research communications
Synthesis and
of triethylammonium hexabromidouranate(IV) dichloromethane monosolvateaAnorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de
Triethylammonium hexabromidouranate(IV) dichloromethane monosolvate, [(C2H5)3NH]2[UBr6]·CH2Cl2, was obtained in the form of dark-brown crystals from the reaction of uranium pentabromide with NEt3 and ethylene glycol in dichloromethane at low temperature. During the progress of the reaction, the reduction of uranium(V) to uranium(IV) was observed, whose associated oxidation product could not be identified. The uranium atom of the [UBr6]2– anion is coordinated by six bromido ligands in the shape of an octahedron. Between cations, anion and solvent molecules of crystallization, numerous C—H⋯Hal hydrogen-bond-like interactions are present, leading to a three-dimensional network structure.
Keywords: crystal structure; uranium; bromide; triethylamine.
CCDC reference: 2025374
1. Chemical context
Starting in the 1950s, a variety of hexachloridouranates(IV) with organic cations have been investigated and described [CSD Database, Version 2.0.4, accessed 19.05.2020 (Groom et al., 2016); Staritzky & Singer, 1952). Examples of this type of compound are (Me4N)2[UCl6], (Ph4As)2[UCl6]·CH2Cl2, or the 4,4′-bipyridin-1-ium hexachloridouranate(IV) (C10H10N2)[UCl6] (Autillo & Wilson, 2017; Müller et al., 1984; Wacker et al., 2019). All these compounds have a slightly distorted octahedron-shaped [UCl6]2– in common with Cl—U—Cl angles close to 90° and some of them, like [BuMeIm]2[UCl6], feature hydrogen-bonding networks or weak hydrogen interactions (Nikitenko et al., 2007). Examples of hexabromidouranates(IV) with organic cations are (PPh4)2[UBr6]·4CH3CN (Bohrer et al., 1988), [P(C6H5)3C2H5]2[UBr6] (Caira et al., 1978) or (Ph3EtP)2[UBr6] (Caira et al., 1978). As in the case of the hexachloridouranates(IV), the [UBr6]2– octahedra show a slight distortion and the compounds feature an extended network of hydrogen bonds. The only two structurally elucidated examples of hexabromidouranate(V) anions, [UBr6]−, that show significantly shorter U—Br distances compared to [UBr6]2– anions are (Ph4P)[UBr6] and (Ph4P)[UBr6]·2CCl4 (Bohrer et al., 1988). These two compounds as well as (PPh4)[UBr6]·CH2Cl2 serve as examples for the stability of uranium(V) in organic solvents; however, a reduction of UV to UIV was observed upon removal of the solvent (Bohrer et al., 1988). During this reaction, elemental bromine was formed via oxidation besides the adduct UBr4·CH3CN (Bohrer et al., 1988).
We, however, observe reduction of UBr5 to uranium(IV) as [UBr6]2– and the protonation of NEt3. It is plausible that ethylene glycol serves as the proton source for the formation of the HNEt3+ cations; however, we do not know where the glycolate anions end up. We also do not know what the reducing agent for the reduction of UV to UIV) is, or if UBr5 is simply unstable under these conditions and is converted to UBr4 and 0.5 Br2. We also do not know how UBr5 is dissolved, that is, whether U2Br10 molecules or other mono- or polynuclear complexes, such as of gylcolates, are present in solution. Elemental bromine may be present within the brown solution and act as an oxidizing agent under the formation of the Br− anions required to constitute the [UBr6]2– anions. For the reactions to be stoichiometric, some leftover U species should have been formed that we did not observe. In summary, the detailed formation of the title compound (Et3NH)2[UBr6]·CH2Cl2 remains unclear.
2. Structural commentary
The compound triethylammonium hexabromidouranate(IV)–dichloromethane (1/1) (Et3NH)2[UBr6]·CH2Cl2 crystallizes in the monoclinic P21/n (No. 14), with the lattice parameters a = 10.7313 (3), b = 17.4534 (4), c = 15.0090 (5) Å, β = 92.0550 (10)°, V = 2809.34 (14) Å3, Z = 4 at T = 100 K. The uranium atom of the cation is coordinated by six bromine ligands in the shape of a slightly distorted octahedron. The atomic distances between the uranium atom and the bromido ligands range from 2.7562 (4) to 2.7847 (5) Å (Table 1). The Br—U—Br angles in the octahedron-like polyhedron range from 86.519 (13) to 94.879 (14) and show a quite significant distortion from the ideal angle of 90°. These atomic distances and angles are in good agreement with the compounds reported previously (Bohrer et al., 1988; Caira et al., 1978). The atomic distances of the two symmetry-independent triethylammonium cations are in good agreement with each other, as well as with the literature, for example in bis(triethylammonium) tetrachloridodioxidouranium(VI) (Gatto et al., 2003; Serezhkina et al., 2010; Bois et al., 1976). Fig. 1 shows a section of the crystal structure.
|
3. Supramolecular features
Sections of the . The hydrogen bonds were inspected visually and those with angles less than 134° were removed from the analysis. The Br3 and Br5 atoms of the [UBr6]2– anion act as acceptors for the bifurcated N—H⋯Br hydrogen bond. The other HNEt3+ cation (with N2) also forms a N—H⋯Br hydrogen bond, however, not bifurcated. Hydrogen-bond lengths and angles are given in Table 2. Furthermore, C—H⋯Hal hydrogen-bond-like interactions between the HNEt3+ cations and the Br atoms of the [UBr6]2– anion as well as to the Cl atoms of the dichloromethane molecules are also present. Overall, a three-dimensional hydrogen-bonded network results. An overview of the hydrogen-bond lengths between the cations, anion and solvent molecule in the compound reported here is given in Table 2. The C–H⋯Br hydrogen bonds in (Ph3EtP)2[UBr6] (Caira et al., 1978) range from 2.782 (1) to 3.504 (2) Å. An example for N–H⋯Br hydrogen bonds is (C6H8NS3)2[UBr6] (Conradi et al., 1986), with lengths of 2.81 (9) Å for the interactions. These bond lengths are comparable with the presented data.
illustrating the hydrogen-bonding situation, are shown in Fig. 24. Synthesis and crystallization
50 mg of UBr5 (0.08 mmol, 1.00 eq) were dissolved in 2 mL of predried DCM and 0.06 mL of NEt3 (40 mg, 0.39 mmol, 5.00 eq.) were added. Then, after stirring briefly, 0.01 mL of ethylene glycol (10 mg, 0.20 mmol, 2.50 eq.) were added dropwise. After two h, the reaction mixture was filtered and the obtained brown filtrate was cooled to 241 K. The product was obtained in crystalline form after three days as brown plates. A selected crystal was investigated by X-ray diffraction. As only a few crystals precipitated from the cold filtrate, the yield could not be determined, but it can be assumed that it was rather low. No further analysis was carried out on the few minute crystals or the filtrate. UBr5 was synthesized according to the literature (Deubner et al., 2019).
5. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (N—H = 1.00Å, C—H = 0.98–0.99Å) refined using a riding model with Uiso(H) = 1.2Ueq(N,C) or 1.5Ueq(Cmethyl). The maximum and minimum residual electron densities are located close to the U atom at distances of 0.77 and 1.19 Å, respectively.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2025374
Data collection: X-AREA (Stoe & Cie, 2018); cell
X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019).(C6H16N)2[UBr6]·CH2Cl2 | F(000) = 1848 |
Mr = 1006.81 | Dx = 2.380 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.7318 (4) Å | Cell parameters from 72381 reflections |
b = 17.4541 (4) Å | θ = 5.1–53.6° |
c = 15.0082 (4) Å | µ = 14.50 mm−1 |
β = 92.055 (1)° | T = 100 K |
V = 2809.44 (14) Å3 | Plate, dark brown |
Z = 4 | 0.1 × 0.1 × 0.05 mm |
STOE IPDS 2T diffractometer | 5945 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 5307 reflections with I > 2σ(I) |
Planar graphite monochromator | Rint = 0.065 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.8°, θmin = 2.6° |
rotation method, ω scans | h = −13→13 |
Absorption correction: numerical (X-Red32; Stoe & Cie, 2009) | k = −22→22 |
Tmin = 0.049, Tmax = 0.527 | l = −19→18 |
35494 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0252P)2 + 6.7371P] where P = (Fo2 + 2Fc2)/3 |
5945 reflections | (Δ/σ)max = 0.002 |
223 parameters | Δρmax = 1.52 e Å−3 |
0 restraints | Δρmin = −1.12 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.70763 (2) | 0.60417 (2) | 0.25294 (2) | 0.01693 (5) | |
Br1 | 0.69695 (4) | 0.57164 (3) | 0.43407 (3) | 0.02583 (10) | |
Br2 | 0.71934 (4) | 0.62538 (3) | 0.07145 (3) | 0.02426 (10) | |
Br3 | 0.79682 (4) | 0.45554 (3) | 0.23313 (3) | 0.02729 (10) | |
Br4 | 0.46676 (4) | 0.55130 (3) | 0.22569 (3) | 0.02739 (10) | |
Br5 | 0.61892 (4) | 0.74956 (2) | 0.28651 (3) | 0.02490 (10) | |
Br6 | 0.95008 (4) | 0.65689 (3) | 0.27283 (3) | 0.02697 (10) | |
Cl1 | 0.80839 (13) | 0.55597 (8) | 0.65867 (8) | 0.0411 (3) | |
Cl2 | 0.83159 (13) | 0.58050 (10) | 0.85069 (9) | 0.0513 (4) | |
N1 | 0.7139 (3) | 0.3577 (2) | 0.0379 (2) | 0.0233 (8) | |
H1 | 0.755481 | 0.354489 | 0.098517 | 0.028* | |
N2 | 0.7104 (3) | 0.3716 (2) | 0.4459 (2) | 0.0232 (8) | |
H2 | 0.705708 | 0.424063 | 0.419282 | 0.028* | |
C1 | 0.8582 (4) | 0.5179 (3) | 0.7622 (3) | 0.0350 (11) | |
H1A | 0.813690 | 0.469171 | 0.772342 | 0.042* | |
H1B | 0.948470 | 0.506395 | 0.761006 | 0.042* | |
C11 | 0.7928 (4) | 0.4099 (3) | −0.0159 (3) | 0.0305 (10) | |
H11A | 0.798906 | 0.460352 | 0.014011 | 0.037* | |
H11B | 0.751630 | 0.417679 | −0.075281 | 0.037* | |
C12 | 0.9236 (4) | 0.3788 (4) | −0.0280 (4) | 0.0439 (14) | |
H12A | 0.960175 | 0.363457 | 0.030062 | 0.066* | |
H12B | 0.975348 | 0.418558 | −0.054084 | 0.066* | |
H12C | 0.919360 | 0.334222 | −0.067749 | 0.066* | |
C13 | 0.7052 (5) | 0.2763 (3) | 0.0032 (3) | 0.0306 (10) | |
H13A | 0.789983 | 0.253987 | 0.003254 | 0.037* | |
H13B | 0.655161 | 0.245525 | 0.044208 | 0.037* | |
C14 | 0.6472 (5) | 0.2707 (3) | −0.0896 (3) | 0.0387 (12) | |
H14A | 0.561944 | 0.290737 | −0.089751 | 0.058* | |
H14B | 0.645537 | 0.216946 | −0.108520 | 0.058* | |
H14C | 0.696590 | 0.300684 | −0.130777 | 0.058* | |
C15 | 0.5882 (4) | 0.3948 (3) | 0.0504 (3) | 0.0244 (9) | |
H15A | 0.601033 | 0.447669 | 0.072758 | 0.029* | |
H15B | 0.542776 | 0.397995 | −0.008087 | 0.029* | |
C16 | 0.5098 (4) | 0.3514 (3) | 0.1146 (3) | 0.0322 (11) | |
H16A | 0.484504 | 0.302216 | 0.087991 | 0.048* | |
H16B | 0.435415 | 0.381437 | 0.127367 | 0.048* | |
H16C | 0.558378 | 0.342157 | 0.170045 | 0.048* | |
C21 | 0.6301 (4) | 0.3208 (3) | 0.3864 (3) | 0.0260 (9) | |
H21A | 0.626464 | 0.269114 | 0.413275 | 0.031* | |
H21B | 0.669358 | 0.315813 | 0.327985 | 0.031* | |
C22 | 0.4989 (4) | 0.3505 (3) | 0.3715 (3) | 0.0310 (10) | |
H22A | 0.455318 | 0.348800 | 0.427708 | 0.046* | |
H22B | 0.454521 | 0.318541 | 0.327033 | 0.046* | |
H22C | 0.501713 | 0.403488 | 0.349993 | 0.046* | |
C23 | 0.6641 (4) | 0.3789 (3) | 0.5399 (3) | 0.0296 (10) | |
H23A | 0.709967 | 0.420914 | 0.570805 | 0.036* | |
H23B | 0.574683 | 0.392884 | 0.536600 | 0.036* | |
C24 | 0.6800 (6) | 0.3064 (3) | 0.5941 (3) | 0.0445 (13) | |
H24A | 0.636358 | 0.264126 | 0.563271 | 0.067* | |
H24B | 0.644987 | 0.313862 | 0.652859 | 0.067* | |
H24C | 0.768859 | 0.294031 | 0.601240 | 0.067* | |
C25 | 0.8449 (4) | 0.3475 (3) | 0.4436 (3) | 0.0248 (9) | |
H25A | 0.854298 | 0.296273 | 0.471340 | 0.030* | |
H25B | 0.868916 | 0.343198 | 0.380740 | 0.030* | |
C26 | 0.9315 (4) | 0.4027 (3) | 0.4915 (3) | 0.0325 (11) | |
H26A | 0.918147 | 0.454356 | 0.467310 | 0.049* | |
H26B | 1.018010 | 0.387174 | 0.483028 | 0.049* | |
H26C | 0.914733 | 0.402615 | 0.555219 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.01705 (8) | 0.01736 (9) | 0.01627 (7) | 0.00032 (6) | −0.00099 (5) | −0.00022 (5) |
Br1 | 0.0311 (2) | 0.0274 (2) | 0.01893 (18) | 0.00404 (18) | 0.00139 (16) | 0.00121 (17) |
Br2 | 0.0261 (2) | 0.0274 (2) | 0.01914 (18) | −0.00121 (17) | −0.00094 (16) | −0.00011 (16) |
Br3 | 0.0308 (2) | 0.0229 (2) | 0.0278 (2) | 0.00371 (17) | −0.00318 (17) | −0.00230 (17) |
Br4 | 0.02038 (19) | 0.0287 (2) | 0.0329 (2) | −0.00374 (17) | −0.00104 (17) | 0.00114 (18) |
Br5 | 0.0270 (2) | 0.0205 (2) | 0.0272 (2) | 0.00144 (17) | 0.00110 (16) | −0.00114 (17) |
Br6 | 0.02052 (19) | 0.0305 (2) | 0.0297 (2) | −0.00311 (17) | −0.00316 (16) | −0.00108 (18) |
Cl1 | 0.0534 (7) | 0.0411 (7) | 0.0285 (6) | −0.0082 (6) | −0.0010 (5) | 0.0058 (5) |
Cl2 | 0.0456 (7) | 0.0706 (10) | 0.0377 (7) | −0.0045 (7) | 0.0036 (6) | −0.0211 (7) |
N1 | 0.0237 (17) | 0.026 (2) | 0.0199 (17) | 0.0037 (15) | −0.0050 (14) | −0.0013 (15) |
N2 | 0.0231 (17) | 0.0223 (19) | 0.0242 (18) | −0.0015 (15) | −0.0009 (14) | −0.0026 (15) |
C1 | 0.027 (2) | 0.047 (3) | 0.031 (2) | 0.004 (2) | −0.0007 (19) | −0.003 (2) |
C11 | 0.027 (2) | 0.036 (3) | 0.028 (2) | −0.005 (2) | −0.0007 (18) | −0.002 (2) |
C12 | 0.027 (2) | 0.069 (4) | 0.036 (3) | −0.001 (3) | 0.006 (2) | −0.007 (3) |
C13 | 0.038 (2) | 0.020 (2) | 0.033 (2) | 0.0048 (19) | −0.008 (2) | 0.0000 (19) |
C14 | 0.053 (3) | 0.029 (3) | 0.033 (2) | 0.004 (2) | −0.013 (2) | −0.005 (2) |
C15 | 0.021 (2) | 0.025 (2) | 0.027 (2) | 0.0018 (17) | −0.0027 (17) | −0.0005 (18) |
C16 | 0.026 (2) | 0.040 (3) | 0.031 (2) | −0.003 (2) | −0.0024 (18) | 0.005 (2) |
C21 | 0.024 (2) | 0.027 (2) | 0.028 (2) | −0.0003 (18) | −0.0003 (17) | −0.0036 (18) |
C22 | 0.024 (2) | 0.035 (3) | 0.034 (2) | 0.001 (2) | 0.0015 (18) | −0.006 (2) |
C23 | 0.025 (2) | 0.037 (3) | 0.027 (2) | 0.003 (2) | 0.0051 (18) | −0.009 (2) |
C24 | 0.058 (3) | 0.045 (3) | 0.032 (3) | −0.001 (3) | 0.021 (2) | 0.006 (2) |
C25 | 0.0187 (19) | 0.030 (3) | 0.026 (2) | 0.0036 (18) | 0.0041 (16) | 0.0029 (18) |
C26 | 0.024 (2) | 0.038 (3) | 0.035 (2) | −0.004 (2) | −0.0069 (19) | 0.000 (2) |
U1—Br2 | 2.7562 (4) | C14—H14A | 0.9800 |
U1—Br4 | 2.7613 (4) | C14—H14B | 0.9800 |
U1—Br5 | 2.7631 (5) | C14—H14C | 0.9800 |
U1—Br6 | 2.7658 (4) | C15—C16 | 1.506 (6) |
U1—Br1 | 2.7835 (4) | C15—H15A | 0.9900 |
U1—Br3 | 2.7847 (5) | C15—H15B | 0.9900 |
Cl1—C1 | 1.756 (5) | C16—H16A | 0.9800 |
Cl2—C1 | 1.751 (5) | C16—H16B | 0.9800 |
N1—C11 | 1.500 (6) | C16—H16C | 0.9800 |
N1—C13 | 1.514 (6) | C21—C22 | 1.509 (6) |
N1—C15 | 1.515 (5) | C21—H21A | 0.9900 |
N1—H1 | 1.0000 | C21—H21B | 0.9900 |
N2—C25 | 1.504 (5) | C22—H22A | 0.9800 |
N2—C21 | 1.508 (5) | C22—H22B | 0.9800 |
N2—C23 | 1.517 (6) | C22—H22C | 0.9800 |
N2—H2 | 1.0000 | C23—C24 | 1.511 (7) |
C1—H1A | 0.9900 | C23—H23A | 0.9900 |
C1—H1B | 0.9900 | C23—H23B | 0.9900 |
C11—C12 | 1.521 (7) | C24—H24A | 0.9800 |
C11—H11A | 0.9900 | C24—H24B | 0.9800 |
C11—H11B | 0.9900 | C24—H24C | 0.9800 |
C12—H12A | 0.9800 | C25—C26 | 1.503 (6) |
C12—H12B | 0.9800 | C25—H25A | 0.9900 |
C12—H12C | 0.9800 | C25—H25B | 0.9900 |
C13—C14 | 1.508 (6) | C26—H26A | 0.9800 |
C13—H13A | 0.9900 | C26—H26B | 0.9800 |
C13—H13B | 0.9900 | C26—H26C | 0.9800 |
Br2—U1—Br4 | 88.519 (13) | H14A—C14—H14B | 109.5 |
Br2—U1—Br5 | 94.879 (14) | C13—C14—H14C | 109.5 |
Br4—U1—Br5 | 90.407 (14) | H14A—C14—H14C | 109.5 |
Br2—U1—Br6 | 89.194 (13) | H14B—C14—H14C | 109.5 |
Br4—U1—Br6 | 177.674 (14) | C16—C15—N1 | 112.6 (4) |
Br5—U1—Br6 | 90.214 (14) | C16—C15—H15A | 109.1 |
Br2—U1—Br1 | 175.943 (14) | N1—C15—H15A | 109.1 |
Br4—U1—Br1 | 90.307 (14) | C16—C15—H15B | 109.1 |
Br5—U1—Br1 | 89.011 (13) | N1—C15—H15B | 109.1 |
Br6—U1—Br1 | 91.945 (13) | H15A—C15—H15B | 107.8 |
Br2—U1—Br3 | 89.519 (13) | C15—C16—H16A | 109.5 |
Br4—U1—Br3 | 89.792 (14) | C15—C16—H16B | 109.5 |
Br5—U1—Br3 | 175.601 (13) | H16A—C16—H16B | 109.5 |
Br6—U1—Br3 | 89.760 (14) | C15—C16—H16C | 109.5 |
Br1—U1—Br3 | 86.593 (13) | H16A—C16—H16C | 109.5 |
C11—N1—C13 | 114.4 (4) | H16B—C16—H16C | 109.5 |
C11—N1—C15 | 109.2 (3) | N2—C21—C22 | 113.4 (4) |
C13—N1—C15 | 113.5 (3) | N2—C21—H21A | 108.9 |
C11—N1—H1 | 106.3 | C22—C21—H21A | 108.9 |
C13—N1—H1 | 106.3 | N2—C21—H21B | 108.9 |
C15—N1—H1 | 106.3 | C22—C21—H21B | 108.9 |
C25—N2—C21 | 110.5 (3) | H21A—C21—H21B | 107.7 |
C25—N2—C23 | 113.0 (3) | C21—C22—H22A | 109.5 |
C21—N2—C23 | 113.6 (3) | C21—C22—H22B | 109.5 |
C25—N2—H2 | 106.3 | H22A—C22—H22B | 109.5 |
C21—N2—H2 | 106.3 | C21—C22—H22C | 109.5 |
C23—N2—H2 | 106.3 | H22A—C22—H22C | 109.5 |
Cl2—C1—Cl1 | 112.5 (3) | H22B—C22—H22C | 109.5 |
Cl2—C1—H1A | 109.1 | C24—C23—N2 | 113.3 (4) |
Cl1—C1—H1A | 109.1 | C24—C23—H23A | 108.9 |
Cl2—C1—H1B | 109.1 | N2—C23—H23A | 108.9 |
Cl1—C1—H1B | 109.1 | C24—C23—H23B | 108.9 |
H1A—C1—H1B | 107.8 | N2—C23—H23B | 108.9 |
N1—C11—C12 | 112.8 (4) | H23A—C23—H23B | 107.7 |
N1—C11—H11A | 109.0 | C23—C24—H24A | 109.5 |
C12—C11—H11A | 109.0 | C23—C24—H24B | 109.5 |
N1—C11—H11B | 109.0 | H24A—C24—H24B | 109.5 |
C12—C11—H11B | 109.0 | C23—C24—H24C | 109.5 |
H11A—C11—H11B | 107.8 | H24A—C24—H24C | 109.5 |
C11—C12—H12A | 109.5 | H24B—C24—H24C | 109.5 |
C11—C12—H12B | 109.5 | C26—C25—N2 | 112.8 (4) |
H12A—C12—H12B | 109.5 | C26—C25—H25A | 109.0 |
C11—C12—H12C | 109.5 | N2—C25—H25A | 109.0 |
H12A—C12—H12C | 109.5 | C26—C25—H25B | 109.0 |
H12B—C12—H12C | 109.5 | N2—C25—H25B | 109.0 |
C14—C13—N1 | 113.4 (4) | H25A—C25—H25B | 107.8 |
C14—C13—H13A | 108.9 | C25—C26—H26A | 109.5 |
N1—C13—H13A | 108.9 | C25—C26—H26B | 109.5 |
C14—C13—H13B | 108.9 | H26A—C26—H26B | 109.5 |
N1—C13—H13B | 108.9 | C25—C26—H26C | 109.5 |
H13A—C13—H13B | 107.7 | H26A—C26—H26C | 109.5 |
C13—C14—H14A | 109.5 | H26B—C26—H26C | 109.5 |
C13—C14—H14B | 109.5 | ||
C13—N1—C11—C12 | −54.2 (5) | C25—N2—C21—C22 | −168.9 (4) |
C15—N1—C11—C12 | 177.2 (4) | C23—N2—C21—C22 | 62.8 (5) |
C11—N1—C13—C14 | −61.4 (5) | C25—N2—C23—C24 | −56.5 (5) |
C15—N1—C13—C14 | 64.9 (5) | C21—N2—C23—C24 | 70.5 (5) |
C11—N1—C15—C16 | −171.9 (4) | C21—N2—C25—C26 | 171.9 (4) |
C13—N1—C15—C16 | 59.1 (5) | C23—N2—C25—C26 | −59.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br3 | 1.00 | 2.71 | 3.480 (3) | 134 |
N1—H1···Br5i | 1.00 | 2.83 | 3.658 (3) | 141 |
C11—H11A···Br2 | 0.99 | 3.13 | 4.070 (5) | 158 |
C11—H11B···Br4ii | 0.99 | 3.24 | 4.184 (4) | 160 |
C13—H13B···Br6i | 0.99 | 3.38 | 4.339 (5) | 163 |
C14—H14A···Br2ii | 0.98 | 3.38 | 4.350 (6) | 173 |
C14—H14B···Cl1i | 0.98 | 2.95 | 3.922 (5) | 169 |
C16—H16B···Cl2iii | 0.98 | 2.97 | 3.904 (5) | 160 |
N2—H2···Br1 | 1.00 | 2.59 | 3.499 (4) | 152 |
C21—H21B···Br5i | 0.99 | 3.12 | 4.005 (5) | 150 |
C22—H22C···Br4 | 0.98 | 3.20 | 4.139 (5) | 162 |
C23—H23A···Cl1 | 0.99 | 2.88 | 3.865 (5) | 171 |
C25—H25B···Br5i | 0.99 | 3.00 | 3.886 (4) | 149 |
C1—H1B···Br3iv | 0.99 | 2.81 | 3.729 (5) | 155 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1. |
Atom 1 | Atom 2 | d |
U1 | Br1 | 2.7835 (4) |
Br2 | 2.7562 (4) | |
Br3 | 2.7847 (5) | |
Br4 | 2.7613 (4) | |
Br5 | 2.7631 (5) | |
Br6 | 2.7658 (4) | |
N1 | C11 | 1.500 (6) |
C13 | 1.514 (6) | |
C15 | 1.515 (5) | |
N2 | C21 | 1.508 (5) |
C23 | 1.517 (6) | |
C25 | 1.504 (5) | |
C1 | Cl1 | 1.756 (5) |
Cl2 | 1.751 (5) | |
C11 | C12 | 1.521 (7) |
C13 | C14 | 1.508 (6) |
C15 | C16 | 1.506 (6) |
C21 | C22 | 1.509 (6) |
C23 | C24 | 1.511 (7) |
C25 | C26 | 1.503 (6) |
Funding information
FK thanks the Deutsche Forschungsgemeinschaft for very generous funding.
References
Autillo, M. & Wilson, R. E. (2017). Inorg. Chem. 56, 4834–4839. Google Scholar
Bohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119–127. CSD CrossRef CAS Web of Science Google Scholar
Bois, C., Dao, N. Q. & Rodier, N. (1976). J. Inorg. Nucl. Chem. 38, 755–757. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2019). DIAMOND.Crystal Impact GbR, Bonn, Germany. Google Scholar
Caira, M. R., de Wet, J. F., du Preez, J. G. H. & Gellatly, B. J. (1978). Acta Cryst. B34, 1116–1120. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Conradi, E., Bohrer, R. & Müller, U. (1986). Chem. Ber. 119, 2582–2589. CSD CrossRef CAS Web of Science Google Scholar
Deubner, H. L., Rudel, S. S., Sachs, M., Pietzonka, C., Karttunen, A. J., Ivlev, S. I., Müller, M., Conrad, M., Müller, U. & Kraus, F. (2019). Chem. Eur. J. 25, 6402–6411. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Gatto, C. C., Lang, E. S. & Abrahm, U. (2003). Chem. Commun. 6, 1001–1003. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Müller, U., Klingelhöfer, P., Eicher, J. & Bohrer, R. (1984). Z. Kristallogr. 168, 121–131. Google Scholar
Nikitenko, S. I., Hennig, C., Grigoriev, M. S., Naour, C. L., Cannes, C., Trubert, D., Bossé, E., Berthon, C. & Moisy, P. (2007). Polyhedron, 26, 3136–3142. Web of Science CSD CrossRef CAS Google Scholar
Serezhkina, L. B., Peresypkina, E. V., Virovets, A. V. & Neklyudova, N. A. (2010). Russ. J. Inorg. Chem. 55, 1020–1025. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Staritzky, E. & Singer, J. (1952). Acta Cryst. 5, 536–540. CSD CrossRef IUCr Journals Web of Science Google Scholar
Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2018). X-AREA Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Wacker, J. N., Han, S. Y., Murray, A. V., Vanagas, N. A., Bertke, J. A., Sperling, J. M., Surbella, R. G. & Knope, K. E. (2019). Inorg. Chem. 58, 10578–10591. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.