research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of (E)-4-methyl-2-{[(2-methyl-3-nitro­phen­yl)imino]­meth­yl}phenol

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Samsun, Turkey, bDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar-842001, India, cKirikkale University, Department of Physics, Kirikkale 71450, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of, Chemistry, Samsun, Turkey, and eDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 20 July 2020; accepted 25 August 2020; online 4 September 2020)

The title compound, C15H14N2O3, was prepared by condensation of 2-hy­droxy-5-methyl-benzaldehyde and 2-methyl-3-nitro-phenyl­amine in ethanol. The configuration of the C=N bond is E. An intra­molecular O—H⋯N hydrogen bond is present, forming an S(6) ring motif and inducing the phenol ring and the Schiff base to be nearly coplanar [C—C—N—C torsion angle of 178.53 (13)°]. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming chains along the b-axis direction. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.2%), C⋯H (30.7%) and O⋯H (24.9%) inter­actions. The gas phase density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level is compared to the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Over the past 25 years, extensive research has surrounded the synthesis and use of Schiff base compounds in organic and inorganic chemistry, as they have important medicinal and pharmaceutical applications. These compounds show biological activities including anti­bacterial, anti­fungal, anti­cancer and herbicidal activities (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]; Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]; Karia & Parsania, 1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]). Schiff bases are also becoming increasingly important in the dye and plastics industries as well as for liquid-crystal technology and the mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Sheikhshoaie & Sharif, 2006[Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563-o3565.]). ortho-Hy­droxy Schiff base compounds such as the title compound can display two tautomeric forms, the enol–imine (OH) and keto–amine (NH) forms. Depending on the tautomers, two types of intra­molecular hydrogen bonds are generally observed in ortho-hy­droxy Schiff bases, namely, O—H⋯N in enol–imine and N—H⋯O in keto–amine tautomers (Tanak et al., 2010[Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577-587.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in synthesis, their excited state proton-transfer properties and as fluorescent chemosensors (Faizi et al., 2016[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366-1369.], 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]). We report herein on the synthesis, crystal structure as well as Hirshfeld surface analysis of the title compound (I)[link]. The results of calculations by density functional theory (DFT) on (I)[link] carried out at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is illustrated in Fig. 1[link]. There is an intra­molecular O1—H1⋯N1 hydrogen bond (Table 1[link] and Fig. 1[link]); this is a common feature also observed in related imine-phenol Schiff bases. It forms an S(6) ring motif and also induces the phenol ring and the Schiff base to be nearly coplanar, as indicated by the C3—C8—N1—C9 torsion angle of 178.53 (13)°. An intra­molecular C15—H15B⋯O2 inter­action is also observed. The phenol ring (C1–C8/O1) is inclined to the tolyl ring (C9–C14) by 37.57 (3)°, and the nitro group (N2/O2/O3) is inclined to the tolyl ring (C9—C14) by 35.05 (2)°. The configuration of the C8=N1 bond is E. The C4—O1 distance is 1.3455 (18) Å, which is close to normal values reported for single C—O bonds in phenols and salicyl­idene­amines (Ozeryanskii et al., 2006[Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamienski, B., Sawka- Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782-790.]). The N1—C8 bond is short at 1.2782 (19) Å, strongly indicating a C=N double bond, while the long C8—C3 bond [1.4486 (18) Å] implies a single bond. All of these data support the existence of the phenol–imine tautomer for (I)[link] in the crystalline state. These features are similar to those observed in related 4-di­methyl­amino-N-salicylideneanilines (Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O1i 0.96 2.54 3.468 (2) 163
C14—H14⋯O2i 0.93 2.40 3.2064 (19) 145
C15—H15B⋯O2 0.96 2.33 2.840 (2) 113
O1—H1⋯N1 0.95 (3) 1.78 (3) 2.6032 (16) 143 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond (Table1) is shown as a dashed line.

3. Supra­molecular features

In the crystal, mol­ecules are linked by two inter­molecular inter­actions, C14—H14⋯O2i and C7—H7C⋯O1i, resulting in the formation of an infinite chain along the b-axis direction (Fig. 2[link] and Table 1[link]).

[Figure 2]
Figure 2
A view along the a axis of the chain formed by C—H⋯O inter­actions (dashed lines; see Table 1[link] for details).

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

Hirshfeld surface analysis, together with two-dimensional fingerprint plots, is a powerful tool for the visualization and inter­pretation of inter­molecular contacts in mol­ecular crystals, since it provides a concise description of all inter­molecular inter­actions present in a crystal structure (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). All surfaces and fingerprint plots were generated using CrystalExplorer3.1 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]). The mappings of dnorm and shape-index for the title structure are shown in Fig. 3[link]a and 3c, respectively, with the prominent hydrogen-bonding inter­actions shown as intense red spots. The red colour indicates regions with shorter inter­molecular contacts, while blue colour shows regions with longer contact distance in the Hirshfeld surface. The darkest red spots on the Hirshfeld surface indicate contact points with atoms participating in inter­molecular C—H⋯O inter­actions that involve C14—H14 and the O2 of the nitro group (Table 1[link], Fig. 3[link]b). The two-dimensional fingerprint plots (Fig. 4[link]af) provide information about the percentage contributions of the various inter­atomic contacts. The most important are H⋯H inter­actions, which contribute 37.2% to the total Hirshfeld surface. Other contributions are from C⋯H (30.7%), O⋯H (24.9%), N⋯H (2.0%) and C⋯O (1.8%) contacts. There are also smaller contributions (not shown in Fig. 4[link]) from O⋯O (1.7%), N⋯O (1.1%) and C⋯N (0.6%) contacts. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C inter­actions are induced dipole-dispersive (or van der Waals) inter­actions while O⋯H inter­actions are responsible for hydrogen bonds, which play important roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 3]
Figure 3
A view of the Hirshfeld surface mapped over (a) dnorm (b) C—H⋯O inter­actions and (c) shape-index.
[Figure 4]
Figure 4
The overall two-dimensional fingerprint plot and those delineated into (b) H⋯H (37.2%), (c) C⋯H/H⋯C (30.7%), (d) O⋯H/H⋯O (24.9%), (e) N⋯H/H⋯N (2.0%) and (f) C⋯O/O⋯C (1.8%) contacts.

5. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 2[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. The electronic, optical and chemical reactivity properties of compounds are predicted by their frontier mol­ecular orbitals (Tanak, 2019[Tanak, H. (2019). ChemistrySelect 4, 10876-10883.]). The HOMO–LUMO gap is used to analyse the chemical reactivity and stability of a mol­ecule. A mol­ecule with a small frontier orbital gap is more polarizable than one with a large gap and is considered a soft mol­ecule because of its high chemical reactivity and low kinetic stability. If the mol­ecule has a large HOMO–LUMO gap, the mol­ecule is more stable and less chemically reactive. The term `hard mol­ecule' is used to describe such cases. The electron affinity (A = −EHOMO), the ionization potential (I = −ELUMO), HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) of the title compound were predicted based on the EHOMO and ELUMO energies. As a result of the large ΔE and η values (Table 3[link]), the title compound can be classified as a hard mol­ecule. The electron distribution of the HOMO−1, HOMO, LUMO and the LUMO+1 energy levels for the title compound is shown in Fig. 5[link]. The DFT study shows that HOMO and LUMO are localized in the plane extending from the whole 2-hy­droxy-5-methyl-benzaldehyde ring to the 2-methyl-3-nitro­phenyl­amine ring. The HOMO, HOMO−1 and LUMO+1 orbitals are delocalized over the two phenyl rings connected by the Schiff base bridge and HOMO and HOMO-1 can be said to be π-bonding orbitals. The LUMO orbital is delocalized on the 2-methyl-3-nitro­phenyl­amine ring and the C atom of the Schiff base. The LUMO and LUMO+1 orbitals exhibit π* anti­bonding character. The energy gap of (I)[link] is 3.7160 eV, similar to that reported for the Schiff bases (E)-2-{[(3-chloro­phen­yl)imino]­meth­yl}-6-methyl­phenol (ΔE = 4.069 eV; Faizi et al., 2019[Faizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987-990.]) and (E)-2-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile (ΔE = 3.520 eV; Saraçoğlu et al., 2020[Saraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141-144.]).

Table 2
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °)

Parameter X-ray B3LYP/6–311G(d,p)
O1—C4 1.3455 (18) 1.3406
N1—C8 1.2782 (19) 1.2946
N2—C11 1.4728 (19) 1.4763
C9—N1 1.4169 (17) 1.4080
C8—C3 1.4486 (18) 1.4457
N1—C8—C3 121.84 (13) 122.41
C8—N1—C9 120.92 (12) 120.91
O2—N2—O3 122.32 (14) 124.17

Table 3
The energy band gap of the title compound

Mol­ecular Energy, (eV) Compound (I)
Total Energy, TE (eV) −24894.6063
EHOMO (eV) −6.0091
ELUMO (eV) −2.2931
Gap, ΔE (eV) 3.7160
Dipole moment, μ (Debye) 6.545
Ionization potential, I (eV) 6.009
Electron affinity, A 2.293
Electronegativity, χ 4.151
Hardness, η 1.858
Electrophilicity index, ω 4.636
Softness, σ 0.269
Fraction of electron transferred, ΔN 0.744
[Figure 5]
Figure 5
The energy band gap of the title compound.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-4-methyl-2-[(2-methyl-3-nitro-phenyl­imino)­meth­yl]phenol moiety resulted in no hits when both methyl groups were included in the search. Without the methyl groups, seven related compounds were found. Out of these, few are very similar to the title compound and some are metal complexes such as di­azido-[2,2′-{(4-nitro-1,2-phen­yl­­ene)bis­[(nitrilo)­methylyl­idene]}bis­(4-methyl­pheno­lato)]man­ganese (AGUGAN; Quan, 2018[Quan, H. Y. (2018). Russ. J. Coord. Chem. 44, 32-38.]), where the ligand is similar to the title compound. There are two iron complexes, viz. {2-[({2-[bis­(3,5-di-t-butyl-2-oxybenz­yl)amino]-4,5-di­nitro­phen­yl}imino)­meth­yl]-4,6-di-t-butyl­phenolato}iron(III) meth­anol solvate hemihydrate (AROVIO; Wickramasinghe et al., 2016[Wickramasinghe, L. D., Mazumder, S., Kpogo, K. K., Staples, R. J., Schlegel, H. B. & Verani, C. N. (2016). Chem. Eur. J. 22, 10786-10790.]) in which a t-butyl group is present and chloro-{2,4-di-t-butyl-6-[({2-[(3,5-di-t-butyl-2-oxybenzyl­idene)amino]-4,5-di­nitro­phen­yl}imino)­meth­yl]phenolato}iron(III) (AROVOU; Wickramasinghe et al., 2016[Wickramasinghe, L. D., Mazumder, S., Kpogo, K. K., Staples, R. J., Schlegel, H. B. & Verani, C. N. (2016). Chem. Eur. J. 22, 10786-10790.]) in which two nitro groups are attached to one aromatic ring. A nickel complex [N,N′-(4,5-di­nitro-1,2-phenyl­ene)bis­(3,5-di-t-butyl­salicylaldiminato)]nickel(II) methanol solvate (BOQPAZ; Rotthaus et al., 2009[Rotthaus, O., Jarjayes, O., Philouze, C., Del Valle, C. P. & Thomas, F. (2009). Dalton Trans. pp. 1792-1800.]) and a cobalt complex with a similar ligand {2,2′-[{[2-({[3,5-di-t-butyl-2-oxyphen­yl]methyl­idene}amino)-4,5-di­nitro­phen­yl]aza­nedi­yl}bis­(methyl­ene)]bis­(4,6-di-t-butyl­phenolato)}meth­ano­lcobalt(III) methanol solvate (FORJOO; Basu et al., 2019[Basu, D., Mazumder, S., Kpogo, K. K. & Verani, C. N. (2019). Dalton Trans. 48, 14669-14677.]) have also been reported. The compound most analogous to the title compound is N-(3,5-di-t-butyl­salicyl­idene)-3-nitro­aniline (KIPMEB; Harada et al., 1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]; KIPMEB03; Koshima et al., 2011[Koshima, H., Takechi, K., Uchimoto, H., Shiro, M. & Hashizume, D. (2011). Chem. Commun. 47, 11423-11425.]) in which a t-butyl group is present. In all of the above structures except AGUGAN, both methyl groups are absent and this structure is the most similar to the title compound.

7. Synthesis and crystallization

The title compound was prepared by refluxing mixed solutions of 2-hy­droxy-5-methyl-benzaldehyde (38.0 mg, 0.28 mmol) in ethanol (15 ml) and 2-methyl-3-nitro-phenyl­amine (42.0 mg, 0.28 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, yellow prisms, m.p. 410–412 K).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hy­droxy H atom was located in a difference-Fourier map and positional parameters were refined freely, Uiso(H) = 1.5Ueq(O). Other H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (meth­yl) or 0.93 Å (aromatic), Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C15H14N2O3
Mr 270.28
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 7.3925 (3), 15.4082 (6), 23.5750 (9)
V3) 2685.31 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.72 × 0.66 × 0.59
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.935, 0.968
No. of measured, independent and observed [I > 2σ(I)] reflections 18040, 3618, 2258
Rint 0.035
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.04
No. of reflections 3618
No. of parameters 187
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.13
Computer programs: X-AREA, X-RED32 and X-SHAPE (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: X-AREA, X-RED32 and X-SHAPE (Stoe & Cie, 2002); cell refinement: X-AREA, X-RED32 and X-SHAPE (Stoe & Cie, 2002); data reduction: X-AREA, X-RED32 and X-SHAPE (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2020).

