research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of tri­ethyl­ammonium hexa­bromido­uranate(IV) di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aAnorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de

Edited by M. Zeller, Purdue University, USA (Received 15 July 2020; accepted 25 August 2020; online 4 September 2020)

Tri­ethyl­ammonium hexa­bromido­uranate(IV) di­chloro­methane monosolvate, [(C2H5)3NH]2[UBr6]·CH2Cl2, was obtained in the form of dark-brown crystals from the reaction of uranium penta­bromide with NEt3 and ethyl­ene glycol in di­chloro­methane at low temperature. During the progress of the reaction, the reduction of uranium(V) to uranium(IV) was observed, whose associated oxidation product could not be identified. The uranium atom of the [UBr6]2– anion is coordinated by six bromido ligands in the shape of an octa­hedron. Between cations, anion and solvent mol­ecules of crystallization, numerous C—H⋯Hal hydrogen-bond-like inter­actions are present, leading to a three-dimensional network structure.

1. Chemical context

Starting in the 1950s, a variety of hexa­chlorido­uranates(IV) with organic cations have been investigated and described [CSD Database, Version 2.0.4, accessed 19.05.2020 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]); Staritzky & Singer, 1952[Staritzky, E. & Singer, J. (1952). Acta Cryst. 5, 536-540.]). Examples of this type of compound are (Me4N)2[UCl6], (Ph4As)2[UCl6]·CH2Cl2, or the 4,4′-bipyridin-1-ium hexa­chlorido­uranate(IV) (C10H10N2)[UCl6] (Autillo & Wilson, 2017[Autillo, M. & Wilson, R. E. (2017). Inorg. Chem. 56, 4834-4839.]; Müller et al., 1984[Müller, U., Klingelhöfer, P., Eicher, J. & Bohrer, R. (1984). Z. Kristallogr. 168, 121-131.]; Wacker et al., 2019[Wacker, J. N., Han, S. Y., Murray, A. V., Vanagas, N. A., Bertke, J. A., Sperling, J. M., Surbella, R. G. & Knope, K. E. (2019). Inorg. Chem. 58, 10578-10591.]). All these compounds have a slightly distorted octa­hedron-shaped [UCl6]2– coordination polyhedron in common with Cl—U—Cl angles close to 90° and some of them, like [BuMeIm]2[UCl6], feature hydrogen-bonding networks or weak hydrogen inter­actions (Nikitenko et al., 2007[Nikitenko, S. I., Hennig, C., Grigoriev, M. S., Naour, C. L., Cannes, C., Trubert, D., Bossé, E., Berthon, C. & Moisy, P. (2007). Polyhedron, 26, 3136-3142.]). Examples of hexa­bromido­uranates(IV) with organic cations are (PPh4)2[UBr6]·4CH3CN (Bohrer et al., 1988[Bohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119-127.]), [P(C6H5)3C2H5]2[UBr6] (Caira et al., 1978[Caira, M. R., de Wet, J. F., du Preez, J. G. H. & Gellatly, B. J. (1978). Acta Cryst. B34, 1116-1120.]) or (Ph3EtP)2[UBr6] (Caira et al., 1978[Caira, M. R., de Wet, J. F., du Preez, J. G. H. & Gellatly, B. J. (1978). Acta Cryst. B34, 1116-1120.]). As in the case of the hexa­chlorido­uranates(IV), the [UBr6]2– octa­hedra show a slight distortion and the compounds feature an extended network of hydrogen bonds. The only two structurally elucidated examples of hexa­bromido­uranate(V) anions, [UBr6], that show significantly shorter U—Br distances compared to [UBr6]2– anions are (Ph4P)[UBr6] and (Ph4P)[UBr6]·2CCl4 (Bohrer et al., 1988[Bohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119-127.]). These two compounds as well as (PPh4)[UBr6]·CH2Cl2 serve as examples for the stability of uranium(V) in organic solvents; however, a reduction of UV to UIV was observed upon removal of the solvent (Bohrer et al., 1988[Bohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119-127.]). During this reaction, elemental bromine was formed via oxidation besides the adduct UBr4·CH3CN (Bohrer et al., 1988[Bohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119-127.]).

We, however, observe reduction of UBr5 to uranium(IV) as [UBr6]2– and the protonation of NEt3. It is plausible that ethyl­ene glycol serves as the proton source for the formation of the HNEt3+ cations; however, we do not know where the glycolate anions end up. We also do not know what the reducing agent for the reduction of UV to UIV) is, or if UBr5 is simply unstable under these conditions and is converted to UBr4 and 0.5 Br2. We also do not know how UBr5 is dissolved, that is, whether U2Br10 mol­ecules or other mono- or polynuclear complexes, such as of gylcolates, are present in solution. Elemental bromine may be present within the brown solution and act as an oxidizing agent under the formation of the Br anions required to constitute the [UBr6]2– anions. For the reactions to be stoichiometric, some leftover U species should have been formed that we did not observe. In summary, the detailed formation of the title compound (Et3NH)2[UBr6]·CH2Cl2 remains unclear.

[Scheme 1]

2. Structural commentary

The compound tri­ethyl­ammonium hexa­bromido­uranate(IV)–di­chloro­methane (1/1) (Et3NH)2[UBr6]·CH2Cl2 crystallizes in the monoclinic crystal system, space group P21/n (No. 14), with the lattice parameters a = 10.7313 (3), b = 17.4534 (4), c = 15.0090 (5) Å, β = 92.0550 (10)°, V = 2809.34 (14) Å3, Z = 4 at T = 100 K. The uranium atom of the cation is coordinated by six bromine ligands in the shape of a slightly distorted octa­hedron. The atomic distances between the uranium atom and the bromido ligands range from 2.7562 (4) to 2.7847 (5) Å (Table 1[link]). The Br—U—Br angles in the octa­hedron-like polyhedron range from 86.519 (13) to 94.879 (14) and show a quite significant distortion from the ideal angle of 90°. These atomic distances and angles are in good agreement with the compounds reported previously (Bohrer et al., 1988[Bohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119-127.]; Caira et al., 1978[Caira, M. R., de Wet, J. F., du Preez, J. G. H. & Gellatly, B. J. (1978). Acta Cryst. B34, 1116-1120.]). The atomic distances of the two symmetry-independent tri­ethyl­ammonium cations are in good agreement with each other, as well as with the literature, for example in bis­(tri­ethyl­ammonium) tetra­chlorido­dioxidouranium(VI) (Gatto et al., 2003[Gatto, C. C., Lang, E. S. & Abrahm, U. (2003). Chem. Commun. 6, 1001-1003.]; Serezhkina et al., 2010[Serezhkina, L. B., Peresypkina, E. V., Virovets, A. V. & Neklyudova, N. A. (2010). Russ. J. Inorg. Chem. 55, 1020-1025.]; Bois et al., 1976[Bois, C., Dao, N. Q. & Rodier, N. (1976). J. Inorg. Nucl. Chem. 38, 755-757.]). Fig. 1[link] shows a section of the crystal structure.

Table 1
Selected inter­atomic distances d (Å) for (Et3NH)2[UBr6]

Atom 1 Atom 2 d
U1 Br1 2.7835 (4)
  Br2 2.7562 (4)
  Br3 2.7847 (5)
  Br4 2.7613 (4)
  Br5 2.7631 (5)
  Br6 2.7658 (4)
N1 C11 1.500 (6)
  C13 1.514 (6)
  C15 1.515 (5)
N2 C21 1.508 (5)
  C23 1.517 (6)
  C25 1.504 (5)
C1 Cl1 1.756 (5)
  Cl2 1.751 (5)
C11 C12 1.521 (7)
C13 C14 1.508 (6)
C15 C16 1.506 (6)
C21 C22 1.509 (6)
C23 C24 1.511 (7)
C25 C26 1.503 (6)
[Figure 1]
Figure 1
Section of the crystal structure of (Et3NH)2[UBr6]·CH2Cl2, illustrating the asymmetric unit. Displacement ellipsoids are shown at the 70% probability level at 100 K and H atoms are drawn with an arbitrary radius.

3. Supra­molecular features

Sections of the crystal structure, illustrating the hydrogen-bonding situation, are shown in Fig. 2[link]. The hydrogen bonds were inspected visually and those with angles less than 134° were removed from the analysis. The Br3 and Br5 atoms of the [UBr6]2– anion act as acceptors for the bifurcated N—H⋯Br hydrogen bond. The other HNEt3+ cation (with N2) also forms a N—H⋯Br hydrogen bond, however, not bifurcated. Hydrogen-bond lengths and angles are given in Table 2[link]. Furthermore, C—H⋯Hal hydrogen-bond-like inter­actions between the HNEt3+ cations and the Br atoms of the [UBr6]2– anion as well as to the Cl atoms of the di­chloro­methane mol­ecules are also present. Overall, a three-dimensional hydrogen-bonded network results. An overview of the hydrogen-bond lengths between the cations, anion and solvent mol­ecule in the compound reported here is given in Table 2[link]. The C–H⋯Br hydrogen bonds in (Ph3EtP)2[UBr6] (Caira et al., 1978[Caira, M. R., de Wet, J. F., du Preez, J. G. H. & Gellatly, B. J. (1978). Acta Cryst. B34, 1116-1120.]) range from 2.782 (1) to 3.504 (2) Å. An example for N–H⋯Br hydrogen bonds is (C6H8NS3)2[UBr6] (Conradi et al., 1986[Conradi, E., Bohrer, R. & Müller, U. (1986). Chem. Ber. 119, 2582-2589.]), with lengths of 2.81 (9) Å for the inter­actions. These bond lengths are comparable with the presented data.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br3 1.00 2.71 3.480 (3) 134
N1—H1⋯Br5i 1.00 2.83 3.658 (3) 141
C11—H11A⋯Br2 0.99 3.13 4.070 (5) 158
C11—H11B⋯Br4ii 0.99 3.24 4.184 (4) 160
C13—H13B⋯Br6i 0.99 3.38 4.339 (5) 163
C14—H14A⋯Br2ii 0.98 3.38 4.350 (6) 173
C14—H14B⋯Cl1i 0.98 2.95 3.922 (5) 169
C16—H16B⋯Cl2iii 0.98 2.97 3.904 (5) 160
N2—H2⋯Br1 1.00 2.59 3.499 (4) 152
C21—H21B⋯Br5i 0.99 3.12 4.005 (5) 150
C22—H22C⋯Br4 0.98 3.20 4.139 (5) 162
C23—H23A⋯Cl1 0.99 2.88 3.865 (5) 171
C25—H25B⋯Br5i 0.99 3.00 3.886 (4) 149
C1—H1B⋯Br3iv 0.99 2.81 3.729 (5) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
The hydrogen bonds and hydrogen-bond-like inter­actions (dashed lines) present in the structure of the title compound. (a) and (b) show the inter­actions of the HNEt+ cation with N1, (c) of the HNEt+ cation with N2, and (d) shows the inter­actions of DCM. Displacement ellipsoids within each subfigure are shown at the 70% probability level at 100 K and H atoms are drawn with an arbitrary radius. See Table 2[link] for symmetry operators.

4. Synthesis and crystallization

50 mg of UBr5 (0.08 mmol, 1.00 eq) were dissolved in 2 mL of predried DCM and 0.06 mL of NEt3 (40 mg, 0.39 mmol, 5.00 eq.) were added. Then, after stirring briefly, 0.01 mL of ethyl­ene glycol (10 mg, 0.20 mmol, 2.50 eq.) were added dropwise. After two h, the reaction mixture was filtered and the obtained brown filtrate was cooled to 241 K. The product was obtained in crystalline form after three days as brown plates. A selected crystal was investigated by X-ray diffraction. As only a few crystals precipitated from the cold filtrate, the yield could not be determined, but it can be assumed that it was rather low. No further analysis was carried out on the few minute crystals or the filtrate. UBr5 was synthesized according to the literature (Deubner et al., 2019[Deubner, H. L., Rudel, S. S., Sachs, M., Pietzonka, C., Karttunen, A. J., Ivlev, S. I., Müller, M., Conrad, M., Müller, U. & Kraus, F. (2019). Chem. Eur. J. 25, 6402-6411.]).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned geometrically (N—H = 1.00Å, C—H = 0.98–0.99Å) refined using a riding model with Uiso(H) = 1.2Ueq(N,C) or 1.5Ueq(Cmeth­yl). The maximum and minimum residual electron densities are located close to the U atom at distances of 0.77 and 1.19 Å, respectively.

Table 3
Experimental details

Crystal data
Chemical formula (C6H16N)2[UBr6]·CH2Cl2
Mr 1006.81
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.7318 (4), 17.4541 (4), 15.0082 (4)
β (°) 92.055 (1)
V3) 2809.44 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 14.50
Crystal size (mm) 0.1 × 0.1 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Numerical (X-RED32; Stoe & Cie, 2009[Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.049, 0.527
No. of measured, independent and observed [I > 2σ(I)] reflections 35494, 5945, 5307
Rint 0.065
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.04
No. of reflections 5945
No. of parameters 223
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.52, −1.12
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2019[Brandenburg, K. (2019). DIAMOND.Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019).

Triethylammonium hexabromidouranate(IV) dichloromethane monosolvate top
Crystal data top
(C6H16N)2[UBr6]·CH2Cl2F(000) = 1848
Mr = 1006.81Dx = 2.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.7318 (4) ÅCell parameters from 72381 reflections
b = 17.4541 (4) Åθ = 5.1–53.6°
c = 15.0082 (4) ŵ = 14.50 mm1
β = 92.055 (1)°T = 100 K
V = 2809.44 (14) Å3Plate, dark brown
Z = 40.1 × 0.1 × 0.05 mm
Data collection top
STOE IPDS 2T
diffractometer
5945 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5307 reflections with I > 2σ(I)
Planar graphite monochromatorRint = 0.065
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 2.6°
rotation method, ω scansh = 1313
Absorption correction: numerical
(X-Red32; Stoe & Cie, 2009)
k = 2222
Tmin = 0.049, Tmax = 0.527l = 1918
35494 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0252P)2 + 6.7371P]
where P = (Fo2 + 2Fc2)/3
5945 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = 1.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.70763 (2)0.60417 (2)0.25294 (2)0.01693 (5)
Br10.69695 (4)0.57164 (3)0.43407 (3)0.02583 (10)
Br20.71934 (4)0.62538 (3)0.07145 (3)0.02426 (10)
Br30.79682 (4)0.45554 (3)0.23313 (3)0.02729 (10)
Br40.46676 (4)0.55130 (3)0.22569 (3)0.02739 (10)
Br50.61892 (4)0.74956 (2)0.28651 (3)0.02490 (10)
Br60.95008 (4)0.65689 (3)0.27283 (3)0.02697 (10)
Cl10.80839 (13)0.55597 (8)0.65867 (8)0.0411 (3)
Cl20.83159 (13)0.58050 (10)0.85069 (9)0.0513 (4)
N10.7139 (3)0.3577 (2)0.0379 (2)0.0233 (8)
H10.7554810.3544890.0985170.028*
N20.7104 (3)0.3716 (2)0.4459 (2)0.0232 (8)
H20.7057080.4240630.4192820.028*
C10.8582 (4)0.5179 (3)0.7622 (3)0.0350 (11)
H1A0.8136900.4691710.7723420.042*
H1B0.9484700.5063950.7610060.042*
C110.7928 (4)0.4099 (3)0.0159 (3)0.0305 (10)
H11A0.7989060.4603520.0140110.037*
H11B0.7516300.4176790.0752810.037*
C120.9236 (4)0.3788 (4)0.0280 (4)0.0439 (14)
H12A0.9601750.3634570.0300620.066*
H12B0.9753480.4185580.0540840.066*
H12C0.9193600.3342220.0677490.066*
C130.7052 (5)0.2763 (3)0.0032 (3)0.0306 (10)
H13A0.7899830.2539870.0032540.037*
H13B0.6551610.2455250.0442080.037*
C140.6472 (5)0.2707 (3)0.0896 (3)0.0387 (12)
H14A0.5619440.2907370.0897510.058*
H14B0.6455370.2169460.1085200.058*
H14C0.6965900.3006840.1307770.058*
C150.5882 (4)0.3948 (3)0.0504 (3)0.0244 (9)
H15A0.6010330.4476690.0727580.029*
H15B0.5427760.3979950.0080870.029*
C160.5098 (4)0.3514 (3)0.1146 (3)0.0322 (11)
H16A0.4845040.3022160.0879910.048*
H16B0.4354150.3814370.1273670.048*
H16C0.5583780.3421570.1700450.048*
C210.6301 (4)0.3208 (3)0.3864 (3)0.0260 (9)
H21A0.6264640.2691140.4132750.031*
H21B0.6693580.3158130.3279850.031*
C220.4989 (4)0.3505 (3)0.3715 (3)0.0310 (10)
H22A0.4553180.3488000.4277080.046*
H22B0.4545210.3185410.3270330.046*
H22C0.5017130.4034880.3499930.046*
C230.6641 (4)0.3789 (3)0.5399 (3)0.0296 (10)
H23A0.7099670.4209140.5708050.036*
H23B0.5746830.3928840.5366000.036*
C240.6800 (6)0.3064 (3)0.5941 (3)0.0445 (13)
H24A0.6363580.2641260.5632710.067*
H24B0.6449870.3138620.6528590.067*
H24C0.7688590.2940310.6012400.067*
C250.8449 (4)0.3475 (3)0.4436 (3)0.0248 (9)
H25A0.8542980.2962730.4713400.030*
H25B0.8689160.3431980.3807400.030*
C260.9315 (4)0.4027 (3)0.4915 (3)0.0325 (11)
H26A0.9181470.4543560.4673100.049*
H26B1.0180100.3871740.4830280.049*
H26C0.9147330.4026150.5552190.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01705 (8)0.01736 (9)0.01627 (7)0.00032 (6)0.00099 (5)0.00022 (5)
Br10.0311 (2)0.0274 (2)0.01893 (18)0.00404 (18)0.00139 (16)0.00121 (17)
Br20.0261 (2)0.0274 (2)0.01914 (18)0.00121 (17)0.00094 (16)0.00011 (16)
Br30.0308 (2)0.0229 (2)0.0278 (2)0.00371 (17)0.00318 (17)0.00230 (17)
Br40.02038 (19)0.0287 (2)0.0329 (2)0.00374 (17)0.00104 (17)0.00114 (18)
Br50.0270 (2)0.0205 (2)0.0272 (2)0.00144 (17)0.00110 (16)0.00114 (17)
Br60.02052 (19)0.0305 (2)0.0297 (2)0.00311 (17)0.00316 (16)0.00108 (18)
Cl10.0534 (7)0.0411 (7)0.0285 (6)0.0082 (6)0.0010 (5)0.0058 (5)
Cl20.0456 (7)0.0706 (10)0.0377 (7)0.0045 (7)0.0036 (6)0.0211 (7)
N10.0237 (17)0.026 (2)0.0199 (17)0.0037 (15)0.0050 (14)0.0013 (15)
N20.0231 (17)0.0223 (19)0.0242 (18)0.0015 (15)0.0009 (14)0.0026 (15)
C10.027 (2)0.047 (3)0.031 (2)0.004 (2)0.0007 (19)0.003 (2)
C110.027 (2)0.036 (3)0.028 (2)0.005 (2)0.0007 (18)0.002 (2)
C120.027 (2)0.069 (4)0.036 (3)0.001 (3)0.006 (2)0.007 (3)
C130.038 (2)0.020 (2)0.033 (2)0.0048 (19)0.008 (2)0.0000 (19)
C140.053 (3)0.029 (3)0.033 (2)0.004 (2)0.013 (2)0.005 (2)
C150.021 (2)0.025 (2)0.027 (2)0.0018 (17)0.0027 (17)0.0005 (18)
C160.026 (2)0.040 (3)0.031 (2)0.003 (2)0.0024 (18)0.005 (2)
C210.024 (2)0.027 (2)0.028 (2)0.0003 (18)0.0003 (17)0.0036 (18)
C220.024 (2)0.035 (3)0.034 (2)0.001 (2)0.0015 (18)0.006 (2)
C230.025 (2)0.037 (3)0.027 (2)0.003 (2)0.0051 (18)0.009 (2)
C240.058 (3)0.045 (3)0.032 (3)0.001 (3)0.021 (2)0.006 (2)
C250.0187 (19)0.030 (3)0.026 (2)0.0036 (18)0.0041 (16)0.0029 (18)
C260.024 (2)0.038 (3)0.035 (2)0.004 (2)0.0069 (19)0.000 (2)
Geometric parameters (Å, º) top
U1—Br22.7562 (4)C14—H14A0.9800
U1—Br42.7613 (4)C14—H14B0.9800
U1—Br52.7631 (5)C14—H14C0.9800
U1—Br62.7658 (4)C15—C161.506 (6)
U1—Br12.7835 (4)C15—H15A0.9900
U1—Br32.7847 (5)C15—H15B0.9900
Cl1—C11.756 (5)C16—H16A0.9800
Cl2—C11.751 (5)C16—H16B0.9800
N1—C111.500 (6)C16—H16C0.9800
N1—C131.514 (6)C21—C221.509 (6)
N1—C151.515 (5)C21—H21A0.9900
N1—H11.0000C21—H21B0.9900
N2—C251.504 (5)C22—H22A0.9800
N2—C211.508 (5)C22—H22B0.9800
N2—C231.517 (6)C22—H22C0.9800
N2—H21.0000C23—C241.511 (7)
C1—H1A0.9900C23—H23A0.9900
C1—H1B0.9900C23—H23B0.9900
C11—C121.521 (7)C24—H24A0.9800
C11—H11A0.9900C24—H24B0.9800
C11—H11B0.9900C24—H24C0.9800
C12—H12A0.9800C25—C261.503 (6)
C12—H12B0.9800C25—H25A0.9900
C12—H12C0.9800C25—H25B0.9900
C13—C141.508 (6)C26—H26A0.9800
C13—H13A0.9900C26—H26B0.9800
C13—H13B0.9900C26—H26C0.9800
Br2—U1—Br488.519 (13)H14A—C14—H14B109.5
Br2—U1—Br594.879 (14)C13—C14—H14C109.5
Br4—U1—Br590.407 (14)H14A—C14—H14C109.5
Br2—U1—Br689.194 (13)H14B—C14—H14C109.5
Br4—U1—Br6177.674 (14)C16—C15—N1112.6 (4)
Br5—U1—Br690.214 (14)C16—C15—H15A109.1
Br2—U1—Br1175.943 (14)N1—C15—H15A109.1
Br4—U1—Br190.307 (14)C16—C15—H15B109.1
Br5—U1—Br189.011 (13)N1—C15—H15B109.1
Br6—U1—Br191.945 (13)H15A—C15—H15B107.8
Br2—U1—Br389.519 (13)C15—C16—H16A109.5
Br4—U1—Br389.792 (14)C15—C16—H16B109.5
Br5—U1—Br3175.601 (13)H16A—C16—H16B109.5
Br6—U1—Br389.760 (14)C15—C16—H16C109.5
Br1—U1—Br386.593 (13)H16A—C16—H16C109.5
C11—N1—C13114.4 (4)H16B—C16—H16C109.5
C11—N1—C15109.2 (3)N2—C21—C22113.4 (4)
C13—N1—C15113.5 (3)N2—C21—H21A108.9
C11—N1—H1106.3C22—C21—H21A108.9
C13—N1—H1106.3N2—C21—H21B108.9
C15—N1—H1106.3C22—C21—H21B108.9
C25—N2—C21110.5 (3)H21A—C21—H21B107.7
C25—N2—C23113.0 (3)C21—C22—H22A109.5
C21—N2—C23113.6 (3)C21—C22—H22B109.5
C25—N2—H2106.3H22A—C22—H22B109.5
C21—N2—H2106.3C21—C22—H22C109.5
C23—N2—H2106.3H22A—C22—H22C109.5
Cl2—C1—Cl1112.5 (3)H22B—C22—H22C109.5
Cl2—C1—H1A109.1C24—C23—N2113.3 (4)
Cl1—C1—H1A109.1C24—C23—H23A108.9
Cl2—C1—H1B109.1N2—C23—H23A108.9
Cl1—C1—H1B109.1C24—C23—H23B108.9
H1A—C1—H1B107.8N2—C23—H23B108.9
N1—C11—C12112.8 (4)H23A—C23—H23B107.7
N1—C11—H11A109.0C23—C24—H24A109.5
C12—C11—H11A109.0C23—C24—H24B109.5
N1—C11—H11B109.0H24A—C24—H24B109.5
C12—C11—H11B109.0C23—C24—H24C109.5
H11A—C11—H11B107.8H24A—C24—H24C109.5
C11—C12—H12A109.5H24B—C24—H24C109.5
C11—C12—H12B109.5C26—C25—N2112.8 (4)
H12A—C12—H12B109.5C26—C25—H25A109.0
C11—C12—H12C109.5N2—C25—H25A109.0
H12A—C12—H12C109.5C26—C25—H25B109.0
H12B—C12—H12C109.5N2—C25—H25B109.0
C14—C13—N1113.4 (4)H25A—C25—H25B107.8
C14—C13—H13A108.9C25—C26—H26A109.5
N1—C13—H13A108.9C25—C26—H26B109.5
C14—C13—H13B108.9H26A—C26—H26B109.5
N1—C13—H13B108.9C25—C26—H26C109.5
H13A—C13—H13B107.7H26A—C26—H26C109.5
C13—C14—H14A109.5H26B—C26—H26C109.5
C13—C14—H14B109.5
C13—N1—C11—C1254.2 (5)C25—N2—C21—C22168.9 (4)
C15—N1—C11—C12177.2 (4)C23—N2—C21—C2262.8 (5)
C11—N1—C13—C1461.4 (5)C25—N2—C23—C2456.5 (5)
C15—N1—C13—C1464.9 (5)C21—N2—C23—C2470.5 (5)
C11—N1—C15—C16171.9 (4)C21—N2—C25—C26171.9 (4)
C13—N1—C15—C1659.1 (5)C23—N2—C25—C2659.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br31.002.713.480 (3)134
N1—H1···Br5i1.002.833.658 (3)141
C11—H11A···Br20.993.134.070 (5)158
C11—H11B···Br4ii0.993.244.184 (4)160
C13—H13B···Br6i0.993.384.339 (5)163
C14—H14A···Br2ii0.983.384.350 (6)173
C14—H14B···Cl1i0.982.953.922 (5)169
C16—H16B···Cl2iii0.982.973.904 (5)160
N2—H2···Br11.002.593.499 (4)152
C21—H21B···Br5i0.993.124.005 (5)150
C22—H22C···Br40.983.204.139 (5)162
C23—H23A···Cl10.992.883.865 (5)171
C25—H25B···Br5i0.993.003.886 (4)149
C1—H1B···Br3iv0.992.813.729 (5)155
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.
Selected interatomic distances d (Å) for (Et3NH)2[UBr6] top
Atom 1Atom 2d
U1Br12.7835 (4)
Br22.7562 (4)
Br32.7847 (5)
Br42.7613 (4)
Br52.7631 (5)
Br62.7658 (4)
N1C111.500 (6)
C131.514 (6)
C151.515 (5)
N2C211.508 (5)
C231.517 (6)
C251.504 (5)
C1Cl11.756 (5)
Cl21.751 (5)
C11C121.521 (7)
C13C141.508 (6)
C15C161.506 (6)
C21C221.509 (6)
C23C241.511 (7)
C25C261.503 (6)
 

Funding information

FK thanks the Deutsche Forschungsgemeinschaft for very generous funding.

References

First citationAutillo, M. & Wilson, R. E. (2017). Inorg. Chem. 56, 4834–4839.  Google Scholar
First citationBohrer, R., Conradi, E. & Müller, U. (1988). Z. Anorg. Allg. Chem. 558, 119–127.  CSD CrossRef CAS Web of Science Google Scholar
First citationBois, C., Dao, N. Q. & Rodier, N. (1976). J. Inorg. Nucl. Chem. 38, 755–757.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2019). DIAMOND.Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaira, M. R., de Wet, J. F., du Preez, J. G. H. & Gellatly, B. J. (1978). Acta Cryst. B34, 1116–1120.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationConradi, E., Bohrer, R. & Müller, U. (1986). Chem. Ber. 119, 2582–2589.  CSD CrossRef CAS Web of Science Google Scholar
First citationDeubner, H. L., Rudel, S. S., Sachs, M., Pietzonka, C., Karttunen, A. J., Ivlev, S. I., Müller, M., Conrad, M., Müller, U. & Kraus, F. (2019). Chem. Eur. J. 25, 6402–6411.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationGatto, C. C., Lang, E. S. & Abrahm, U. (2003). Chem. Commun. 6, 1001–1003.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMüller, U., Klingelhöfer, P., Eicher, J. & Bohrer, R. (1984). Z. Kristallogr. 168, 121–131.  Google Scholar
First citationNikitenko, S. I., Hennig, C., Grigoriev, M. S., Naour, C. L., Cannes, C., Trubert, D., Bossé, E., Berthon, C. & Moisy, P. (2007). Polyhedron, 26, 3136–3142.  Web of Science CSD CrossRef CAS Google Scholar
First citationSerezhkina, L. B., Peresypkina, E. V., Virovets, A. V. & Neklyudova, N. A. (2010). Russ. J. Inorg. Chem. 55, 1020–1025.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStaritzky, E. & Singer, J. (1952). Acta Cryst. 5, 536–540.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationStoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2018). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWacker, J. N., Han, S. Y., Murray, A. V., Vanagas, N. A., Bertke, J. A., Sperling, J. M., Surbella, R. G. & Knope, K. E. (2019). Inorg. Chem. 58, 10578–10591.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds