric parameters (Å, º) top Ca1—Sr1 | 0 | C6—C7 | 1.524 (2) |
Ca1—O3 | 2.3719 (10) | C6—C8 | 1.517 (2) |
Ca1—O2i | 2.3845 (9) | C7—H1c7 | 0.98 |
Ca1—O1ii | 2.4091 (8) | C7—H2c7 | 0.98 |
Ca1—O5 | 2.4209 (10) | C7—H3c7 | 0.98 |
Ca1—O2 | 2.5457 (9) | C8—H1c8 | 0.98 |
Ca1—O1 | 2.5714 (9) | C8—H2c8 | 0.98 |
Ca1—O4ii | 2.5747 (9) | C8—H3c8 | 0.98 |
Ca1—O4 | 2.6271 (9) | O3—H1o3 | 0.840 (11) |
Sr1—O1 | 2.5714 (9) | O3—H2o3 | 0.840 (12) |
Sr1—O1ii | 2.4091 (8) | O4—H1o4 | 0.840 (11) |
Sr1—O2 | 2.5457 (9) | O4—H2o4 | 0.840 (11) |
Sr1—O2i | 2.3845 (9) | O5—H1o5 | 0.840 (11) |
Sr1—O3 | 2.3719 (10) | O5—H2o5 | 0.840 (11) |
Sr1—O4 | 2.6271 (9) | Ow1—H1ow1 | 0.840 (4) |
Sr1—O4ii | 2.5747 (9) | Ow1—H2ow1 | 0.840 (10) |
Sr1—O5 | 2.4209 (10) | Ow2—H1ow2 | 0.840 (10) |
O1—C1 | 1.2587 (14) | Ow2—H2ow2 | 0.840 (5) |
O2—C1 | 1.2644 (15) | C2—C6 | 4.450 (2) |
C1—C2 | 1.5160 (18) | C2—C8 | 4.192 (2) |
C2—H1c2 | 1 | C2—C8iii | 4.084 (2) |
C2—C3 | 1.526 (2) | C3—C7iii | 3.972 (2) |
C2—C4 | 1.5210 (18) | C3—C7iv | 3.903 (2) |
C3—H1c3 | 0.98 | C3—C8iii | 4.105 (2) |
C3—H2c3 | 0.98 | C4—C6v | 3.9526 (19) |
C3—H3c3 | 0.98 | C4—C7v | 3.746 (2) |
C4—H1c4 | 0.98 | C4—C7vi | 4.128 (2) |
C4—H2c4 | 0.98 | C4—C8 | 4.003 (2) |
C4—H3c4 | 0.98 | C4—C8v | 4.349 (2) |
O6—C5 | 1.2624 (14) | C6—C8iii | 3.936 (2) |
O7—C5 | 1.2603 (15) | C8—C8iii | 3.959 (2) |
C5—C6 | 1.5225 (18) | C8—C8v | 3.959 (2) |
C6—H1c6 | 1 | | |
| | | |
O1—Ca1—O1ii | 126.26 (3) | Ca1—O2—Ca1ii | 98.63 (3) |
O1—Ca1—O2 | 50.81 (3) | Ca1—O2—Sr1ii | 98.63 (3) |
O1—Ca1—O2i | 76.93 (3) | Ca1ii—O2—Sr1 | 98.63 (3) |
O1—Ca1—O3 | 92.20 (3) | Ca1ii—O2—O1 | 160.57 (5) |
O1—Ca1—O4 | 64.51 (3) | Ca1ii—O2—O1ii | 54.25 (2) |
O1—Ca1—O4ii | 97.55 (3) | Ca1ii—O2—O3ii | 51.84 (3) |
O1—Ca1—O5 | 143.00 (3) | Ca1ii—O2—O4ii | 60.18 (3) |
O1ii—Ca1—O2 | 76.99 (3) | Ca1ii—O2—O5ii | 48.02 (2) |
O1ii—Ca1—O2i | 141.23 (3) | Sr1—O2—Sr1ii | 98.63 (3) |
O1ii—Ca1—O3 | 72.88 (3) | Ca1—O4—Ca1i | 91.94 (3) |
O1ii—Ca1—O4 | 146.87 (3) | Ca1—O4—Sr1i | 91.94 (3) |
O1ii—Ca1—O4ii | 67.56 (3) | Ca1i—O4—Sr1 | 91.94 (3) |
O1ii—Ca1—O5 | 87.50 (3) | Sr1—O4—Sr1i | 91.94 (3) |
O2—Ca1—O2i | 125.08 (3) | O1—C1—O2 | 120.94 (11) |
O2—Ca1—O3 | 89.00 (3) | O1—C1—C2 | 120.62 (11) |
O2—Ca1—O4 | 98.35 (3) | O2—C1—C2 | 118.44 (10) |
O2—Ca1—O4ii | 66.42 (3) | C1—C2—H1c2 | 106.1 |
O2—Ca1—O5 | 146.83 (3) | C1—C2—C3 | 110.99 (11) |
O2i—Ca1—O3 | 75.94 (3) | C1—C2—C4 | 113.37 (10) |
O2i—Ca1—O4 | 67.86 (3) | H1c2—C2—C3 | 108.97 |
O2i—Ca1—O4ii | 147.12 (3) | H1c2—C2—C4 | 106.36 |
O2i—Ca1—O5 | 84.90 (3) | C3—C2—C4 | 110.76 (11) |
O3—Ca1—O4 | 140.23 (3) | C2—C3—H1c3 | 109.47 |
O3—Ca1—O4ii | 136.93 (3) | C2—C3—H2c3 | 109.47 |
O3—Ca1—O5 | 114.44 (4) | C2—C3—H3c3 | 109.47 |
O4—Ca1—O4ii | 80.41 (3) | H1c3—C3—H2c3 | 109.47 |
O4—Ca1—O5 | 78.87 (3) | H1c3—C3—H3c3 | 109.47 |
O4ii—Ca1—O5 | 80.60 (3) | H2c3—C3—H3c3 | 109.47 |
O1—Sr1—O1ii | 126.26 (3) | C2—C4—H1c4 | 109.47 |
O1—Sr1—O2 | 50.81 (3) | C2—C4—H2c4 | 109.47 |
O1—Sr1—O2i | 76.93 (3) | C2—C4—H3c4 | 109.47 |
O1—Sr1—O3 | 92.20 (3) | H1c4—C4—H2c4 | 109.47 |
O1—Sr1—O4 | 64.51 (3) | H1c4—C4—H3c4 | 109.47 |
O1—Sr1—O4ii | 97.55 (3) | H2c4—C4—H3c4 | 109.47 |
O1—Sr1—O5 | 143.00 (3) | O6—C5—O7 | 123.33 (11) |
O1ii—Sr1—O2 | 76.99 (3) | O6—C5—C6 | 118.43 (10) |
O1ii—Sr1—O2i | 141.23 (3) | O7—C5—C6 | 118.14 (10) |
O1ii—Sr1—O3 | 72.88 (3) | C5—C6—H1c6 | 108.73 |
O1ii—Sr1—O4 | 146.87 (3) | C5—C6—C7 | 108.08 (11) |
O1ii—Sr1—O4ii | 67.56 (3) | C5—C6—C8 | 112.86 (11) |
O1ii—Sr1—O5 | 87.50 (3) | H1c6—C6—C7 | 110.49 |
O2—Sr1—O2i | 125.08 (3) | H1c6—C6—C8 | 105.47 |
O2—Sr1—O3 | 89.00 (3) | C7—C6—C8 | 111.19 (11) |
O2—Sr1—O4 | 98.35 (3) | C6—C7—H1c7 | 109.47 |
O2—Sr1—O4ii | 66.42 (3) | C6—C7—H2c7 | 109.47 |
O2—Sr1—O5 | 146.83 (3) | C6—C7—H3c7 | 109.47 |
O2i—Sr1—O3 | 75.94 (3) | H1c7—C7—H2c7 | 109.47 |
O2i—Sr1—O4 | 67.86 (3) | H1c7—C7—H3c7 | 109.47 |
O2i—Sr1—O4ii | 147.12 (3) | H2c7—C7—H3c7 | 109.47 |
O2i—Sr1—O5 | 84.90 (3) | C6—C8—H1c8 | 109.47 |
O3—Sr1—O4 | 140.23 (3) | C6—C8—H2c8 | 109.47 |
O3—Sr1—O4ii | 136.93 (3) | C6—C8—H3c8 | 109.47 |
O3—Sr1—O5 | 114.44 (4) | H1c8—C8—H2c8 | 109.47 |
O4—Sr1—O4ii | 80.41 (3) | H1c8—C8—H3c8 | 109.47 |
O4—Sr1—O5 | 78.87 (3) | H2c8—C8—H3c8 | 109.47 |
O4ii—Sr1—O5 | 80.60 (3) | H1o3—O3—H2o3 | 105.9 (12) |
Ca1—O1—Ca1i | 97.29 (3) | H1o4—O4—H2o4 | 107.3 (11) |
Ca1—O1—Sr1i | 97.29 (3) | H1o5—O5—H2o5 | 103.2 (11) |
Ca1i—O1—Sr1 | 97.29 (3) | H1ow1—Ow1—H2ow1 | 105.5 (15) |
Ca1i—O1—O2 | 160.27 (5) | H1ow2—Ow2—H2ow2 | 103.8 (15) |
Sr1—O1—Sr1i | 97.29 (3) | | |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x−1/2, y, −z+1/2; (iii) x−1/2, −y+1/2, −z; (iv) −x+1/2, y−1/2, z; (v) x+1/2, −y+1/2, −z; (vi) −x+3/2, y−1/2, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1o3···Ow2vii | 0.840 (11) | 2.061 (12) | 2.8767 (14) | 163.6 (13) |
O3—H2o3···Ow1vii | 0.840 (12) | 1.953 (12) | 2.7842 (14) | 169.8 (13) |
O4—H1o4···O6 | 0.840 (11) | 1.932 (10) | 2.7498 (13) | 164.2 (11) |
O4—H2o4···O7i | 0.840 (11) | 1.920 (10) | 2.7382 (13) | 164.2 (11) |
O5—H1o5···O6ii | 0.840 (11) | 1.964 (11) | 2.7831 (13) | 164.9 (15) |
O5—H2o5···O7i | 0.840 (11) | 1.944 (11) | 2.7636 (13) | 165.0 (14) |
Ow1—H1ow1···Ow2viii | 0.840 (4) | 1.888 (3) | 2.7233 (14) | 172.8 (16) |
Ow1—H2ow1···O7 | 0.840 (10) | 1.951 (11) | 2.7836 (14) | 170.7 (15) |
Ow2—H1ow2···O6 | 0.840 (10) | 1.967 (10) | 2.8050 (14) | 175.3 (15) |
Ow2—H2ow2···Ow1i | 0.840 (5) | 1.887 (5) | 2.7248 (15) | 175.2 (17) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x−1/2, y, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) x−1, y, z. |
Acknowledgements
Dr Ivana Císařová from the Faculty of Science is thanked for generous measurement of the samples.
Funding information
The authors express their gratitude for the support provided by Project NPU I–LO1603 of the Ministry of Education of the Czech Republic to the Institute of Physics of the Academy of Sciences of the Czech Republic.
References
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. CrossRef IUCr Journals Web of Science Google Scholar
Brandenburg, K. (2015). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2017). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coker, E. N., Boyle, T. J., Rodríguez, M. A. & Alam, T. M. (2004). Polyhedron, 23, 1739–1747. CSD CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Itoh, K. (1992). Ferroelectrics, 135, 291–302. CrossRef CAS Google Scholar
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1–11. CrossRef CAS IUCr Journals Google Scholar
Malaestean, I. L., Schmitz, S., Ellern, A. & Kögerler, P. (2013). Acta Cryst. C69, 1144–1146. CSD CrossRef IUCr Journals Google Scholar
Matulková, I., Andreoni, R., Císařová, I., Němec, I. & Fábry, J. (2017). Z. Kristallogr. 232, 471–484. Google Scholar
Mishima, N. (1984). J. Phys. Soc. Jpn, 53, 1062–1070. CSD CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Scheurell, K., König, R., Troyanov, S. I. & Kemnitz, E. (2012). Z. Anorg. Allg. Chem. 638, 1265–1273. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977–2985. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Troyanov, S. I., Kiseleva, E. A., Rykov, A. N. & Korenev, Yu. M. (2002). Zh. Neorg. Khim. 47, 1667–1671. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access