(E)-4-Methyl-2-{[(2-methyl-3-nitrophenyl)imino]methyl}phenol top
Crystal data top
C15H14N2O3Dx = 1.337 Mg m3
Mr = 270.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 15516 reflections
a = 7.3925 (3) Åθ = 1.6–29.6°
b = 15.4082 (6) ŵ = 0.10 mm1
c = 23.5750 (9) ÅT = 296 K
V = 2685.31 (18) Å3Prism, yellow
Z = 80.72 × 0.66 × 0.59 mm
F(000) = 1136
Data collection top
STOE IPDS 2
diffractometer
3618 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2258 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.035
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 1.7°
rotation method scansh = 810
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1920
Tmin = 0.935, Tmax = 0.968l = 3232
18040 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0659P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.14 e Å3
3618 reflectionsΔρmin = 0.13 e Å3
187 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0039 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74349 (19)0.20861 (10)0.60276 (6)0.0596 (4)
C20.70581 (18)0.23031 (10)0.54705 (6)0.0559 (3)
H20.6466000.1899980.5243070.067*
C30.75324 (18)0.31034 (9)0.52368 (5)0.0519 (3)
C40.8454 (2)0.37053 (10)0.55780 (6)0.0577 (3)
C50.8823 (2)0.35005 (11)0.61387 (6)0.0665 (4)
H50.9421320.3898990.6368000.080*
C60.8309 (2)0.27125 (11)0.63571 (6)0.0650 (4)
H60.8550300.2591650.6736140.078*
C70.6923 (3)0.12209 (12)0.62715 (7)0.0773 (5)
H7A0.5923100.1292080.6527290.116*
H7B0.7935480.0982090.6473050.116*
H7C0.6581780.0834810.5970330.116*
C80.70208 (18)0.33130 (10)0.46597 (5)0.0544 (3)
H80.6404220.2901500.4445450.065*
C90.69171 (18)0.42321 (9)0.38670 (5)0.0525 (3)
C100.64261 (17)0.50918 (9)0.37357 (5)0.0515 (3)
C110.60096 (19)0.52470 (9)0.31696 (6)0.0546 (3)
C120.6044 (2)0.46167 (10)0.27547 (6)0.0668 (4)
H120.5717360.4749470.2383720.080*
C130.6565 (3)0.37947 (10)0.28964 (6)0.0723 (5)
H130.6619260.3365150.2619790.087*
C140.7012 (2)0.36023 (10)0.34503 (6)0.0630 (4)
H140.7380190.3043450.3544500.076*
C150.6285 (2)0.57517 (11)0.42042 (6)0.0680 (4)
H15A0.5803900.5480330.4538170.102*
H15B0.5498600.6214130.4087600.102*
H15C0.7464200.5981580.4285560.102*
N10.73931 (16)0.40478 (8)0.44366 (5)0.0563 (3)
N20.55057 (19)0.61224 (8)0.29747 (6)0.0675 (3)
O10.89814 (18)0.44842 (7)0.53800 (5)0.0778 (4)
O20.6215 (2)0.67456 (8)0.31898 (6)0.0945 (4)
O30.4416 (2)0.61880 (9)0.25937 (6)0.1073 (5)
H10.864 (4)0.4546 (18)0.4992 (14)0.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0528 (8)0.0715 (9)0.0545 (7)0.0031 (7)0.0025 (6)0.0003 (6)
C20.0493 (7)0.0632 (9)0.0551 (7)0.0006 (6)0.0014 (5)0.0070 (6)
C30.0469 (7)0.0589 (8)0.0500 (6)0.0036 (6)0.0001 (5)0.0051 (6)
C40.0574 (8)0.0598 (9)0.0559 (7)0.0002 (6)0.0020 (6)0.0057 (6)
C50.0723 (10)0.0711 (10)0.0562 (8)0.0027 (8)0.0083 (7)0.0112 (7)
C60.0647 (9)0.0796 (11)0.0506 (7)0.0056 (8)0.0038 (6)0.0021 (7)
C70.0793 (11)0.0836 (12)0.0690 (10)0.0088 (9)0.0052 (8)0.0130 (8)
C80.0489 (7)0.0604 (9)0.0540 (7)0.0006 (6)0.0003 (6)0.0071 (6)
C90.0496 (7)0.0577 (8)0.0501 (6)0.0001 (6)0.0031 (5)0.0052 (6)
C100.0443 (7)0.0561 (8)0.0542 (7)0.0011 (6)0.0020 (5)0.0075 (6)
C110.0551 (8)0.0520 (8)0.0567 (7)0.0036 (6)0.0031 (6)0.0013 (6)
C120.0860 (11)0.0665 (9)0.0480 (7)0.0063 (8)0.0029 (7)0.0029 (6)
C130.1020 (13)0.0614 (9)0.0535 (8)0.0023 (8)0.0097 (8)0.0112 (7)
C140.0770 (10)0.0534 (8)0.0585 (8)0.0046 (7)0.0071 (7)0.0039 (6)
C150.0735 (10)0.0661 (9)0.0644 (8)0.0095 (8)0.0050 (7)0.0177 (7)
N10.0543 (6)0.0622 (7)0.0523 (6)0.0026 (5)0.0007 (5)0.0029 (5)
N20.0747 (9)0.0625 (8)0.0654 (7)0.0006 (7)0.0020 (6)0.0020 (6)
O10.0998 (9)0.0647 (7)0.0687 (6)0.0177 (6)0.0139 (6)0.0025 (5)
O20.1208 (11)0.0561 (7)0.1065 (9)0.0115 (7)0.0104 (8)0.0056 (6)
O30.1330 (13)0.0889 (9)0.1001 (9)0.0089 (9)0.0457 (9)0.0120 (7)
Geometric parameters (Å, º) top
C1—C21.3836 (19)C9—C101.4079 (19)
C1—C61.397 (2)C9—N11.4169 (17)
C1—C71.501 (2)C10—C111.3904 (19)
C2—C31.395 (2)C10—C151.5048 (19)
C2—H20.9300C11—C121.3787 (19)
C3—C41.4039 (19)C11—N21.4728 (19)
C3—C81.4486 (18)C12—C131.365 (2)
C4—O11.3455 (18)C12—H120.9300
C4—C51.386 (2)C13—C141.379 (2)
C5—C61.372 (2)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H15A0.9600
C7—H7A0.9600C15—H15B0.9600
C7—H7B0.9600C15—H15C0.9600
C7—H7C0.9600N2—O21.2057 (17)
C8—N11.2782 (19)N2—O31.2109 (18)
C8—H80.9300O1—H10.95 (3)
C9—C141.3826 (19)
C2—C1—C6117.00 (14)C14—C9—N1121.34 (13)
C2—C1—C7121.84 (14)C10—C9—N1117.45 (11)
C6—C1—C7121.16 (13)C11—C10—C9115.47 (12)
C1—C2—C3122.53 (13)C11—C10—C15124.95 (13)
C1—C2—H2118.7C9—C10—C15119.48 (12)
C3—C2—H2118.7C12—C11—C10123.76 (13)
C2—C3—C4118.64 (12)C12—C11—N2115.37 (12)
C2—C3—C8120.15 (12)C10—C11—N2120.86 (12)
C4—C3—C8121.17 (13)C13—C12—C11119.01 (14)
O1—C4—C5118.48 (13)C13—C12—H12120.5
O1—C4—C3122.08 (13)C11—C12—H12120.5
C5—C4—C3119.45 (14)C12—C13—C14119.91 (14)
C6—C5—C4120.31 (14)C12—C13—H13120.0
C6—C5—H5119.8C14—C13—H13120.0
C4—C5—H5119.8C13—C14—C9120.65 (14)
C5—C6—C1122.04 (13)C13—C14—H14119.7
C5—C6—H6119.0C9—C14—H14119.7
C1—C6—H6119.0C10—C15—H15A109.5
C1—C7—H7A109.5C10—C15—H15B109.5
C1—C7—H7B109.5H15A—C15—H15B109.5
H7A—C7—H7B109.5C10—C15—H15C109.5
C1—C7—H7C109.5H15A—C15—H15C109.5
H7A—C7—H7C109.5H15B—C15—H15C109.5
H7B—C7—H7C109.5C8—N1—C9120.92 (12)
N1—C8—C3121.84 (13)O2—N2—O3122.32 (14)
N1—C8—H8119.1O2—N2—C11119.22 (13)
C3—C8—H8119.1O3—N2—C11118.44 (13)
C14—C9—C10121.14 (12)C4—O1—H1110.3 (17)
C6—C1—C2—C30.6 (2)N1—C9—C10—C154.75 (19)
C7—C1—C2—C3179.72 (14)C9—C10—C11—C120.6 (2)
C1—C2—C3—C41.1 (2)C15—C10—C11—C12175.87 (15)
C1—C2—C3—C8176.78 (13)C9—C10—C11—N2178.94 (12)
C2—C3—C4—O1178.89 (13)C15—C10—C11—N24.6 (2)
C8—C3—C4—O13.3 (2)C10—C11—C12—C132.0 (2)
C2—C3—C4—C51.7 (2)N2—C11—C12—C13177.53 (15)
C8—C3—C4—C5176.10 (14)C11—C12—C13—C141.3 (3)
O1—C4—C5—C6179.93 (14)C12—C13—C14—C90.8 (3)
C3—C4—C5—C60.7 (2)C10—C9—C14—C132.3 (2)
C4—C5—C6—C11.1 (2)N1—C9—C14—C13179.18 (14)
C2—C1—C6—C51.8 (2)C3—C8—N1—C9178.53 (12)
C7—C1—C6—C5178.60 (15)C14—C9—N1—C836.9 (2)
C2—C3—C8—N1178.24 (13)C10—C9—N1—C8146.03 (13)
C4—C3—C8—N10.4 (2)C12—C11—N2—O2144.51 (15)
C14—C9—C10—C111.5 (2)C10—C11—N2—O235.0 (2)
N1—C9—C10—C11178.59 (12)C12—C11—N2—O333.9 (2)
C14—C9—C10—C15178.20 (14)C10—C11—N2—O3146.51 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O1i0.962.543.468 (2)163
C14—H14···O2i0.932.403.2064 (19)145
C15—H15B···O20.962.332.840 (2)113
O1—H1···N10.95 (3)1.78 (3)2.6032 (16)143 (3)
Symmetry code: (i) x+3/2, y1/2, z.
Comparison of selected observed (X-ray data) and calculated (DFT) geometric parameters (Å, °) top
ParameterX-rayB3LYP/6–311G(d,p)
O1—C41.3455 (18)1.3406
N1—C81.2782 (19)1.2946
N2—C111.4728 (19)1.4763
C9—N11.4169 (17)1.4080
C8—C31.4486 (18)1.4457
N1—C8—C3121.84 (13)122.41
C8—N1—C9120.92 (12)120.91
O2—N2—O3122.32 (14)124.17
The energy band gap of the title compound top
Molecular Energy, (eV)Compound (I)
Total Energy, TE (eV)-24894.6063
EHOMO (eV)-6.0091
ELUMO (eV)-2.2931
Gap, ΔE (eV)3.7160
Dipole moment, µ (Debye)6.545
Ionization potential, I (eV)6.009
Electron affinity, A2.293
Electronegativity, χ4.151
Hardness, η1.858
Electrophilicity index, ω4.636
Softness, σ0.269
Fraction of electron transferred, ΔN0.744
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBasu, D., Mazumder, S., Kpogo, K. K. & Verani, C. N. (2019). Dalton Trans. 48, 14669–14677.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N., Çiçek, C., Agar, E. & Fritsky, I. O. (2019). Acta Cryst. E75, 987–990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKoshima, H., Takechi, K., Uchimoto, H., Shiro, M. & Hashizume, D. (2011). Chem. Commun. 47, 11423–11425.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationOzeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamienski, B., Sawka- Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.  Web of Science CSD CrossRef Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationQuan, H. Y. (2018). Russ. J. Coord. Chem. 44, 32–38.  Google Scholar
First citationRotthaus, O., Jarjayes, O., Philouze, C., Del Valle, C. P. & Thomas, F. (2009). Dalton Trans. pp. 1792–1800.  Web of Science CSD CrossRef Google Scholar
First citationSaraçoğlu, H., Doğan, O. E., Ağar, T., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 141–144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTanak, H. (2019). ChemistrySelect 4, 10876–10883.  Web of Science CrossRef CAS Google Scholar
First citationTanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickramasinghe, L. D., Mazumder, S., Kpogo, K. K., Staples, R. J., Schlegel, H. B. & Verani, C. N. (2016). Chem. Eur. J. 22, 10786–10790.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds