research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-2-{[(2-iodo­phen­yl)imino]­meth­yl}-6-methyl­phenol

CROSSMARK_Color_square_no_text.svg

aSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, bYeditepe University, Department of Chemical Engineering, 34755, İstanbul, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, eDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, UP, India, and fDepartment of Computer and Electronic Engineering Technology, Sana'a Community, College, Sana'a, Yemen
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

Edited by M. Zeller, Purdue University, USA (Received 27 July 2020; accepted 31 August 2020; online 4 September 2020)

The title compound, C14H12INO, was synthesized by condensation of 2-hy­droxy-3-methyl­benzaldehyde and 2-iodo­aniline, and crystallizes in the ortho­rhom­bic space group P212121. The 2-iodo­phenyl and benzene rings are twisted with respect to each other, making a dihedral angle of 31.38 (2)°. The mol­ecular structure is stabilized by an O—H⋯N hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, resulting in the formation of sheets along the a-axis direction. Within the sheets, very weak ππ stacking inter­actions lead to additional stabilization. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (37.1%) and C⋯H (30.1%) contacts. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The crystal studied was refined as a two-component inversion twin.

1. Chemical context

Imines derived from o-hy­droxy aromatic carbonyls are of inter­est because of their ability to form an asymmetric intra­molecular hydrogen bond between the oxygen atom of the hydroxyl group and the nitro­gen atom of the imine moiety (Dominiak et al., 2003[Dominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Woźniak, K. (2003). Chem. Eur. J. 9, 963-970.]). This ability has a decisive impact on the biological and thermo- or photochromic properties of o-hy­droxy aromatic Schiff bases and makes them very useful compounds in chemistry, biochemistry, medicine, and technology (Vlad et al., 2018[Vlad, A., Avadanei, M., Shova, S., Cazacu, M. & Zaltariov, M.-F. (2018). Polyhedron, 146, 129-135.]; Bouhidel et al., 2018[Bouhidel, Z., Cherouana, A., Durand, P., Doudouh, A., Morini, F., Guillot, B. & Dahaoui, S. (2018). Inorg. Chim. Acta, 482, 34-47.]; Faizi et al., 2020a[Faizi, M. S. H., Alagöz, T., Ahmed, R., Cinar, E. B., Agar, E., Dege, N. & Mashrai, A. (2020a). Acta Cryst. E76, 1146-1149.],b[Faizi, M. S. H., Cinar, E. B., Aydin, A. S., Agar, E., Dege, N. & Mashrai, A. (2020b). Acta Cryst. E76, 1195-1200.]). A very important issue is determining the positions of tautomeric equilibria in these compounds and various instrumental research techniques are used to provide insight into the structure of mol­ecules of studied o-hy­droxy Schiff bases (Wojciechowski et al., 2003[Wojciechowski, G., Przybylski, P., Schilf, W., Kamieński, B. & Brzezinski, B. (2003). J. Mol. Struct. 649, 197-205.]; Faizi et al., 2020c[Faizi, M. S. H., Cinar, E. B., Aydin, A. S., Agar, E., Dege, N. & Mashrai, A. (2020c). Acta Cryst. E76, 1320-1324.],d[Faizi, M. S. H., Cinar, E. B., Dogan, O. E., Aydin, A. S., Agar, E., Dege, N. & Mashrai, A. (2020d). Acta Cryst. E76, 1325-1330.]).

[Scheme 1]

In the present study, a new Schiff base, (E)-2-{[(2-iodo­phen­yl)imino]­meth­yl}-6-methyl­phenol, was obtained in crystalline form from the reaction of 2-hy­droxy-3-meth­yl­benzaldehyde with 2-iodo­aniline. We report here the synthesis and the crystal and mol­ecular structures of the title compound, along with the results of a Hirshfeld surface analysis.

2. Structural commentary

Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in enol–imine and N—H⋯O in keto–amine tautomers. Most of these compounds are non-planar. The title compound, (I)[link], is a Schiff base derivative from 2-hy­droxy-3-methyl­benzaldehyde, which crystallizes in the phenol–imine tautomeric form with an E configurationfor the imine functionality. The asymmetric unit of (I)[link] contains one mol­ecule (Fig. 1[link]). The mol­ecule is non-planar with the 2-iodo­phenyl and benzene rings twisted with respect to each other at a dihedral angle of 31.38 (2)°. The hydroxyl H atom is involved in a strong intra­molecular O—H⋯N hydrogen bond, forming an S(6) ring motif, which stabilizes the mol­ecular structure and induces the Schiff base atoms (N1, C7) to be coplanar with the methyl­phenol moiety. Of this planar unit (r.m.s deviation = 0.0274 Å), atoms O1 and N1 show the largest deviations from planarity in positive and negative directions [O1 = 0.035 (4) Å and N1 = −0.060 (4) Å]. The C7—N1 and C13—O1 bonds of the title compound are the most important indicators of the tautomeric type. The C13—O1 bond is of double-bond character for the keto–amine tautomer, whereas this bond displays single-bond character in the enol–imine tautomer. In addition, the C7—N1 bond is also a double bond in the enol–imine tautomer and a single bond length in the keto–amine tautomer. In the title compound, the enol–imine form is favored over the keto-amine form, as indicated by the C13—O1 [1.352 (6) Å] and C7—N1 [1.286 (8) Å] bonds, whose lengths indicate a high degree of single-bond and double-bond character, respectively. The shortest C—C distance (C3—C4) is 1.344 (11) Å in the C1–C6 ring with the weighted average ring bond distance being 1.376 (11) Å for this ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. The intra­molecular N—H⋯O hydrogen bond (Table 1[link]) is indicated by a dashed line. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal structure, the mol­ecules are connected into sheets extending along the a-axis direction by C2—H2⋯Cg2i inter­actions (Table 1[link]; Fig. 2[link]). Within the sheets, very weak ππ stacking inter­actions are observed with a centroid-to-centroid distance Cg1⋯Cg2ii of 4.093 (2) Å (Fig. 3[link]), where Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.93 (7) 1.82 (7) 2.634 (6) 144 (6)
C2—H2⋯Cg2i 0.93 2.97 (6) 3.7445 (4) 142 (4)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound in a view parallel to the bc plane. C—H⋯π(ring) inter­actions are indicated by dashed lines.
[Figure 3]
Figure 3
A view of the crystal packing of the title compound along the a axis. π(Cg1)⋯π(Cg2) inter­actions are indicated by dashed lines.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surfaces and the associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the structure. The Hirshfeld surfaces (dnorm and shape-index) of the title compound are illustrated in Fig. 4[link]. There are no prominent red spots on the surface, hence most of the inter­actions are weak non-covalent inter­actions. The diffuse white areas identified in Fig. 4[link]a and red areas on phenyl rings mapped with shape-index (Fig. 4[link]b) correspond to the H⋯π contacts resulting from hydrogen bond C—H⋯π(ring) (Table 1[link]) and ππ stacking inter­actions. The major inter­molecular inter­actions in the crystal structure are H⋯H, H⋯C and H⋯I inter­actions, which make individual contributions of 37.1%, 30.1% and 18%, respectively. The fingerprint plots are shown in Fig. 5[link]. There are also O⋯H (6.4%), N⋯H (3.6%) and C⋯C (23.3%) contacts. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and C⋯H inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing.

[Figure 4]
Figure 4
The Hirshfeld surfaces of the title compound mapped over (a) dnorm and (b) shape-index.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, with a dnorm view and the relative contribution of the atom pairs to the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-2-[(2-iodo­phenyl­imino)­meth­yl]phenol gave six hits: bis­[N-(2-iodo­phen­yl)-2-oxynaphthaldiminato-N,O]copper(II) (HABFIA; Unver, 2002[Ünver, H. (2002). J. Mol. Struct. 641, 35-40.]), bis­(m-methano­lato)bis­(2-{[(5,7-di­iodo­quinolin-8-yl)imino]­meth­yl}phenolato)bis­(iso­thio­cyan­ato)­diiron(III) methanol solvate (HIDJOW; Sahadevan et al., 2018[Sahadevan, A. S., Cadoni, E., Monni, N., Sáenz de Pipaón, C., Galan Mascaros, J., Abhervé, A., Avarvari, N., Marchiò, L., Arca, M. & Mercuri, M. L. (2018). Cryst. Growth Des. 18, 4187-4199.]), bis­(m-oxo)bis­(m-methano­lato)tetra­kis­(2-{[(5,7-di­iodo­quinolin-8-yl)imino]­meth­yl}phenolato)bis­(iso­thio­cyanato)­tetra­iron(III) di­chloro­methane solvate (HIDJUC; Sahadevan et al., 2018[Sahadevan, A. S., Cadoni, E., Monni, N., Sáenz de Pipaón, C., Galan Mascaros, J., Abhervé, A., Avarvari, N., Marchiò, L., Arca, M. & Mercuri, M. L. (2018). Cryst. Growth Des. 18, 4187-4199.]), 2-{[(5,7-di­iodo­quinolin-8-yl)imino]­meth­yl}phenol (HIDKAJ; Sahadevan et al., 2018[Sahadevan, A. S., Cadoni, E., Monni, N., Sáenz de Pipaón, C., Galan Mascaros, J., Abhervé, A., Avarvari, N., Marchiò, L., Arca, M. & Mercuri, M. L. (2018). Cryst. Growth Des. 18, 4187-4199.]), 2-iodo-salicylideneaniline (QQQANJ; Bernstein, 1967[Bernstein, J. L. (1967). Acta Cryst. 22, 747-748.]) and 2-[(2-iodo­phen­yl)imino­meth­yl]phenol (RAVTIR; Elmali & Elerman, 1997[Elmali, A. & Elerman, Y. (1997). Acta Cryst. C53, 791-793.]). In HABFIA, the C—O bond length is 1.293 (3) Å, compared to 1.339 (5) Å for this bond in RAVTIR. Similar values are observed in the crystal of the title compound. The C—N bond lengths are 1.306 (3) and 1.267 (5) Å in HABFIA and RAVTIR, respectively. The mol­ecules of HABFIA and RAVTIR have the same configuration as the title compound, while the other compounds listed above have different configurations.

6. Synthesis and crystallization

The title compound was prepared by refluxing mixed solutions of 2-hy­droxy-3-methyl­benzaldehyde (34.0 mg, 0.25 mmol) in ethanol (20 ml) and 2-iodo­aniline (54.7 mg, 0.25 mmol) in ethanol (20 ml). The reaction mixture was stirred for 4 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 72%, m.p. 410–412 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed according to the difference-Fourier map and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. Hydroxyl H atoms were placed according to a difference-Fourier map and were freely refined. The crystal studied was refined as a two-component inversion twin. This reflection file contains the non-overlapping reflections of the two twin components as well as the overlapping reflections. The BASF parameter for this two-component twin refined to −0.03242 (8).

Table 2
Experimental details

Crystal data
Chemical formula C14H12INO
Mr 337.15
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 8.1730 (4), 11.8143 (9), 13.1721 (8)
V3) 1271.88 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.50
Crystal size (mm) 0.66 × 0.34 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.365, 0.784
No. of measured, independent and observed [I > 2σ(I)] reflections 5163, 2482, 1949
Rint 0.033
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.063, 0.92
No. of reflections 2482
No. of parameters 160
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.21
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

(E)-2-{[(2-Iodophenyl)imino]methyl}-6-methylphenol top
Crystal data top
C14H12INODx = 1.761 Mg m3
Mr = 337.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6431 reflections
a = 8.1730 (4) Åθ = 2.5–32.6°
b = 11.8143 (9) ŵ = 2.50 mm1
c = 13.1721 (8) ÅT = 296 K
V = 1271.88 (14) Å3Rod, orange
Z = 40.66 × 0.34 × 0.13 mm
F(000) = 656
Data collection top
Stoe IPDS 2
diffractometer
2482 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1949 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.9°
rotation method scansh = 810
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.365, Tmax = 0.784l = 1216
5163 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0304P)2]
where P = (Fo2 + 2Fc2)/3
2482 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5327 (7)0.7863 (4)0.8238 (6)0.0512 (13)
C20.6359 (10)0.8192 (5)0.9003 (6)0.0664 (19)
H20.5985220.8667800.9514940.080*
C30.7966 (11)0.7810 (6)0.9008 (6)0.076 (2)
H30.8677150.8038610.9518990.092*
C40.8492 (8)0.7109 (5)0.8273 (7)0.0720 (18)
H40.9565170.6847030.8284680.086*
C50.7452 (7)0.6773 (5)0.7497 (6)0.0632 (17)
H50.7835070.6291180.6992350.076*
C60.5849 (7)0.7150 (5)0.7469 (5)0.0508 (14)
C70.5196 (7)0.6589 (5)0.5815 (5)0.0523 (13)
H70.6281760.6723000.5642000.063*
C80.4100 (7)0.6148 (4)0.5043 (5)0.0475 (14)
C90.4719 (8)0.5869 (5)0.4092 (5)0.0599 (17)
H90.5822020.5989020.3954350.072*
C100.3738 (9)0.5425 (5)0.3361 (6)0.0661 (17)
H100.4167580.5232170.2730230.079*
C110.2093 (10)0.5262 (5)0.3564 (5)0.0624 (17)
H110.1422970.4963730.3059860.075*
C120.1420 (8)0.5532 (5)0.4495 (5)0.0535 (15)
C130.2432 (7)0.5988 (4)0.5232 (5)0.0486 (15)
C140.0374 (8)0.5358 (6)0.4703 (7)0.075 (2)
H14A0.0504820.4937800.5321750.113*
H14B0.0858320.4945270.4152010.113*
H14C0.0902420.6079940.4768420.113*
I10.29233 (6)0.84637 (4)0.82323 (4)0.07511 (17)
O10.1754 (5)0.6247 (4)0.6139 (4)0.0648 (12)
N10.4728 (6)0.6802 (3)0.6727 (5)0.0507 (11)
H10.254 (8)0.660 (5)0.654 (6)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.050 (3)0.053 (3)0.005 (2)0.002 (4)0.002 (3)
C20.074 (5)0.058 (4)0.067 (5)0.010 (3)0.003 (4)0.005 (3)
C30.073 (5)0.075 (4)0.081 (5)0.014 (4)0.025 (5)0.001 (4)
C40.058 (4)0.068 (3)0.090 (5)0.005 (3)0.015 (5)0.004 (5)
C50.050 (4)0.057 (4)0.083 (5)0.002 (3)0.002 (3)0.007 (3)
C60.049 (4)0.047 (3)0.057 (4)0.002 (3)0.007 (3)0.001 (3)
C70.049 (3)0.050 (3)0.058 (4)0.002 (3)0.008 (3)0.001 (3)
C80.046 (3)0.050 (3)0.046 (3)0.003 (2)0.002 (3)0.003 (2)
C90.054 (4)0.070 (4)0.056 (4)0.001 (3)0.015 (3)0.003 (3)
C100.074 (5)0.073 (4)0.051 (4)0.006 (4)0.008 (4)0.012 (4)
C110.072 (4)0.061 (3)0.054 (4)0.001 (4)0.018 (4)0.000 (3)
C120.049 (3)0.057 (3)0.055 (4)0.001 (3)0.006 (3)0.005 (3)
C130.045 (4)0.048 (3)0.053 (3)0.004 (2)0.004 (3)0.004 (3)
C140.053 (4)0.089 (4)0.084 (5)0.008 (4)0.009 (4)0.006 (4)
I10.0656 (3)0.0895 (3)0.0703 (3)0.0186 (2)0.0053 (3)0.0094 (3)
O10.049 (3)0.088 (3)0.057 (3)0.002 (2)0.009 (2)0.007 (2)
N10.047 (2)0.050 (2)0.055 (3)0.0006 (18)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
C1—C21.370 (10)C8—C91.390 (9)
C1—C61.385 (9)C8—C131.399 (8)
C1—I12.089 (6)C9—C101.359 (10)
C2—C31.389 (11)C9—H90.9300
C2—H20.9300C10—C111.384 (10)
C3—C41.344 (11)C10—H100.9300
C3—H30.9300C11—C121.382 (9)
C4—C51.387 (10)C11—H110.9300
C4—H40.9300C12—C131.384 (8)
C5—C61.384 (8)C12—C141.505 (9)
C5—H50.9300C13—O11.352 (7)
C6—N11.401 (8)C14—H14A0.9600
C7—N11.286 (8)C14—H14B0.9600
C7—C81.451 (9)C14—H14C0.9600
C7—H70.9300O1—H10.93 (7)
C2—C1—C6121.4 (6)C10—C9—C8121.0 (6)
C2—C1—I1119.0 (5)C10—C9—H9119.5
C6—C1—I1119.6 (5)C8—C9—H9119.5
C1—C2—C3119.6 (7)C9—C10—C11119.3 (7)
C1—C2—H2120.2C9—C10—H10120.3
C3—C2—H2120.2C11—C10—H10120.3
C4—C3—C2120.0 (7)C12—C11—C10121.8 (7)
C4—C3—H3120.0C12—C11—H11119.1
C2—C3—H3120.0C10—C11—H11119.1
C3—C4—C5120.7 (7)C11—C12—C13118.3 (6)
C3—C4—H4119.7C11—C12—C14121.2 (6)
C5—C4—H4119.7C13—C12—C14120.5 (6)
C6—C5—C4120.5 (6)O1—C13—C12117.6 (5)
C6—C5—H5119.7O1—C13—C8121.7 (6)
C4—C5—H5119.7C12—C13—C8120.7 (6)
C5—C6—C1117.8 (6)C12—C14—H14A109.5
C5—C6—N1122.9 (6)C12—C14—H14B109.5
C1—C6—N1119.2 (5)H14A—C14—H14B109.5
N1—C7—C8122.8 (6)C12—C14—H14C109.5
N1—C7—H7118.6H14A—C14—H14C109.5
C8—C7—H7118.6H14B—C14—H14C109.5
C9—C8—C13118.9 (6)C13—O1—H1109 (4)
C9—C8—C7119.4 (6)C7—N1—C6121.0 (5)
C13—C8—C7121.7 (6)
C6—C1—C2—C30.4 (10)C8—C9—C10—C110.9 (10)
I1—C1—C2—C3179.2 (5)C9—C10—C11—C120.5 (10)
C1—C2—C3—C40.9 (11)C10—C11—C12—C130.8 (9)
C2—C3—C4—C50.9 (11)C10—C11—C12—C14179.6 (6)
C3—C4—C5—C60.3 (11)C11—C12—C13—O1180.0 (5)
C4—C5—C6—C10.3 (9)C14—C12—C13—O11.2 (8)
C4—C5—C6—N1177.3 (6)C11—C12—C13—C81.4 (8)
C2—C1—C6—C50.2 (9)C14—C12—C13—C8179.8 (5)
I1—C1—C6—C5179.8 (5)C9—C8—C13—O1179.7 (5)
C2—C1—C6—N1177.4 (5)C7—C8—C13—O10.7 (8)
I1—C1—C6—N13.1 (8)C9—C8—C13—C121.7 (8)
N1—C7—C8—C9175.8 (6)C7—C8—C13—C12177.9 (5)
N1—C7—C8—C133.8 (9)C8—C7—N1—C6175.4 (5)
C13—C8—C9—C101.5 (9)C5—C6—N1—C733.7 (9)
C7—C8—C9—C10178.2 (6)C1—C6—N1—C7149.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.93 (7)1.82 (7)2.634 (6)144 (6)
C2—H2···Cg2i0.932.97 (6)3.7445 (4)142 (4)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

Funding information

Funding for this research was provided by: Ondokuz Mayıs University (award No. PYO.FEN.1906.19.001).

References

First citationBernstein, J. L. (1967). Acta Cryst. 22, 747–748.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBouhidel, Z., Cherouana, A., Durand, P., Doudouh, A., Morini, F., Guillot, B. & Dahaoui, S. (2018). Inorg. Chim. Acta, 482, 34–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationDominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Woźniak, K. (2003). Chem. Eur. J. 9, 963–970.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationElmali, A. & Elerman, Y. (1997). Acta Cryst. C53, 791–793.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFaizi, M. S. H., Alagöz, T., Ahmed, R., Cinar, E. B., Agar, E., Dege, N. & Mashrai, A. (2020a). Acta Cryst. E76, 1146–1149.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Cinar, E. B., Aydin, A. S., Agar, E., Dege, N. & Mashrai, A. (2020b). Acta Cryst. E76, 1195–1200.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Cinar, E. B., Aydin, A. S., Agar, E., Dege, N. & Mashrai, A. (2020c). Acta Cryst. E76, 1320–1324.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Cinar, E. B., Dogan, O. E., Aydin, A. S., Agar, E., Dege, N. & Mashrai, A. (2020d). Acta Cryst. E76, 1325–1330.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSahadevan, A. S., Cadoni, E., Monni, N., Sáenz de Pipaón, C., Galan Mascaros, J., Abhervé, A., Avarvari, N., Marchiò, L., Arca, M. & Mercuri, M. L. (2018). Cryst. Growth Des. 18, 4187–4199.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationÜnver, H. (2002). J. Mol. Struct. 641, 35–40.  Web of Science CSD CrossRef Google Scholar
First citationVlad, A., Avadanei, M., Shova, S., Cazacu, M. & Zaltariov, M.-F. (2018). Polyhedron, 146, 129–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationWojciechowski, G., Przybylski, P., Schilf, W., Kamieński, B. & Brzezinski, B. (2003). J. Mol. Struct. 649, 197–205.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds