research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Order versus disorder in two isomorphous pyrazolone-substituted di­ethyl propane­dioates prepared using a three-component one-pot reaction under solvent-free conditions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 17 August 2020; accepted 25 August 2020; online 8 September 2020)

Two new substituted propane­dioate esters have been synthesized using a three-component solvent-free thermal reaction between diethyl propane­dioate (diethyl malonate), 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and an aryl azide, forming two new C—C bonds in a single step. The products diethyl (RS)-2-[(4-bromo­phen­yl)(5-methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)meth­yl]propane­dioate, C24H25BrN2O5 (I), and diethyl (RS)-2-[(4-chloro­phen­yl)(5-methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)meth­yl]propane­dioate, C24H25ClN2O5 (II), are isomorphous, with Z′ = 2 in space group P21/n. The two independent mol­ecules in compound (I) are both fully ordered, while each of the independent mol­ecules in compound (II) is disordered, but in different ways. In one mol­ecule of (II), the N-phenyl ring is disordered over two sets of atomic sites having occupancies 0.635 (10) and 0.365 (10), and in the other mol­ecule the ester function is disordered over two sets of atomic sites having occupancies 0.690 (5) and 0.310 (5). In both structures, the two independent mol­ecules adopt different conformations and, in each structure, the mol­ecules are linked into complex sheets by a combination of N—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds. Comparisons are made with some related structures.

1. Chemical context

Pyrazoles exhibit a very wide range of pharmacological and other biological activities, which have recently been extensively reviewed (Ansari et al., 2017[Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16-41.]; Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134-210.]). In a continuation of a broadly based study of the synthesis and structures of novel pyrazole derivatives (Asma et al., 2018[Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783-1789.]; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 683-691.]; Shaibah et al., 2020a[Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 48-52.],b[Shaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360-365.]), we have now investigated a three-component reaction between di­ethyl­propane­dioate (di­ethyl­malonate), 5-chloro-3-methyl-1-phen­yl-1H-pyrazole-4-carbaldehyde and some aryl azides. Our expectation was that the methyl­ene group of the ester component would undergo a condensation reaction with the carbaldehyde function to provide a new electron-deficient alkene system, which would then undergo a 1,3-dipolar cyclo­addition with the aryl azide to provide pyrazole-substituted 1,2,3-triazoles. The reactions, carried out under thermal and solvent-free conditions, turned out to take an entirely different course, in which the azide group was lost and giving, instead of the anti­cipated products, the highly substituted esters diethyl (RS)-2-[(4-bromo­phen­yl)(5-methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)meth­yl]propane­dioate (I)[link] (Figs. 1[link] and 2[link]) and diethyl (RS)-2-[(4-chloro­phen­yl)(5-methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)meth­yl]propane­dioate (II)[link] (Figs. 3[link] and 4[link]). The yields were fairly low, in the range 35–40%, and the course of the reaction is unclear: the by-products must include HCl and HN3, and the H atoms in these by-products may well arise from thermal degradation of one or more of the reactants, particularly the ester component. However, despite the modest yields, compounds (I)[link] and (II)[link] are formed from readily accessible precursors in a very rapid process in which two new C—C bonds are formed in a single step. Here we report the synthesis of compounds (I)[link] and (II)[link], the reaction sequence for which is summarized in Fig. 5[link], and their mol­ecular and supra­molecular structures.

[Scheme 1]
[Figure 1]
Figure 1
The structure of the type 1 mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The structure of the type 2 mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The structure of the type 1 mol­ecule of (II)[link], showing the atom-labelling scheme and the disorder. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The structure of the type 2 mol­ecule of (II)[link], showing the atom-labelling scheme and the disorder. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.
[Figure 5]
Figure 5
The reaction sequence leading to the formation of compounds (I)[link] and (II)[link].

2. Structural commentary

Compounds (I)[link] and (II)[link] both crystallize with Z′ = 2 in space group P21/n, and they are isomorphous. However, while the mol­ecules in (I)[link] are both fully ordered (Figs. 1[link] and 2[link]), albeit with some evidence for large librational motion in one of the eth­oxy groups, both of the independent mol­ecules exhibit disorder in (II)[link]. In the type 1 mol­ecule of (II)[link], containing atom C121 (Fig. 3[link]), the unsubstituted phenyl ring is disordered over two sets of atomic sites having occupancies 0.635 (10) and 0.365 (10), and in the type 2 mol­ecule, containing atom C221 (Fig. 4[link]), the whole di­ethyl­malonate fragment is disordered over two sets of atomic sites having occupancies 0.690 (5) and 0.310 (5).

All of the mol­ecules contain a stereogenic centre, at atom C121 in the type 1 mol­ecules (Figs. 1[link] and 3[link]) and at atom C221 in the type 2 mol­ecules (Figs. 2[link] and 4[link]), and all of the reference mol­ecules were selected to have the R-configuration. The centrosymmetric space group confirms that both compounds have crystallized as racemic mixtures.

In both mol­ecules of compound (I)[link], the substituents on the Cx2—Cx21 bond (where x = 1 or 2; Figs. 1[link] and 2[link]) adopt a conformation that is almost fully staggered, with the two H atoms anti­periplanar (Table 1[link]); the same applies to compound (II)[link] (Figs. 3[link] and 4[link]), including both of the disorder components in the type 2 mol­ecule. However, comparison of other aspects of the mol­ecular conformations of the two independent mol­ecules in the ordered structure of (I)[link] shows some marked differences between the two mol­ecules (Table 1[link]; Figs. 1[link] and 2[link]). In particular, the components of the diester function in the two mol­ecules are very different, as exemplified by the values of the torsional angles Cx21—Cx2—Cx1—Ox2 and Cx21—Cx2—Cx3—Ox4 (Figs. 1[link] and 2[link]). Of the atoms in the eth­oxy groups, only atom C14 participates in the hydrogen bonding (Table 2[link]); while this may influence the conformation of the eth­oxy group O12/C14/C15, the other eth­oxy groups are most probably adopting conformations that reflect their efficient accommodation in the spaces available in the supra­molecular assembly generated by the hydrogen bonds (cf. Section 3 below). Similar remarks apply to the conformations of the disordered ester units in compound (II)[link], below. Similarly, the orientations of the aryl group in the two mol­ecules differ, as shown by the torsional angles Cx2—Cx21—Cx31—Cx32 and Nx41—Nx42—Cx51—Cx52 (where x = 1 or 2; Figs. 1[link] and 2[link]). These differences may be associated with the different hydrogen-bonding behaviour of the two mol­ecules. Thus, different ester units in the two mol­ecules are involved in hydrogen bonding (Table 2[link]). The aryl groups in both mol­ecules are involved in hydrogen bonding; the substituted ring provides donors in both mol­ecules, in a C—H⋯O hydrogen bond in the type 1 mol­ecule and in a C—H⋯π(arene) hydrogen bond in the type 2 mol­ecule, but only in the type 1 mol­ecule does the unsubstituted aryl ring act as a hydrogen-bond acceptor.

Table 1
Selected torsional angles (°)

Parameter (I), molecule 1 (x = 1) (I), molecule 2 (x = 2) (II), molecule 1 (x = 1) (II), molecule 2 (x = 2)
Cx1—Cx2—Cx21—Cx31 179.2 (3) −165.2 (4) 180.0 (2) −164.7 (6)
Cx3—Cx2—Cx21—Cx44 170.2 (3) −170.4 (3) 170.2 (2) −171.1 (4)
Hx2—Cx2—Cx21—Hx21 177 −167 178 −168
C31—C32—C221—C231       166.6 (13)
C33—C32—C221—C244       −171.1 (4)
H32—C32—C221—H221       −166
Cx21—Cx2—Cx1—Ox2 66.6 (5) −167.1 (4) 67.4 (3) −169.0 (4)
Cx2—Cx1—Ox2—Cx4 176.1 (4) −178.7 (5) 175.9 (3) 178.5 (7)
Cx1—Ox2—Cx4—Cx5 −83.1 (6) −95.2 (8) −83.5 (5) −87.7 (9)
C221—C22—C31—O32       −150.2 (13)
C22—C31—O32—C34       −170.0 (11)
C31—O32—C34—C35       158.1 (14)
Cx21—Cx2—Cx3—Ox4 164.5 (3) 102.9 (4) 163.3 (2) 111.7 (13)
Cx2—Cx3—Ox4—Cx6 177.3 (4) −176.5 (4) 177.8 (2) −179.1 (7)
Cx3—Ox4—Cx6—Cx7 175.9 (5) 154.1 (5) 177.7 (3) 150.7 (13)
C221—C22—C33—O34       95.3 (16)
C22—C33—O34—C36       −174 (2)
C33—O34—C36—C37       96 (2)
Cx2—Cx21—Cx31—Cx32 155.9 (4) 86.7 (5) 155.0 (2) 85.9 (6)
Cx2—Cx21—Cx44—Cx45 −113.8 (5) −135.8 (4) −117.6 (3) −133.1 (5)
Nx41—Nx42—Cx51—Cx52 −159.2 (4) 151.4 (4) −157.6 (7) 151.4 (3)
Nx41—Nx42—Cx61—Cx62     −157 (2)  

Table 2
Hydrogen-bond parameters (Å, °)

Cg1 and Cg2 represent the centroids of the rings (C151–C156) and (C161–C166).

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N141—H141⋯O243 0.86 (5) 1.85 (5) 2.678 (5) 162 (4)
  N241—H241⋯O143i 0.95 (4) 1.74 (4) 2.690 (5) 175 (4)
  C14—H14⋯O21ii 0.99 2.32 3.288 (7) 166
  C132—H132⋯O13iii 0.95 2.55 3.359 (5) 144
  C235—H235⋯Cg1 0.95 2.64 3.372 (6) 134
           
(II) N141—H141⋯O243 0.85 (3) 1.89 (3) 2.692 (3) 159 (3)
  N241—H241⋯O143i 0.86 (3) 1.85 (3) 2.703 (3) 172 (3)
  C14—H14⋯O21ii 0.99 2.38 3.346 (10) 166
  C132—H132⋯O13iii 0.95 2.58 3.416 (5) 147
  C235—H235⋯Cg1 0.95 2.72 3.439 (9) 133
  C235—H235⋯Cg2 0.95 2.72 3.439 (9) 133
Symmetry codes: (i) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z; (ii) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z; (iii) 1 − x, 1 − y, 1 − z.

In compound (II)[link], the conformations of the major disorder components are very similar to those of the corresponding mol­ecules of compound (I)[link], but those of the minor disorder components in the type 2 mol­ecule differ significantly (Table 1[link]; Fig. 4[link]), but the conformations of the two disorder components in the type 1 mol­ecule of (II)[link] differ only modestly (Table 2[link]; Fig. 3[link]).

In compound (II)[link] there is a rather short H⋯H contact, 1.79 Å, between the minor occupancy atom H163 in the reference mol­ecule 1 at (x, y, z) and the idealized riding site of the major occupancy atom H25A in mol­ecule 2 at (1 + x, y, z). However, the atom H25A forms part of a methyl group, and such methyl groups are likely to be undergoing extremely rapid rotations about the adjacent C—C bonds, particularly at ambient temperature (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]). Nonetheless, avoidance of this short contact distance would suggest that if the minor-occupancy form of mol­ecule 1 is present at (x, y, z), then mol­ecule 2 at (1 + x, y, z) will probably also be the minor-occupancy form. However, this does not imply any longer-range correlation between the disorder components, nor require any relationship between the disorder occupancy factors for the two independent mol­ecules.

Compounds (I)[link] and (II)[link] were crystallized under identical conditions, and their crystals thus obtained are isomorphous (Table 3[link]); it is therefore surprising to find that while the structure of compound (I)[link] is ordered, that of compound (II)[link] is disordered in two different ways, so that although these compounds are isomorphous, they cannot be regarded as strictly isostructural (cf. Acosta et al., 2009[Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92-o96.]; Yépes et al., 2012[Yépes, A. F., Palma, A., Marchal, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o199-o203.]). It is also surprising to note that the unit-cell volume, and hence the molar volume, is smaller for the bromo compound (I)[link] than for the chloro compound (II)[link], although the reverse relationship would be expected (Hofmann, 2002[Hofmann, D. W. M. (2002). Acta Cryst. B58, 489-493.]). The larger molar volume for (II)[link] is almost certainly associated with the disorder, but this does not shed any light on the underlying reasons for this disorder, as compared with the ordered structure of (I)[link]. Whether the larger volume is a consequence of the disorder or whether the disorder is actually a consequence of the larger molar volume, itself the result of some other factors, remains in doubt. In the absence of a systematic study of the effects of the crystallization regime on relationship between unit-cell volume and the order/disorder question, which we currently have no plans to undertake, any further comments could not be more than pure speculation.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C24H25BrN2O5 C24H25ClN2O5
Mr 501.36 456.91
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 150 150
a, b, c (Å) 13.5644 (5), 20.3405 (7), 17.4818 (8) 13.5609 (8), 20.280 (1), 17.728 (1)
β (°) 94.858 (4) 95.363 (5)
V3) 4806.0 (3) 4854.1 (5)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.75 0.19
Crystal size (mm) 0.44 × 0.32 × 0.24 0.46 × 0.44 × 0.34
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD detector Oxford Diffraction Xcalibur with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.351, 0.658 0.826, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 20004, 9476, 5653 20936, 9574, 6504
Rint 0.034 0.023
(sin θ/λ)max−1) 0.618 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.164, 1.03 0.067, 0.192, 1.03
No. of reflections 9476 9574
No. of parameters 589 746
No. of restraints 0 571
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.31, −1.37 1.06, −0.91
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Supra­molecular features

The hydrogen bonds formed by compounds (I)[link] and (II)[link] are very similar (Table 2[link]), so that it is necessary only to discuss in detail the supra­molecular assembly in compound (I)[link]. Within the selected asymmetric unit of (I)[link], the two mol­ecules are linked by an N—H⋯O hydrogen bond, and bimolecular units of this type that are related by the n-glide plane at y = 0.75 are linked by a second, almost linear N—H⋯O hydrogen bond to form a C22(10) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [101] direction. The formation of this chain is augmented by a C—H⋯O hydrogen bond between bimolecular units related by the n-glide plane at y = 0.75, resulting in a chain of rings running parallel to the [101] direction (Fig. 6[link]). There is also a C—H⋯π(arene) inter­action within the selected asymmetric unit. Inversion-related pairs of chains of this type are further linked, albeit fairly weakly (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), by a second C—H⋯O hydrogen bond to form a complex sheet lying parallel to (10[\overline{1}]). Entirely similar remarks apply to the supra­molecular assembly of compound (II)[link] (Table 2[link]).

[Figure 6]
Figure 6
Part of the crystal structure of compound (I)[link], showing the formation of a chain of rings running parallel to the [101] direction and containing N—H⋯O and C—H⋯O hydrogen bonds, all drawn using dashed lines. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

4. Database survey

The structures of several dialkyl propane­diaotes containing pyrazole units in the side-chain at the 2-position have been reported although, in general, these compounds have all been prepared by elaboration of a pre-existing 2-benzyl or 2-benz­yl­idene ester. These structures, whose names are given as those used in the original reports, include those of dimethyl 2-[phen­yl(3-phenyl-1H-pyrazol-1-yl)meth­yl]malonate (Jiang et al., 2008[Jiang, H., Sun, X.-L., Zhu, C.-Y., Dai, L.-X. & Tang, Y. (2008). Tetrahedron, 64, 5032-5035.]), dimethyl [3,5-dimethyl-1H-pyrazol-1-yl(phen­yl)meth­yl]malonate (Meskini, Toupet et al., 2010[Meskini, I., Toupet, L., Daoudi, M., Kerbal, A., Akkurt, M., Chohan, Z. H. & Hadda, T. B. (2010). J. Chem. Crystallogr. 40, 812-815.]), diethyl 2-[phen­yl(pyrazol-1-yl)meth­yl]propane­dioate (Meskini, Daoudi, Daran, Zoulhri et al., 2010[Meskini, I., Daoudi, M., Daran, J.-C., Zouihri, H. & Ben Hadda, T. (2010). Acta Cryst. E66, o1014.]) and diethyl 2-[(3,5-dimethyl-1H-pyrzol-1-yl)(4-meth­oxy­phen­yl)meth­yl]propane­dioate (Meskini, Daoudi, Daran, Kerbal et al., 2010[Meskini, I., Daoudi, M., Daran, J.-C., Kerbal, A. & Zouihri, H. (2010). Acta Cryst. E66, o1965.]). It is inter­esting that in all of these compounds, the pyrazole unit is linked to the rest of the mol­ecule via an N atom, rather than via a C atom, as in compounds (I)[link] and (II)[link] reported here. We also note here the recent structure determinations for some 1-aryl-1H-pyrazole-3,4-di­carboxyl­ate derivatives (Asma et al., 2018[Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783-1789.]) and some 4,5-hydro­pyrazole-1-carbo­thio­amides (Shaibah et al., 2020b[Shaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360-365.]).

5. Synthesis and crystallization

The inter­mediate (A) (Fig. 5[link]) was prepared by acid-catalysed cyclo­condensation of phenyl­hydrazine with ethyl 3-oxo­butano­ate (Vogel et al., 2000[Vogel, A. I., Tachell, A. R., Furnis, B. S., Hannaford, A. J. & Smith, P. W. G. (2000). A Textbook of Practical Organic Chemistry, 5th ed. New York: Prentice Hall.]), followed by chloro-formyl­ation under Vilsmeier–Haack conditions. For the synthesis of compounds (I)[link] and (II)[link], a mixture of diethyl propandioate (0.15 mmol, 24.0 mg), the pyrazole inter­mediate (A, Fig. 5[link]) (0.10 mmol, 22.3 mg) and either 4-azido­bromo­benzene, for (I)[link] (0.11 mmol, 21.8 mg) or 4-azido­chloro­benzene, for (II)[link] (0.11 mmol, 16.9 g), was heated to 523 K for 5 min in a sealed, evacuated glass tube of volume ca 2 ml. After cooling to ambient temperature, the reaction mixtures were added to an excess of cold water, and the resulting solids were collected by filtration, dried in air, and crystallized by slow evaporation, at ambient temperature and in the presence of air, from a solution in N,N-di­methyl­formamide to give crystals suitable for single-crystal X-ray diffraction.

Compound (I)[link]. Yield 40%, m.p. 475–477 K; IR (cm−1) 3150 (br, NH), 1705 (ring C=O), 1690 (ester C=O); NMR (DMSO-d6) δ(1H) 2.21 (t, J = 7.2 Hz, 6H, ester CH3), 2.30 (d, J = 5.1 Hz,1H), 2.36 (s, 3H, ring CH3), 2.54 (d, J = 5.1 Hz, 1H) 3.98 (q, J = 7.2 Hz, 4H, CH2), 7.1–8.6 (m, 9H, aromatic).

Compound (II)[link]. Yield 35%, m.p. 444–446 K; IR (cm−1) 3230 (br, NH), 1702 (ring C=O), 1605 (ester C=O); NMR (DMSO-d6) δ(1H) 1.78 (t, J = 7.3 Hz, 6H, ester CH3), 2.30 (s, 3H, ring CH3), 2.45 (d, J = 5.7 Hz, 1H), 2.83 (d, J = 5.7 Hz, 1H) 4.02 (q, J = 7.3 Hz, 4H, CH2), 6.8–8.6 (m, 9H, aromatic).

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 3[link]. For compound (I)[link], all H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.00 Å (aliphatic C—H), and with Uiso(H) = 1.2Ueq(C). For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) giving the N—H distances shown in Table 2[link]. A search for possible additional crystallographic symmetry found none. For compound (II)[link], the initial refinement used the atomic coordinates of compound (I)[link], with exactly the same treatment for the H atoms, but it was immediately apparent that both of the independent mol­ecules in (II)[link] exhibited disorder. In mol­ecule 1, containing atom C121, the unsubstituted phenyl ring was disordered, while in mol­ecule 2, containing atom C221, the di­ethyl­malonate fragment was disordered. In each mol­ecule, the bonded distances and the 1,3-non-bonded distances in the minor disorder component were restrained to be the same of the corresponding distances in the major component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for the atoms in the disordered portions of the mol­ecules were subjected to a similarity restraint, while the C221—C22 and C221—C32 distances were restrained to be equal, subject to an s.u. of 0.02 Å, as were all of the O—C distances and all of the C—C distances in the eth­oxy units. Subject to these conditions, the N—H distances are as shown in Table 2[link], and the refined disorder occupancies are 0.635 (10) and 0.365 (10) in mol­ecule 1, and 0.690 (5) and 0.310 (5) in mol­ecule 2.

Supporting information


Computing details top

For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

Diethyl (RS)-2-[(4-bromophenyl)(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)methyl]propanedioate (I) top
Crystal data top
C24H25BrN2O5F(000) = 2064
Mr = 501.36Dx = 1.386 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5644 (5) ÅCell parameters from 10428 reflections
b = 20.3405 (7) Åθ = 2.5–27.6°
c = 17.4818 (8) ŵ = 1.75 mm1
β = 94.858 (4)°T = 150 K
V = 4806.0 (3) Å3Block, orange
Z = 80.44 × 0.32 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
9476 independent reflections
Radiation source: Enhance (Mo) X-ray Source5653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.1°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 168
Tmin = 0.351, Tmax = 0.658k = 2525
20004 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0547P)2 + 8.9767P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
9476 reflectionsΔρmax = 1.31 e Å3
589 parametersΔρmin = 1.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.6286 (4)0.6998 (2)0.5514 (2)0.0380 (11)
C120.6748 (3)0.6325 (2)0.5677 (2)0.0308 (10)
H120.74860.63580.57180.037*
C130.6396 (3)0.6080 (2)0.6433 (2)0.0340 (10)
O110.5415 (3)0.70945 (17)0.5506 (2)0.0521 (9)
O120.6944 (3)0.74418 (17)0.5355 (2)0.0536 (9)
C140.6538 (5)0.8097 (3)0.5140 (4)0.0707 (17)
H14A0.70590.84330.52490.085*
H14B0.59870.81990.54580.085*
C150.6167 (6)0.8131 (3)0.4306 (4)0.086 (2)
H15A0.60370.85900.41600.129*
H15B0.55550.78760.42200.129*
H15C0.66680.79480.39930.129*
O130.5740 (2)0.56998 (19)0.64905 (17)0.0527 (9)
O140.6900 (2)0.63699 (16)0.70281 (16)0.0432 (8)
C160.6583 (4)0.6189 (3)0.7788 (3)0.0529 (14)
H16A0.58950.63360.78330.063*
H16B0.66110.57060.78560.063*
C170.7260 (6)0.6513 (4)0.8377 (3)0.103 (3)
H17A0.70610.64040.88890.154*
H17B0.72300.69900.83030.154*
H17C0.79370.63590.83320.154*
C1210.6388 (3)0.5868 (2)0.5004 (2)0.0281 (9)
H1210.56540.58320.50080.034*
C1310.6800 (3)0.5174 (2)0.5076 (2)0.0297 (10)
C1320.6266 (3)0.4671 (2)0.4690 (2)0.0320 (10)
H1320.56640.47760.43990.038*
C1330.6580 (3)0.4031 (2)0.4718 (3)0.0393 (11)
H1330.62060.36970.44470.047*
C1340.7451 (4)0.3882 (2)0.5146 (3)0.0424 (12)
Br140.78948 (5)0.29969 (3)0.51980 (4)0.0718 (2)
C1350.7999 (4)0.4361 (2)0.5532 (3)0.0469 (13)
H1350.86010.42520.58220.056*
C1360.7671 (3)0.5009 (2)0.5497 (3)0.0396 (11)
H1360.80510.53410.57660.047*
N1410.6353 (3)0.66770 (19)0.3126 (2)0.0343 (9)
H1410.610 (3)0.682 (2)0.269 (3)0.041*
N1420.7359 (2)0.66438 (17)0.33052 (19)0.0308 (8)
C1430.7531 (3)0.6347 (2)0.4028 (2)0.0287 (9)
O1430.8375 (2)0.62747 (14)0.43643 (16)0.0325 (7)
C1440.6588 (3)0.6177 (2)0.4248 (2)0.0264 (9)
C1450.5892 (3)0.6390 (2)0.3682 (2)0.0322 (10)
C1460.4794 (3)0.6345 (3)0.3619 (3)0.0482 (13)
H16C0.45400.65310.40810.072*
H16D0.45940.58830.35660.072*
H16E0.45230.65910.31670.072*
C1510.8024 (3)0.7010 (2)0.2889 (2)0.0352 (11)
C1520.8992 (4)0.6819 (3)0.2904 (3)0.0458 (12)
H1520.92230.64390.31810.055*
C1530.9637 (4)0.7202 (3)0.2496 (3)0.0624 (16)
H1531.03160.70860.25040.075*
C1540.9283 (5)0.7744 (3)0.2086 (3)0.0620 (17)
H1540.97230.80010.18150.074*
C1550.8322 (5)0.7912 (3)0.2064 (3)0.0530 (14)
H1550.80840.82770.17640.064*
C1560.7683 (4)0.7560 (2)0.2476 (2)0.0416 (12)
H1560.70120.76910.24770.050*
C210.3724 (4)0.5780 (2)0.1386 (3)0.0461 (13)
C220.4833 (3)0.5826 (2)0.1456 (3)0.0343 (10)
H220.50390.61190.19010.041*
C230.5243 (3)0.5147 (2)0.1631 (3)0.0361 (11)
O210.3189 (2)0.58178 (17)0.0809 (2)0.0564 (10)
O220.3409 (3)0.5652 (2)0.2086 (2)0.0703 (11)
C240.2348 (5)0.5572 (4)0.2151 (5)0.099 (2)
H24A0.20240.54240.16520.118*
H24B0.22430.52290.25380.118*
C250.1915 (6)0.6164 (5)0.2368 (5)0.122 (3)
H25A0.12020.61000.23920.183*
H25B0.20260.65060.19890.183*
H25C0.22140.63000.28730.183*
O230.4973 (2)0.46590 (15)0.12862 (19)0.0445 (8)
O240.5950 (2)0.51763 (15)0.21995 (18)0.0452 (8)
C260.6462 (4)0.4563 (3)0.2406 (3)0.0580 (15)
H26A0.60930.43120.27750.070*
H26B0.65140.42880.19440.070*
C270.7443 (4)0.4732 (3)0.2752 (4)0.085 (2)
H27A0.77950.43300.29230.128*
H27B0.73820.50220.31930.128*
H27C0.78140.49580.23720.128*
C2210.5227 (3)0.6125 (2)0.0726 (2)0.0342 (10)
H2210.48870.58920.02740.041*
C2310.6330 (3)0.6012 (2)0.0704 (2)0.0318 (10)
C2320.6673 (4)0.5438 (2)0.0396 (3)0.0423 (12)
H2320.62110.51320.01620.051*
C2330.7673 (4)0.5297 (3)0.0421 (3)0.0509 (13)
H2330.78940.48980.02100.061*
C2340.8341 (4)0.5739 (3)0.0755 (3)0.0454 (12)
Br240.97147 (4)0.55439 (3)0.08460 (4)0.0741 (2)
C2350.8021 (4)0.6334 (3)0.1025 (3)0.0484 (13)
H2350.84850.66530.12260.058*
C2360.7021 (3)0.6460 (2)0.0999 (3)0.0402 (11)
H2360.68030.68670.11900.048*
N2410.4437 (3)0.77933 (18)0.0153 (2)0.0345 (9)
H2410.403 (3)0.811 (2)0.012 (3)0.041*
N2420.4662 (3)0.78984 (17)0.09295 (19)0.0333 (9)
C2430.5007 (3)0.7315 (2)0.1261 (3)0.0357 (11)
O2430.5320 (3)0.72836 (15)0.19576 (17)0.0469 (9)
C2440.4930 (3)0.6839 (2)0.0664 (2)0.0350 (10)
C2450.4556 (3)0.7151 (2)0.0011 (2)0.0322 (10)
C2460.4277 (4)0.6870 (2)0.0763 (3)0.0503 (13)
H26C0.39890.64320.07070.075*
H26D0.48670.68350.10470.075*
H26E0.37910.71560.10430.075*
C2510.4786 (3)0.8545 (2)0.1224 (3)0.0335 (10)
C2520.4571 (4)0.8667 (2)0.1973 (3)0.0463 (12)
H2520.43230.83260.22750.056*
C2530.4722 (4)0.9291 (3)0.2275 (3)0.0581 (15)
H2530.45850.93780.27890.070*
C2540.5068 (4)0.9786 (3)0.1836 (3)0.0551 (15)
H2540.51671.02130.20480.066*
C2550.5271 (4)0.9666 (2)0.1094 (3)0.0507 (14)
H2550.55071.00110.07920.061*
C2560.5132 (3)0.9043 (2)0.0783 (3)0.0403 (11)
H2560.52750.89590.02690.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.050 (3)0.038 (3)0.027 (2)0.007 (2)0.008 (2)0.007 (2)
C120.032 (2)0.035 (3)0.026 (2)0.0067 (19)0.0016 (17)0.0032 (19)
C130.036 (2)0.040 (3)0.025 (2)0.001 (2)0.0002 (19)0.002 (2)
O110.051 (2)0.048 (2)0.059 (2)0.0100 (17)0.0144 (17)0.0055 (18)
O120.059 (2)0.036 (2)0.066 (2)0.0092 (17)0.0056 (18)0.0056 (18)
C140.088 (5)0.041 (3)0.082 (5)0.006 (3)0.001 (4)0.004 (3)
C150.127 (6)0.059 (4)0.071 (4)0.014 (4)0.002 (4)0.005 (4)
O130.051 (2)0.076 (3)0.0313 (18)0.030 (2)0.0052 (15)0.0012 (18)
O140.053 (2)0.053 (2)0.0233 (16)0.0141 (16)0.0003 (14)0.0049 (15)
C160.068 (4)0.061 (4)0.030 (3)0.005 (3)0.007 (2)0.003 (3)
C170.132 (7)0.140 (7)0.035 (3)0.047 (6)0.001 (4)0.010 (4)
C1210.027 (2)0.035 (2)0.023 (2)0.0067 (18)0.0005 (16)0.0011 (19)
C1310.032 (2)0.032 (2)0.025 (2)0.0071 (19)0.0035 (17)0.0034 (19)
C1320.031 (2)0.036 (3)0.029 (2)0.007 (2)0.0042 (18)0.005 (2)
C1330.044 (3)0.038 (3)0.037 (3)0.012 (2)0.012 (2)0.011 (2)
C1340.051 (3)0.029 (3)0.049 (3)0.003 (2)0.010 (2)0.001 (2)
Br140.0812 (5)0.0333 (3)0.1013 (5)0.0074 (3)0.0107 (4)0.0024 (3)
C1350.042 (3)0.040 (3)0.056 (3)0.003 (2)0.011 (2)0.003 (3)
C1360.040 (3)0.036 (3)0.040 (3)0.004 (2)0.009 (2)0.002 (2)
N1410.034 (2)0.041 (2)0.0264 (19)0.0046 (18)0.0051 (16)0.0080 (18)
N1420.036 (2)0.030 (2)0.0264 (18)0.0049 (16)0.0019 (15)0.0049 (16)
C1430.035 (2)0.021 (2)0.029 (2)0.0025 (19)0.0009 (18)0.0066 (18)
O1430.0299 (16)0.0314 (17)0.0348 (16)0.0037 (13)0.0050 (13)0.0006 (14)
C1440.031 (2)0.025 (2)0.022 (2)0.0061 (18)0.0023 (17)0.0005 (18)
C1450.031 (2)0.036 (3)0.029 (2)0.004 (2)0.0021 (18)0.001 (2)
C1460.035 (3)0.067 (4)0.041 (3)0.008 (2)0.007 (2)0.009 (3)
C1510.046 (3)0.034 (3)0.026 (2)0.017 (2)0.0057 (19)0.005 (2)
C1520.045 (3)0.046 (3)0.047 (3)0.015 (2)0.011 (2)0.009 (2)
C1530.057 (3)0.068 (4)0.066 (4)0.018 (3)0.028 (3)0.030 (3)
C1540.090 (5)0.056 (4)0.044 (3)0.040 (4)0.025 (3)0.011 (3)
C1550.079 (4)0.046 (3)0.035 (3)0.027 (3)0.011 (3)0.006 (2)
C1560.065 (3)0.033 (3)0.027 (2)0.019 (2)0.005 (2)0.000 (2)
C210.039 (3)0.030 (3)0.067 (4)0.006 (2)0.007 (3)0.011 (3)
C220.039 (3)0.024 (2)0.039 (3)0.0002 (19)0.002 (2)0.001 (2)
C230.036 (3)0.030 (3)0.042 (3)0.003 (2)0.002 (2)0.008 (2)
O210.045 (2)0.042 (2)0.078 (3)0.0055 (17)0.0207 (19)0.0125 (19)
O220.041 (2)0.094 (3)0.076 (3)0.003 (2)0.0119 (19)0.016 (3)
C240.045 (4)0.104 (6)0.149 (7)0.001 (4)0.016 (4)0.021 (5)
C250.070 (5)0.140 (8)0.156 (8)0.022 (5)0.011 (5)0.026 (7)
O230.049 (2)0.0285 (18)0.054 (2)0.0010 (15)0.0072 (16)0.0006 (16)
O240.0442 (19)0.0356 (19)0.053 (2)0.0014 (15)0.0131 (16)0.0060 (16)
C260.051 (3)0.047 (3)0.073 (4)0.009 (3)0.009 (3)0.014 (3)
C270.061 (4)0.084 (5)0.107 (5)0.005 (4)0.018 (4)0.029 (4)
C2210.046 (3)0.025 (2)0.029 (2)0.002 (2)0.0070 (19)0.000 (2)
C2310.047 (3)0.025 (2)0.022 (2)0.001 (2)0.0022 (19)0.0038 (19)
C2320.047 (3)0.035 (3)0.043 (3)0.002 (2)0.004 (2)0.009 (2)
C2330.053 (3)0.043 (3)0.058 (3)0.000 (3)0.009 (3)0.012 (3)
C2340.042 (3)0.048 (3)0.046 (3)0.001 (2)0.004 (2)0.006 (3)
Br240.0468 (3)0.0812 (5)0.0953 (5)0.0012 (3)0.0118 (3)0.0229 (4)
C2350.052 (3)0.046 (3)0.047 (3)0.013 (3)0.003 (2)0.019 (3)
C2360.046 (3)0.034 (3)0.040 (3)0.000 (2)0.001 (2)0.012 (2)
N2410.042 (2)0.029 (2)0.031 (2)0.0054 (17)0.0103 (16)0.0030 (17)
N2420.042 (2)0.026 (2)0.0300 (19)0.0036 (17)0.0079 (16)0.0003 (16)
C2430.046 (3)0.023 (2)0.036 (3)0.004 (2)0.008 (2)0.005 (2)
O2430.077 (2)0.0295 (18)0.0304 (17)0.0088 (17)0.0155 (16)0.0010 (14)
C2440.038 (3)0.027 (2)0.038 (3)0.001 (2)0.007 (2)0.001 (2)
C2450.035 (2)0.032 (3)0.029 (2)0.002 (2)0.0023 (18)0.001 (2)
C2460.070 (4)0.043 (3)0.036 (3)0.006 (3)0.013 (2)0.005 (2)
C2510.034 (2)0.025 (2)0.040 (3)0.0055 (19)0.0082 (19)0.002 (2)
C2520.059 (3)0.034 (3)0.046 (3)0.003 (2)0.003 (2)0.003 (2)
C2530.069 (4)0.044 (3)0.060 (4)0.008 (3)0.003 (3)0.013 (3)
C2540.057 (3)0.031 (3)0.074 (4)0.002 (3)0.015 (3)0.010 (3)
C2550.051 (3)0.032 (3)0.065 (4)0.003 (2)0.016 (3)0.009 (3)
C2560.044 (3)0.030 (3)0.045 (3)0.001 (2)0.009 (2)0.004 (2)
Geometric parameters (Å, º) top
C11—O111.196 (5)C21—O211.194 (6)
C11—O121.315 (5)C21—O221.356 (6)
C11—C121.524 (6)C21—C221.501 (6)
C12—C131.526 (6)C22—C231.511 (6)
C12—C1211.545 (5)C22—C2211.549 (6)
C12—H121.0000C22—H221.0000
C13—O131.189 (5)C23—O231.202 (5)
C13—O141.333 (5)C23—O241.323 (5)
O12—C141.478 (6)O22—C241.462 (7)
C14—C151.504 (8)C24—C251.407 (10)
C14—H14A0.9900C24—H24A0.9900
C14—H14B0.9900C24—H24B0.9900
C15—H15A0.9800C25—H25A0.9800
C15—H15B0.9800C25—H25B0.9800
C15—H15C0.9800C25—H25C0.9800
O14—C161.477 (5)O24—C261.459 (6)
C16—C171.475 (7)C26—C271.456 (8)
C16—H16A0.9900C26—H26A0.9900
C16—H16B0.9900C26—H26B0.9900
C17—H17A0.9800C27—H27A0.9800
C17—H17B0.9800C27—H27B0.9800
C17—H17C0.9800C27—H27C0.9800
C121—C1441.508 (5)C221—C2441.510 (6)
C121—C1311.521 (6)C221—C2311.518 (6)
C121—H1211.0000C221—H2211.0000
C131—C1361.379 (6)C231—C2361.376 (6)
C131—C1321.393 (6)C231—C2321.384 (6)
C132—C1331.369 (6)C232—C2331.382 (7)
C132—H1320.9500C232—H2320.9500
C133—C1341.379 (7)C233—C2341.371 (7)
C133—H1330.9500C233—H2330.9500
C134—C1351.369 (7)C234—C2351.384 (7)
C134—Br141.897 (5)C234—Br241.898 (5)
C135—C1361.389 (6)C235—C2361.377 (7)
C135—H1350.9500C235—H2350.9500
C136—H1360.9500C236—H2360.9500
N141—C1451.334 (5)N241—C2451.342 (5)
N141—N1421.376 (5)N241—N2421.382 (5)
N141—H1410.86 (5)N241—H2410.95 (5)
N142—C1431.402 (5)N242—C2431.385 (5)
N142—C1511.417 (5)N242—C2511.418 (5)
C143—O1431.250 (5)C243—O2431.257 (5)
C143—C1441.409 (6)C243—C2441.420 (6)
C144—C1451.378 (5)C244—C2451.367 (6)
C145—C1461.488 (6)C245—C2461.487 (6)
C146—H16C0.9800C246—H26C0.9800
C146—H16D0.9800C246—H26D0.9800
C146—H16E0.9800C246—H26E0.9800
C151—C1521.368 (7)C251—C2561.378 (6)
C151—C1561.389 (6)C251—C2521.388 (6)
C152—C1531.409 (7)C252—C2531.383 (7)
C152—H1520.9500C252—H2520.9500
C153—C1541.380 (8)C253—C2541.371 (8)
C153—H1530.9500C253—H2530.9500
C154—C1551.345 (8)C254—C2551.371 (8)
C154—H1540.9500C254—H2540.9500
C155—C1561.374 (7)C255—C2561.385 (7)
C155—H1550.9500C255—H2550.9500
C156—H1560.9500C256—H2560.9500
O11—C11—O12124.9 (5)O21—C21—O22124.1 (5)
O11—C11—C12122.7 (4)O21—C21—C22126.7 (5)
O12—C11—C12112.4 (4)O22—C21—C22109.1 (4)
C11—C12—C13107.6 (4)C21—C22—C23108.0 (4)
C11—C12—C121107.4 (3)C21—C22—C221111.7 (4)
C13—C12—C121111.2 (3)C23—C22—C221112.2 (4)
C11—C12—H12110.2C21—C22—H22108.3
C13—C12—H12110.2C23—C22—H22108.3
C121—C12—H12110.2C221—C22—H22108.3
O13—C13—O14124.0 (4)O23—C23—O24125.7 (4)
O13—C13—C12125.2 (4)O23—C23—C22124.3 (4)
O14—C13—C12110.7 (4)O24—C23—C22110.0 (4)
C11—O12—C14115.3 (4)C21—O22—C24118.6 (5)
O12—C14—C15112.0 (5)C25—C24—O22111.2 (6)
O12—C14—H14A109.2C25—C24—H24A109.4
C15—C14—H14A109.2O22—C24—H24A109.4
O12—C14—H14B109.2C25—C24—H24B109.4
C15—C14—H14B109.2O22—C24—H24B109.4
H14A—C14—H14B107.9H24A—C24—H24B108.0
C14—C15—H15A109.5C24—C25—H25A109.5
C14—C15—H15B109.5C24—C25—H25B109.5
H15A—C15—H15B109.5H25A—C25—H25B109.5
C14—C15—H15C109.5C24—C25—H25C109.5
H15A—C15—H15C109.5H25A—C25—H25C109.5
H15B—C15—H15C109.5H25B—C25—H25C109.5
C13—O14—C16115.0 (4)C23—O24—C26116.6 (4)
C17—C16—O14107.8 (4)C27—C26—O24107.4 (5)
C17—C16—H16A110.1C27—C26—H26A110.2
O14—C16—H16A110.1O24—C26—H26A110.2
C17—C16—H16B110.1C27—C26—H26B110.2
O14—C16—H16B110.1O24—C26—H26B110.2
H16A—C16—H16B108.5H26A—C26—H26B108.5
C16—C17—H17A109.5C26—C27—H27A109.5
C16—C17—H17B109.5C26—C27—H27B109.5
H17A—C17—H17B109.5H27A—C27—H27B109.5
C16—C17—H17C109.5C26—C27—H27C109.5
H17A—C17—H17C109.5H27A—C27—H27C109.5
H17B—C17—H17C109.5H27B—C27—H27C109.5
C144—C121—C131111.6 (3)C244—C221—C231113.6 (4)
C144—C121—C12110.4 (3)C244—C221—C22109.2 (4)
C131—C121—C12113.9 (3)C231—C221—C22111.8 (3)
C144—C121—H121106.9C244—C221—H221107.3
C131—C121—H121106.9C231—C221—H221107.3
C12—C121—H121106.9C22—C221—H221107.3
C136—C131—C132117.8 (4)C236—C231—C232117.6 (4)
C136—C131—C121124.2 (4)C236—C231—C221122.2 (4)
C132—C131—C121118.0 (4)C232—C231—C221120.2 (4)
C133—C132—C131122.2 (4)C233—C232—C231121.6 (4)
C133—C132—H132118.9C233—C232—H232119.2
C131—C132—H132118.9C231—C232—H232119.2
C132—C133—C134118.6 (4)C234—C233—C232119.3 (5)
C132—C133—H133120.7C234—C233—H233120.4
C134—C133—H133120.7C232—C233—H233120.4
C135—C134—C133121.0 (4)C233—C234—C235120.2 (5)
C135—C134—Br14119.7 (4)C233—C234—Br24120.5 (4)
C133—C134—Br14119.3 (4)C235—C234—Br24119.2 (4)
C134—C135—C136119.7 (4)C236—C235—C234119.2 (4)
C134—C135—H135120.2C236—C235—H235120.4
C136—C135—H135120.2C234—C235—H235120.4
C131—C136—C135120.7 (4)C231—C236—C235121.8 (4)
C131—C136—H136119.6C231—C236—H236119.1
C135—C136—H136119.6C235—C236—H236119.1
C145—N141—N142109.3 (3)C245—N241—N242108.3 (3)
C145—N141—H141128 (3)C245—N241—H241130 (3)
N142—N141—H141122 (3)N242—N241—H241117 (3)
N141—N142—C143108.2 (3)N241—N242—C243108.5 (3)
N141—N142—C151121.3 (3)N241—N242—C251120.6 (3)
C143—N142—C151128.7 (3)C243—N242—C251128.2 (3)
O143—C143—N142123.4 (4)O243—C243—N242121.6 (4)
O143—C143—C144131.2 (4)O243—C243—C244132.5 (4)
N142—C143—C144105.4 (3)N242—C243—C244106.0 (4)
C145—C144—C143108.0 (4)C245—C244—C243107.3 (4)
C145—C144—C121126.6 (4)C245—C244—C221125.8 (4)
C143—C144—C121125.2 (3)C243—C244—C221126.9 (4)
N141—C145—C144109.0 (4)N241—C245—C244109.8 (4)
N141—C145—C146120.0 (4)N241—C245—C246121.3 (4)
C144—C145—C146131.0 (4)C244—C245—C246129.0 (4)
C145—C146—H16C109.5C245—C246—H26C109.5
C145—C146—H16D109.5C245—C246—H26D109.5
H16C—C146—H16D109.5H26C—C246—H26D109.5
C145—C146—H16E109.5C245—C246—H26E109.5
H16C—C146—H16E109.5H26C—C246—H26E109.5
H16D—C146—H16E109.5H26D—C246—H26E109.5
C152—C151—C156121.1 (4)C256—C251—C252120.4 (4)
C152—C151—N142119.5 (4)C256—C251—N242120.9 (4)
C156—C151—N142119.5 (4)C252—C251—N242118.7 (4)
C151—C152—C153118.0 (5)C253—C252—C251119.2 (5)
C151—C152—H152121.0C253—C252—H252120.4
C153—C152—H152121.0C251—C252—H252120.4
C154—C153—C152120.1 (6)C254—C253—C252120.4 (5)
C154—C153—H153120.0C254—C253—H253119.8
C152—C153—H153120.0C252—C253—H253119.8
C155—C154—C153120.8 (5)C253—C254—C255120.3 (5)
C155—C154—H154119.6C253—C254—H254119.9
C153—C154—H154119.6C255—C254—H254119.9
C154—C155—C156120.3 (5)C254—C255—C256120.1 (5)
C154—C155—H155119.8C254—C255—H255119.9
C156—C155—H155119.8C256—C255—H255119.9
C155—C156—C151119.7 (5)C251—C256—C255119.6 (5)
C155—C156—H156120.1C251—C256—H256120.2
C151—C156—H156120.1C255—C256—H256120.2
O11—C11—C12—C1353.2 (5)O21—C21—C22—C23107.6 (5)
O12—C11—C12—C13129.4 (4)O22—C21—C22—C2369.1 (5)
O11—C11—C12—C12166.6 (5)O21—C21—C22—C22116.2 (7)
O12—C11—C12—C121110.9 (4)O22—C21—C22—C221167.1 (4)
C11—C12—C13—O1399.4 (5)C21—C22—C23—O2347.9 (6)
C121—C12—C13—O1317.9 (6)C221—C22—C23—O2375.6 (6)
C11—C12—C13—O1478.2 (4)C21—C22—C23—O24133.6 (4)
C121—C12—C13—O14164.5 (3)C221—C22—C23—O24102.9 (4)
O11—C11—O12—C141.2 (7)O21—C21—O22—C241.9 (8)
C12—C11—O12—C14176.1 (4)C22—C21—O22—C24178.7 (5)
C11—O12—C14—C1583.1 (6)C21—O22—C24—C2595.2 (8)
O13—C13—O14—C160.4 (7)O23—C23—O24—C261.9 (7)
C12—C13—O14—C16177.3 (4)C22—C23—O24—C26176.5 (4)
C13—O14—C16—C17175.9 (5)C23—O24—C26—C27154.1 (5)
C11—C12—C121—C14452.8 (4)C21—C22—C221—C24468.2 (5)
C13—C12—C121—C144170.2 (3)C23—C22—C221—C244170.4 (3)
C11—C12—C121—C131179.2 (3)C21—C22—C221—C231165.2 (4)
C13—C12—C121—C13163.4 (4)C23—C22—C221—C23143.8 (5)
C144—C121—C131—C136101.4 (5)C244—C221—C231—C23632.4 (6)
C12—C121—C131—C13624.4 (6)C22—C221—C231—C23691.8 (5)
C144—C121—C131—C13278.3 (5)C244—C221—C231—C232149.2 (4)
C12—C121—C131—C132155.9 (4)C22—C221—C231—C23286.7 (5)
C136—C131—C132—C1330.1 (6)C236—C231—C232—C2333.6 (7)
C121—C131—C132—C133179.6 (4)C221—C231—C232—C233174.9 (4)
C131—C132—C133—C1340.4 (7)C231—C232—C233—C2340.4 (8)
C132—C133—C134—C1350.6 (7)C232—C233—C234—C2353.5 (8)
C132—C133—C134—Br14179.5 (3)C232—C233—C234—Br24176.8 (4)
C133—C134—C135—C1360.5 (8)C233—C234—C235—C2364.1 (8)
Br14—C134—C135—C136179.7 (4)Br24—C234—C235—C236176.3 (4)
C132—C131—C136—C1350.0 (7)C232—C231—C236—C2353.1 (7)
C121—C131—C136—C135179.8 (4)C221—C231—C236—C235175.4 (4)
C134—C135—C136—C1310.1 (8)C234—C235—C236—C2310.7 (7)
C145—N141—N142—C1432.8 (5)C245—N241—N242—C2435.1 (5)
C145—N141—N142—C151168.6 (4)C245—N241—N242—C251167.8 (4)
N141—N142—C143—O143176.5 (4)N241—N242—C243—O243175.8 (4)
C151—N142—C143—O14312.1 (7)C251—N242—C243—O24314.7 (7)
N141—N142—C143—C1442.8 (4)N241—N242—C243—C2443.3 (5)
C151—N142—C143—C144167.3 (4)C251—N242—C243—C244164.4 (4)
O143—C143—C144—C145177.4 (4)O243—C243—C244—C245178.5 (5)
N142—C143—C144—C1451.9 (5)N242—C243—C244—C2450.4 (5)
O143—C143—C144—C1211.9 (7)O243—C243—C244—C2210.1 (9)
N142—C143—C144—C121177.3 (4)N242—C243—C244—C221179.1 (4)
C131—C121—C144—C145118.5 (5)C231—C221—C244—C24598.6 (5)
C12—C121—C144—C145113.8 (5)C22—C221—C244—C245135.8 (4)
C131—C121—C144—C14366.9 (5)C231—C221—C244—C24379.8 (6)
C12—C121—C144—C14360.8 (5)C22—C221—C244—C24345.8 (6)
N142—N141—C145—C1441.6 (5)N242—N241—C245—C2444.8 (5)
N142—N141—C145—C146178.5 (4)N242—N241—C245—C246174.0 (4)
C143—C144—C145—N1410.2 (5)C243—C244—C245—N2412.7 (5)
C121—C144—C145—N141175.6 (4)C221—C244—C245—N241175.9 (4)
C143—C144—C145—C146179.7 (5)C243—C244—C245—C246176.0 (5)
C121—C144—C145—C1464.3 (8)C221—C244—C245—C2465.4 (8)
N141—N142—C151—C152159.2 (4)N241—N242—C251—C25629.9 (6)
C143—N142—C151—C15238.2 (6)C243—N242—C251—C256129.2 (5)
N141—N142—C151—C15621.3 (6)N241—N242—C251—C252151.4 (4)
C143—N142—C151—C156141.4 (4)C243—N242—C251—C25249.5 (6)
C156—C151—C152—C1530.8 (7)C256—C251—C252—C2530.9 (7)
N142—C151—C152—C153178.7 (4)N242—C251—C252—C253177.8 (4)
C151—C152—C153—C1541.2 (7)C251—C252—C253—C2540.8 (8)
C152—C153—C154—C1550.4 (8)C252—C253—C254—C2550.2 (8)
C153—C154—C155—C1562.4 (8)C253—C254—C255—C2560.4 (8)
C154—C155—C156—C1512.7 (7)C252—C251—C256—C2550.4 (7)
C152—C151—C156—C1551.1 (7)N242—C251—C256—C255178.3 (4)
N142—C151—C156—C155179.3 (4)C254—C255—C256—C2510.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N141—H141···O2430.86 (5)1.85 (5)2.678 (5)162 (4)
N241—H241···O143i0.95 (4)1.74 (4)2.690 (5)175 (4)
C14—H14A···O21ii0.992.323.288 (7)166
C132—H132···O13iii0.952.553.359 (5)144
C235—H235···Cg10.952.643.372 (6)134
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z+1.
Diethyl (RS)-2-[(4-chlorophenyl)(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)methyl]propanedioate (II) top
Crystal data top
C24H25ClN2O5F(000) = 1920
Mr = 456.91Dx = 1.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5609 (8) ÅCell parameters from 10261 reflections
b = 20.280 (1) Åθ = 2.5–27.8°
c = 17.728 (1) ŵ = 0.19 mm1
β = 95.363 (5)°T = 150 K
V = 4854.1 (5) Å3Block, orange
Z = 80.46 × 0.44 × 0.34 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
9574 independent reflections
Radiation source: Enhance (Mo) X-ray Source6504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.1°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1516
Tmin = 0.826, Tmax = 0.936k = 2515
20936 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.081P)2 + 4.3903P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
9574 reflectionsΔρmax = 1.06 e Å3
746 parametersΔρmin = 0.91 e Å3
571 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.6299 (3)0.69693 (15)0.54996 (16)0.0459 (8)
C120.6781 (2)0.63001 (14)0.56816 (14)0.0356 (6)
H120.75190.63420.57350.043*
C130.6410 (2)0.60627 (14)0.64337 (15)0.0381 (6)
O110.54201 (19)0.70614 (12)0.54801 (13)0.0599 (6)
O120.69666 (19)0.74133 (11)0.53433 (14)0.0622 (6)
C140.6546 (4)0.80629 (18)0.5109 (2)0.0787 (12)
H14A0.70570.84070.52190.094*
H14B0.59850.81640.54090.094*
C150.6192 (5)0.8084 (2)0.4284 (3)0.1003 (17)
H15A0.60040.85360.41390.150*
H15B0.56170.77930.41860.150*
H15C0.67240.79350.39860.150*
O130.57468 (18)0.56797 (13)0.64923 (11)0.0600 (7)
O140.69144 (16)0.63503 (11)0.70316 (10)0.0455 (5)
C160.6597 (3)0.61783 (18)0.77903 (16)0.0541 (9)
H16A0.66360.56950.78700.065*
H16B0.59030.63190.78240.065*
C170.7268 (4)0.6523 (3)0.8379 (2)0.0942 (16)
H17A0.70560.64310.88810.141*
H17B0.72430.69990.82850.141*
H17C0.79480.63660.83560.141*
C1210.6437 (2)0.58366 (13)0.50087 (14)0.0330 (6)
H1210.57010.57990.49970.040*
C1310.6850 (2)0.51432 (13)0.50941 (14)0.0342 (6)
C1320.6314 (2)0.46401 (15)0.47118 (16)0.0404 (7)
H1320.57170.47420.44110.048*
C1330.6635 (3)0.39972 (16)0.47634 (18)0.0491 (8)
H1330.62640.36580.44980.059*
C1340.7499 (3)0.38485 (15)0.5203 (2)0.0531 (8)
Cl140.79127 (10)0.30382 (5)0.52761 (8)0.0914 (4)
C1350.8054 (3)0.43380 (17)0.5585 (2)0.0605 (9)
H1350.86520.42320.58820.073*
C1360.7726 (2)0.49824 (16)0.55275 (18)0.0500 (8)
H1360.81040.53210.57880.060*
N1410.6458 (2)0.66271 (13)0.31184 (14)0.0421 (6)
H1410.621 (2)0.6762 (16)0.2702 (19)0.051*
C1430.7619 (2)0.63115 (12)0.40440 (14)0.0327 (6)
O1430.84662 (14)0.62440 (9)0.43944 (11)0.0389 (5)
C1440.6658 (2)0.61437 (13)0.42527 (14)0.0332 (6)
C1450.5972 (2)0.63449 (14)0.36709 (15)0.0380 (6)
C1460.4864 (2)0.62918 (19)0.35895 (18)0.0550 (9)
H16C0.46010.64630.40470.082*
H16D0.46720.58290.35190.082*
H16E0.45950.65490.31490.082*
N1420.7465 (2)0.66035 (11)0.33189 (12)0.0384 (5)0.635 (10)
C1510.8086 (5)0.6992 (5)0.2879 (6)0.0393 (14)0.635 (10)
C1520.9078 (5)0.6817 (4)0.2873 (5)0.0496 (16)0.635 (10)
H1520.93230.64340.31350.059*0.635 (10)
C1530.9719 (6)0.7207 (4)0.2479 (4)0.0553 (16)0.635 (10)
H1531.04030.71010.24970.066*0.635 (10)
C1540.9352 (6)0.7740 (4)0.2069 (4)0.0521 (18)0.635 (10)
H1540.97760.79960.17880.062*0.635 (10)
C1550.8362 (6)0.7904 (3)0.2067 (3)0.0462 (15)0.635 (10)
H1550.81140.82720.17760.055*0.635 (10)
C1560.7706 (6)0.7539 (3)0.2485 (4)0.0398 (14)0.635 (10)
H1560.70330.76650.24950.048*0.635 (10)
N1620.7465 (2)0.66035 (11)0.33189 (12)0.0384 (5)0.365 (10)
C1610.8264 (8)0.6903 (9)0.2947 (12)0.042 (2)0.365 (10)
C1620.9227 (7)0.6655 (7)0.3048 (8)0.047 (2)0.365 (10)
H1620.93750.62840.33660.057*0.365 (10)
C1630.9978 (8)0.6961 (7)0.2673 (7)0.057 (2)0.365 (10)
H1631.06330.67930.27460.068*0.365 (10)
C1640.9788 (10)0.7495 (7)0.2205 (6)0.055 (2)0.365 (10)
H1641.03020.76900.19520.067*0.365 (10)
C1650.8839 (11)0.7743 (6)0.2110 (7)0.049 (2)0.365 (10)
H1650.86970.81130.17890.059*0.365 (10)
C1660.8073 (9)0.7450 (6)0.2486 (7)0.046 (2)0.365 (10)
H1660.74230.76290.24220.055*0.365 (10)
C210.3765 (5)0.5785 (6)0.1368 (4)0.0489 (14)0.690 (5)
C220.4883 (5)0.5830 (6)0.1422 (5)0.0428 (13)0.690 (5)
H220.51070.61070.18720.051*0.690 (5)
C230.5284 (11)0.5141 (6)0.1560 (8)0.0413 (14)0.690 (5)
O210.3202 (6)0.5833 (6)0.0797 (4)0.0532 (18)0.690 (5)
O220.3455 (3)0.5610 (2)0.2056 (3)0.0622 (11)0.690 (5)
C240.2369 (5)0.5524 (3)0.2113 (5)0.0811 (17)0.690 (5)
H24A0.20430.53560.16280.097*0.690 (5)
H24B0.22570.52040.25170.097*0.690 (5)
C250.1953 (6)0.6175 (4)0.2290 (5)0.107 (3)0.690 (5)
H25A0.12320.61380.22910.161*0.690 (5)
H25B0.21100.64960.19060.161*0.690 (5)
H25C0.22400.63210.27890.161*0.690 (5)
O230.4928 (10)0.4655 (7)0.1240 (10)0.050 (3)0.690 (5)
O240.5936 (6)0.5132 (5)0.2171 (7)0.0511 (16)0.690 (5)
C260.6414 (5)0.4503 (5)0.2345 (6)0.067 (2)0.690 (5)
H26A0.64820.42500.18760.080*0.690 (5)
H26B0.60250.42390.26820.080*0.690 (5)
C270.7410 (4)0.4669 (3)0.2734 (4)0.0725 (17)0.690 (5)
H27A0.78020.49010.23800.109*0.690 (5)
H27B0.77510.42620.29040.109*0.690 (5)
H27C0.73290.49510.31720.109*0.690 (5)
C310.3853 (11)0.5838 (15)0.1230 (8)0.053 (2)0.310 (5)
C320.4961 (10)0.5821 (13)0.1417 (12)0.044 (2)0.310 (5)
H320.51400.61180.18590.053*0.310 (5)
C330.530 (3)0.5128 (14)0.1626 (18)0.043 (2)0.310 (5)
O310.3383 (13)0.5902 (14)0.0615 (8)0.052 (3)0.310 (5)
O320.3418 (7)0.5909 (6)0.1899 (6)0.069 (2)0.310 (5)
C340.2316 (8)0.5822 (9)0.1838 (7)0.077 (3)0.310 (5)
H34A0.19870.62340.16520.092*0.310 (5)
H34B0.21200.54650.14730.092*0.310 (5)
C350.2008 (11)0.5652 (10)0.2594 (9)0.098 (4)0.310 (5)
H35A0.12980.55510.25490.148*0.310 (5)
H35B0.21390.60270.29380.148*0.310 (5)
H35C0.23820.52680.27950.148*0.310 (5)
O330.513 (2)0.4664 (15)0.120 (2)0.044 (4)0.310 (5)
O340.6086 (14)0.5167 (11)0.2132 (15)0.052 (2)0.310 (5)
C360.6519 (13)0.4564 (12)0.2451 (13)0.062 (3)0.310 (5)
H36A0.60230.42040.24170.074*0.310 (5)
H36B0.67610.46290.29900.074*0.310 (5)
C370.7360 (10)0.4398 (7)0.1997 (9)0.078 (4)0.310 (5)
H37A0.77900.47830.19710.117*0.310 (5)
H37B0.71000.42690.14840.117*0.310 (5)
H37C0.77420.40320.22390.117*0.310 (5)
C2210.5336 (2)0.61330 (14)0.07027 (16)0.0432 (7)
H2210.49960.59140.02450.052*
C2310.6454 (2)0.60192 (14)0.06837 (14)0.0382 (6)
C2320.6791 (2)0.54388 (15)0.03788 (18)0.0487 (8)
H2320.63210.51300.01600.058*
C2330.7794 (3)0.52960 (18)0.0384 (2)0.0639 (10)
H2330.80050.48990.01660.077*
C2340.8482 (3)0.57381 (19)0.0711 (2)0.0619 (10)
Cl240.97561 (8)0.55516 (7)0.07838 (8)0.0994 (4)
C2350.8165 (3)0.63321 (19)0.0982 (2)0.0678 (11)
H2350.86360.66480.11820.081*
C2360.7156 (3)0.64689 (16)0.09625 (18)0.0530 (8)
H2360.69480.68820.11460.064*
N2410.4525 (2)0.78135 (12)0.01862 (14)0.0422 (6)
H2410.414 (2)0.8097 (17)0.0039 (18)0.051*
N2420.47596 (19)0.79052 (11)0.09604 (13)0.0415 (6)
C2430.5118 (3)0.73182 (14)0.12740 (17)0.0467 (8)
O2430.5437 (2)0.72724 (11)0.19701 (12)0.0633 (7)
C2440.5044 (2)0.68516 (14)0.06668 (16)0.0426 (7)
C2450.4653 (2)0.71757 (14)0.00195 (16)0.0406 (7)
C2460.4373 (3)0.69103 (17)0.07580 (18)0.0600 (9)
H26C0.44100.64280.07470.090*
H26D0.48300.70820.11070.090*
H26E0.36960.70470.09290.090*
C2510.4870 (2)0.85489 (14)0.12742 (17)0.0428 (7)
C2520.4658 (3)0.86487 (16)0.2030 (2)0.0566 (9)
H2520.44300.82940.23190.068*
C2530.4787 (3)0.92726 (18)0.2345 (2)0.0700 (11)
H2530.46460.93500.28530.084*
C2540.5124 (3)0.97799 (17)0.1917 (3)0.0727 (12)
H2540.52231.02050.21360.087*
C2550.5319 (3)0.96767 (17)0.1170 (2)0.0660 (10)
H2550.55361.00340.08810.079*
C2560.5199 (2)0.90593 (15)0.08439 (19)0.0501 (8)
H2560.53400.89870.03360.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.067 (2)0.0441 (17)0.0285 (15)0.0069 (16)0.0139 (14)0.0047 (12)
C120.0369 (15)0.0398 (15)0.0304 (14)0.0055 (12)0.0047 (11)0.0004 (11)
C130.0421 (16)0.0437 (16)0.0281 (14)0.0043 (14)0.0019 (12)0.0013 (12)
O110.0631 (17)0.0569 (15)0.0610 (15)0.0124 (12)0.0132 (12)0.0012 (11)
O120.0735 (17)0.0434 (13)0.0701 (16)0.0092 (12)0.0089 (13)0.0005 (11)
C140.111 (4)0.040 (2)0.084 (3)0.006 (2)0.002 (3)0.0002 (19)
C150.157 (5)0.060 (3)0.080 (3)0.008 (3)0.009 (3)0.014 (2)
O130.0606 (15)0.0857 (18)0.0338 (11)0.0324 (14)0.0053 (10)0.0000 (11)
O140.0550 (13)0.0546 (13)0.0267 (10)0.0104 (11)0.0028 (9)0.0021 (9)
C160.070 (2)0.066 (2)0.0264 (15)0.0015 (18)0.0065 (14)0.0042 (14)
C170.117 (4)0.133 (4)0.0321 (19)0.033 (3)0.003 (2)0.013 (2)
C1210.0325 (14)0.0389 (15)0.0269 (13)0.0060 (12)0.0008 (10)0.0010 (11)
C1310.0390 (15)0.0367 (14)0.0273 (13)0.0085 (12)0.0063 (11)0.0033 (11)
C1320.0407 (16)0.0460 (17)0.0352 (15)0.0098 (14)0.0071 (12)0.0037 (12)
C1330.058 (2)0.0435 (17)0.0481 (18)0.0174 (16)0.0184 (15)0.0112 (14)
C1340.065 (2)0.0341 (16)0.063 (2)0.0011 (15)0.0187 (18)0.0026 (14)
Cl140.1046 (9)0.0378 (5)0.1346 (10)0.0086 (5)0.0256 (7)0.0048 (5)
C1350.058 (2)0.0471 (19)0.073 (2)0.0044 (17)0.0104 (18)0.0070 (17)
C1360.0497 (19)0.0413 (17)0.0557 (19)0.0072 (15)0.0125 (15)0.0013 (14)
N1410.0496 (16)0.0474 (15)0.0280 (12)0.0056 (12)0.0038 (11)0.0079 (11)
C1430.0435 (16)0.0249 (12)0.0296 (13)0.0070 (12)0.0017 (11)0.0036 (10)
O1430.0369 (11)0.0362 (10)0.0427 (11)0.0054 (9)0.0009 (9)0.0050 (8)
C1440.0374 (15)0.0334 (14)0.0284 (13)0.0056 (12)0.0016 (11)0.0006 (11)
C1450.0457 (17)0.0406 (15)0.0271 (13)0.0025 (13)0.0007 (12)0.0021 (11)
C1460.0414 (18)0.078 (2)0.0438 (18)0.0009 (17)0.0055 (14)0.0095 (16)
N1420.0508 (14)0.0337 (12)0.0313 (11)0.0104 (11)0.0071 (10)0.0012 (9)
C1510.058 (3)0.034 (3)0.027 (3)0.018 (2)0.010 (3)0.007 (2)
C1520.066 (3)0.043 (3)0.041 (3)0.014 (3)0.017 (3)0.002 (2)
C1530.067 (3)0.050 (4)0.052 (4)0.016 (3)0.024 (3)0.003 (3)
C1540.067 (4)0.050 (3)0.042 (3)0.021 (3)0.025 (3)0.005 (2)
C1550.068 (4)0.039 (3)0.032 (2)0.019 (3)0.011 (3)0.004 (2)
C1560.058 (3)0.033 (2)0.030 (2)0.014 (3)0.010 (3)0.0049 (19)
N1620.0508 (14)0.0337 (12)0.0313 (11)0.0104 (11)0.0071 (10)0.0012 (9)
C1610.062 (4)0.035 (4)0.030 (3)0.018 (3)0.011 (4)0.000 (3)
C1620.062 (4)0.047 (5)0.036 (4)0.020 (4)0.019 (4)0.004 (3)
C1630.070 (5)0.057 (5)0.045 (4)0.019 (4)0.014 (4)0.008 (4)
C1640.075 (5)0.051 (5)0.042 (4)0.021 (4)0.015 (4)0.004 (4)
C1650.068 (5)0.044 (4)0.038 (3)0.018 (4)0.016 (4)0.001 (3)
C1660.067 (4)0.039 (4)0.030 (3)0.016 (4)0.006 (4)0.006 (3)
C210.045 (3)0.039 (3)0.063 (3)0.006 (2)0.007 (2)0.006 (3)
C220.048 (3)0.033 (2)0.047 (2)0.002 (2)0.001 (2)0.002 (2)
C230.043 (2)0.033 (2)0.047 (3)0.001 (2)0.007 (2)0.007 (2)
O210.045 (4)0.046 (3)0.067 (3)0.001 (3)0.001 (3)0.005 (3)
O220.056 (2)0.057 (2)0.077 (3)0.004 (2)0.0188 (18)0.007 (2)
C240.074 (3)0.077 (4)0.097 (4)0.012 (3)0.026 (3)0.019 (3)
C250.110 (6)0.103 (6)0.112 (6)0.031 (5)0.025 (5)0.015 (5)
O230.054 (6)0.035 (3)0.059 (4)0.004 (3)0.002 (4)0.001 (2)
O240.049 (3)0.042 (2)0.060 (2)0.002 (2)0.006 (2)0.007 (2)
C260.060 (3)0.054 (3)0.083 (4)0.005 (3)0.019 (3)0.018 (3)
C270.055 (3)0.081 (4)0.078 (4)0.006 (3)0.013 (3)0.012 (3)
C310.050 (4)0.046 (4)0.065 (4)0.001 (4)0.011 (4)0.006 (4)
C320.043 (4)0.036 (4)0.052 (4)0.001 (4)0.003 (4)0.001 (4)
C330.047 (4)0.033 (4)0.050 (4)0.002 (4)0.005 (4)0.006 (4)
O310.033 (5)0.043 (6)0.081 (7)0.005 (4)0.018 (5)0.005 (6)
O320.062 (4)0.068 (4)0.080 (4)0.019 (4)0.015 (3)0.027 (4)
C340.061 (5)0.082 (5)0.092 (5)0.020 (5)0.031 (5)0.026 (5)
C350.078 (8)0.108 (9)0.114 (9)0.019 (8)0.038 (7)0.029 (8)
O330.044 (9)0.031 (6)0.056 (7)0.006 (6)0.006 (7)0.001 (5)
O340.050 (4)0.042 (4)0.062 (4)0.001 (4)0.004 (4)0.015 (4)
C360.061 (5)0.049 (5)0.072 (5)0.007 (5)0.008 (5)0.014 (5)
C370.065 (7)0.070 (7)0.098 (8)0.003 (6)0.002 (6)0.024 (6)
C2210.060 (2)0.0305 (14)0.0377 (15)0.0052 (14)0.0051 (13)0.0015 (12)
C2310.0551 (18)0.0335 (14)0.0253 (13)0.0030 (13)0.0003 (12)0.0014 (11)
C2320.053 (2)0.0391 (17)0.0537 (19)0.0002 (15)0.0025 (15)0.0101 (14)
C2330.064 (2)0.0471 (19)0.082 (3)0.0014 (18)0.0125 (19)0.0251 (18)
C2340.056 (2)0.063 (2)0.068 (2)0.0020 (18)0.0105 (17)0.0196 (18)
Cl240.0581 (6)0.1094 (10)0.1321 (11)0.0003 (6)0.0165 (6)0.0429 (8)
C2350.065 (2)0.067 (2)0.072 (2)0.016 (2)0.0119 (19)0.036 (2)
C2360.061 (2)0.0464 (18)0.0516 (19)0.0005 (16)0.0072 (16)0.0193 (15)
N2410.0477 (15)0.0354 (13)0.0418 (14)0.0095 (12)0.0059 (11)0.0069 (11)
N2420.0531 (15)0.0313 (12)0.0387 (13)0.0080 (11)0.0036 (11)0.0047 (10)
C2430.063 (2)0.0352 (16)0.0402 (17)0.0084 (15)0.0036 (14)0.0067 (13)
O2430.108 (2)0.0385 (12)0.0393 (12)0.0141 (13)0.0158 (12)0.0024 (9)
C2440.0521 (18)0.0320 (15)0.0418 (16)0.0072 (13)0.0052 (13)0.0035 (12)
C2450.0445 (17)0.0343 (15)0.0423 (16)0.0035 (13)0.0001 (13)0.0034 (12)
C2460.084 (3)0.0509 (19)0.0417 (18)0.0134 (19)0.0102 (17)0.0010 (15)
C2510.0422 (17)0.0319 (15)0.0525 (18)0.0040 (13)0.0049 (13)0.0026 (13)
C2520.069 (2)0.0394 (17)0.062 (2)0.0019 (16)0.0071 (17)0.0016 (15)
C2530.089 (3)0.052 (2)0.069 (2)0.008 (2)0.001 (2)0.0145 (18)
C2540.082 (3)0.0353 (19)0.095 (3)0.0028 (18)0.022 (2)0.0069 (19)
C2550.069 (2)0.0418 (19)0.082 (3)0.0062 (18)0.017 (2)0.0112 (18)
C2560.0509 (19)0.0386 (17)0.058 (2)0.0001 (15)0.0088 (15)0.0085 (14)
Geometric parameters (Å, º) top
C11—O111.204 (4)C23—O231.215 (6)
C11—O121.324 (4)C23—O241.332 (6)
C11—C121.527 (4)O22—C241.496 (6)
C12—C131.545 (4)C24—C251.480 (7)
C12—C1211.556 (4)C24—H24A0.9900
C12—H121.0000C24—H24B0.9900
C13—O131.201 (3)C25—H25A0.9800
C13—O141.340 (3)C25—H25B0.9800
O12—C141.480 (4)C25—H25C0.9800
C14—C151.497 (6)O24—C261.452 (5)
C14—H14A0.9900C26—C271.496 (9)
C14—H14B0.9900C26—H26A0.9900
C15—H15A0.9800C26—H26B0.9900
C15—H15B0.9800C27—H27A0.9800
C15—H15C0.9800C27—H27B0.9800
O14—C161.492 (3)C27—H27C0.9800
C16—C171.493 (5)C31—O311.217 (8)
C16—H16A0.9900C31—O321.382 (9)
C16—H16B0.9900C31—C321.508 (8)
C17—H17A0.9800C32—C331.513 (9)
C17—H17B0.9800C32—C2211.543 (13)
C17—H17C0.9800C32—H321.0000
C121—C1311.516 (4)C33—O331.219 (10)
C121—C1441.533 (3)C33—O341.334 (9)
C121—H1211.0000O32—C341.499 (8)
C131—C1321.392 (4)C34—C351.482 (9)
C131—C1361.392 (4)C34—H34A0.9900
C132—C1331.375 (4)C34—H34B0.9900
C132—H1320.9500C35—H35A0.9800
C133—C1341.378 (5)C35—H35B0.9800
C133—H1330.9500C35—H35C0.9800
C134—C1351.384 (5)O34—C361.450 (8)
C134—Cl141.737 (3)C36—C371.494 (11)
C135—C1361.381 (5)C36—H36A0.9900
C135—H1350.9500C36—H36B0.9900
C136—H1360.9500C37—H37A0.9800
N141—C1451.357 (4)C37—H37B0.9800
N141—N1421.379 (3)C37—H37C0.9800
N141—H1410.83 (3)C221—C2441.510 (4)
C143—O1431.261 (3)C221—C2311.537 (4)
C143—N1421.413 (3)C221—H2211.0000
C143—C1441.429 (4)C231—C2361.376 (4)
C144—C1451.384 (4)C231—C2321.390 (4)
C145—C1461.500 (4)C232—C2331.390 (5)
C146—H16C0.9800C232—H2320.9500
C146—H16D0.9800C233—C2341.381 (5)
C146—H16E0.9800C233—H2330.9500
N142—C1511.436 (5)C234—C2351.380 (5)
C151—C1561.385 (6)C234—Cl241.762 (4)
C151—C1521.391 (7)C235—C2361.394 (5)
C152—C1531.408 (7)C235—H2350.9500
C152—H1520.9500C236—H2360.9500
C153—C1541.370 (9)N241—C2451.342 (4)
C153—H1530.9500N241—N2421.392 (3)
C154—C1551.382 (9)N241—H2410.85 (3)
C154—H1540.9500N242—C2431.383 (4)
C155—C1561.418 (7)N242—C2511.422 (4)
C155—H1550.9500C243—O2431.272 (3)
C156—H1560.9500C243—C2441.430 (4)
C161—C1661.387 (8)C244—C2451.384 (4)
C161—C1621.396 (9)C245—C2461.495 (4)
C162—C1631.412 (9)C246—H26C0.9800
C162—H1620.9500C246—H26D0.9800
C163—C1641.373 (11)C246—H26E0.9800
C163—H1630.9500C251—C2561.384 (4)
C164—C1651.378 (12)C251—C2521.411 (5)
C164—H1640.9500C252—C2531.388 (5)
C165—C1661.417 (9)C252—H2520.9500
C165—H1650.9500C253—C2541.381 (6)
C166—H1660.9500C253—H2530.9500
C21—O211.214 (5)C254—C2551.391 (6)
C21—O221.372 (6)C254—H2540.9500
C21—C221.513 (6)C255—C2561.382 (5)
C22—C231.511 (5)C255—H2550.9500
C22—C2211.590 (7)C256—H2560.9500
C22—H221.0000
O11—C11—O12125.6 (3)C21—O22—C24118.4 (5)
O11—C11—C12123.1 (3)C25—C24—O22107.9 (6)
O12—C11—C12111.2 (3)C25—C24—H24A110.1
C11—C12—C13107.0 (2)O22—C24—H24A110.1
C11—C12—C121106.5 (2)C25—C24—H24B110.1
C13—C12—C121112.0 (2)O22—C24—H24B110.1
C11—C12—H12110.4H24A—C24—H24B108.4
C13—C12—H12110.4C24—C25—H25A109.5
C121—C12—H12110.4C24—C25—H25B109.5
O13—C13—O14123.0 (2)H25A—C25—H25B109.5
O13—C13—C12125.7 (2)C24—C25—H25C109.5
O14—C13—C12111.3 (2)H25A—C25—H25C109.5
C11—O12—C14114.3 (3)H25B—C25—H25C109.5
O12—C14—C15112.3 (3)C23—O24—C26115.7 (6)
O12—C14—H14A109.1O24—C26—C27105.5 (6)
C15—C14—H14A109.1O24—C26—H26A110.6
O12—C14—H14B109.1C27—C26—H26A110.6
C15—C14—H14B109.1O24—C26—H26B110.6
H14A—C14—H14B107.9C27—C26—H26B110.6
C14—C15—H15A109.5H26A—C26—H26B108.8
C14—C15—H15B109.5C26—C27—H27A109.5
H15A—C15—H15B109.5C26—C27—H27B109.5
C14—C15—H15C109.5H27A—C27—H27B109.5
H15A—C15—H15C109.5C26—C27—H27C109.5
H15B—C15—H15C109.5H27A—C27—H27C109.5
C13—O14—C16116.3 (2)H27B—C27—H27C109.5
O14—C16—C17108.2 (3)O31—C31—O32121.9 (11)
O14—C16—H16A110.1O31—C31—C32128.9 (11)
C17—C16—H16A110.1O32—C31—C32108.0 (9)
O14—C16—H16B110.1C31—C32—C33110.2 (11)
C17—C16—H16B110.1C31—C32—C221102.0 (10)
H16A—C16—H16B108.4C33—C32—C221118 (2)
C16—C17—H17A109.5C31—C32—H32108.8
C16—C17—H17B109.5C33—C32—H32108.8
H17A—C17—H17B109.5C221—C32—H32108.8
C16—C17—H17C109.5O33—C33—O34124.0 (16)
H17A—C17—H17C109.5O33—C33—C32122.0 (16)
H17B—C17—H17C109.5O34—C33—C32108.2 (11)
C131—C121—C144111.3 (2)C31—O32—C34115.3 (9)
C131—C121—C12113.7 (2)C35—C34—O32109.0 (9)
C144—C121—C12110.9 (2)C35—C34—H34A109.9
C131—C121—H121106.8O32—C34—H34A109.9
C144—C121—H121106.8C35—C34—H34B109.9
C12—C121—H121106.8O32—C34—H34B109.9
C132—C131—C136118.5 (3)H34A—C34—H34B108.3
C132—C131—C121117.4 (3)C34—C35—H35A109.5
C136—C131—C121124.1 (2)C34—C35—H35B109.5
C133—C132—C131121.0 (3)H35A—C35—H35B109.5
C133—C132—H132119.5C34—C35—H35C109.5
C131—C132—H132119.5H35A—C35—H35C109.5
C132—C133—C134119.5 (3)H35B—C35—H35C109.5
C132—C133—H133120.3C33—O34—C36118.9 (13)
C134—C133—H133120.3O34—C36—C37106.4 (12)
C133—C134—C135120.9 (3)O34—C36—H36A110.4
C133—C134—Cl14120.1 (3)C37—C36—H36A110.4
C135—C134—Cl14119.0 (3)O34—C36—H36B110.4
C136—C135—C134119.1 (3)C37—C36—H36B110.4
C136—C135—H135120.4H36A—C36—H36B108.6
C134—C135—H135120.4C36—C37—H37A109.5
C135—C136—C131121.0 (3)C36—C37—H37B109.5
C135—C136—H136119.5H37A—C37—H37B109.5
C131—C136—H136119.5C36—C37—H37C109.5
C145—N141—N142109.6 (2)H37A—C37—H37C109.5
C145—N141—H141127 (2)H37B—C37—H37C109.5
N142—N141—H141123 (2)C244—C221—C231113.5 (3)
O143—C143—N142123.0 (2)C244—C221—C32108.9 (10)
O143—C143—C144131.1 (2)C231—C221—C32111.0 (5)
N142—C143—C144105.9 (2)C244—C221—C22106.7 (5)
C145—C144—C143107.6 (2)C231—C221—C22114.5 (3)
C145—C144—C121126.8 (2)C244—C221—H221107.2
C143—C144—C121125.5 (2)C231—C221—H221107.2
N141—C145—C144108.9 (3)C22—C221—H221107.2
N141—C145—C146120.7 (3)C236—C231—C232117.3 (3)
C144—C145—C146130.4 (3)C236—C231—C221122.9 (3)
C145—C146—H16C109.5C232—C231—C221119.8 (3)
C145—C146—H16D109.5C233—C232—C231122.1 (3)
H16C—C146—H16D109.5C233—C232—H232119.0
C145—C146—H16E109.5C231—C232—H232119.0
H16C—C146—H16E109.5C234—C233—C232119.3 (3)
H16D—C146—H16E109.5C234—C233—H233120.4
N141—N142—C143107.9 (2)C232—C233—H233120.4
N141—N142—C151117.3 (4)C235—C234—C233119.6 (3)
C143—N142—C151132.8 (4)C235—C234—Cl24119.8 (3)
C156—C151—C152121.0 (4)C233—C234—Cl24120.7 (3)
C156—C151—N142120.2 (5)C234—C235—C236120.1 (3)
C152—C151—N142118.8 (5)C234—C235—H235119.9
C151—C152—C153120.2 (6)C236—C235—H235119.9
C151—C152—H152119.9C231—C236—C235121.5 (3)
C153—C152—H152119.9C231—C236—H236119.3
C154—C153—C152119.8 (6)C235—C236—H236119.3
C154—C153—H153120.1C245—N241—N242108.9 (2)
C152—C153—H153120.1C245—N241—H241129 (2)
C153—C154—C155119.7 (5)N242—N241—H241117 (2)
C153—C154—H154120.1C243—N242—N241108.7 (2)
C155—C154—H154120.1C243—N242—C251127.8 (2)
C154—C155—C156122.0 (6)N241—N242—C251121.0 (2)
C154—C155—H155119.0O243—C243—N242121.8 (3)
C156—C155—H155119.0O243—C243—C244132.5 (3)
C151—C156—C155117.4 (6)N242—C243—C244105.6 (2)
C151—C156—H156121.3C245—C244—C243107.7 (2)
C155—C156—H156121.3C245—C244—C221124.9 (3)
C166—C161—C162119.0 (7)C243—C244—C221127.4 (3)
C161—C162—C163119.2 (9)N241—C245—C244108.8 (3)
C161—C162—H162120.4N241—C245—C246121.5 (3)
C163—C162—H162120.4C244—C245—C246129.6 (3)
C164—C163—C162122.0 (9)C245—C246—H26C109.5
C164—C163—H163119.0C245—C246—H26D109.5
C162—C163—H163119.0H26C—C246—H26D109.5
C163—C164—C165118.8 (8)C245—C246—H26E109.5
C163—C164—H164120.6H26C—C246—H26E109.5
C165—C164—H164120.6H26D—C246—H26E109.5
C164—C165—C166120.4 (9)C256—C251—C252121.4 (3)
C164—C165—H165119.8C256—C251—N242119.9 (3)
C166—C165—H165119.8C252—C251—N242118.7 (3)
C161—C166—C165120.5 (9)C253—C252—C251118.9 (3)
C161—C166—H166119.7C253—C252—H252120.5
C165—C166—H166119.7C251—C252—H252120.5
O21—C21—O22122.8 (6)C254—C253—C252119.6 (4)
O21—C21—C22126.6 (6)C254—C253—H253120.2
O22—C21—C22110.3 (4)C252—C253—H253120.2
C23—C22—C21107.3 (5)C253—C254—C255120.9 (3)
C23—C22—C221109.1 (10)C253—C254—H254119.6
C21—C22—C221115.6 (5)C255—C254—H254119.6
C23—C22—H22108.2C256—C255—C254120.6 (3)
C21—C22—H22108.2C256—C255—H255119.7
C221—C22—H22108.2C254—C255—H255119.7
O23—C23—O24125.1 (7)C255—C256—C251118.6 (3)
O23—C23—C22123.5 (6)C255—C256—H256120.7
O24—C23—C22110.2 (5)C251—C256—H256120.7
O11—C11—C12—C1352.5 (4)C21—O22—C24—C2587.7 (9)
O12—C11—C12—C13129.8 (2)O23—C23—O24—C2615 (3)
O11—C11—C12—C12167.4 (3)C22—C23—O24—C26177.1 (9)
O12—C11—C12—C121110.3 (3)C23—O24—C26—C27150.7 (13)
C11—C12—C13—O1398.4 (4)O31—C31—C32—C33108 (3)
C121—C12—C13—O1317.9 (4)O32—C31—C32—C3385 (3)
C11—C12—C13—O1480.3 (3)O31—C31—C32—C22118 (4)
C121—C12—C13—O14163.3 (2)O32—C31—C32—C221149 (2)
O11—C11—O12—C141.7 (4)C31—C32—C33—O3358 (5)
C12—C11—O12—C14175.9 (3)C221—C32—C33—O3359 (4)
C11—O12—C14—C1583.5 (5)C31—C32—C33—O34148 (2)
O13—C13—O14—C161.0 (4)C221—C32—C33—O3495 (3)
C12—C13—O14—C16177.8 (2)O31—C31—O32—C3421 (3)
C13—O14—C16—C17177.7 (3)C32—C31—O32—C34170.1 (15)
C11—C12—C121—C131180.0 (2)C31—O32—C34—C35158.2 (19)
C13—C12—C121—C13163.4 (3)O33—C33—O34—C3629 (6)
C11—C12—C121—C14453.6 (3)C32—C33—O34—C36177 (2)
C13—C12—C121—C144170.2 (2)C33—O34—C36—C3796 (3)
C144—C121—C131—C13278.9 (3)C31—C32—C221—C24467.7 (17)
C12—C121—C131—C132155.0 (2)C33—C32—C221—C244171.5 (10)
C144—C121—C131—C136101.0 (3)C31—C32—C221—C231166.6 (13)
C12—C121—C131—C13625.1 (4)C33—C32—C221—C23145.8 (15)
C136—C131—C132—C1330.5 (4)C31—C32—C221—C2216 (25)
C121—C131—C132—C133179.6 (2)C33—C32—C221—C22136 (27)
C131—C132—C133—C1340.2 (4)C23—C22—C221—C244171.1 (4)
C132—C133—C134—C1350.8 (5)C21—C22—C221—C24467.8 (9)
C132—C133—C134—Cl14179.8 (2)C23—C22—C221—C23144.6 (7)
C133—C134—C135—C1360.6 (5)C21—C22—C221—C231165.7 (6)
Cl14—C134—C135—C136180.0 (3)C23—C22—C221—C3242 (26)
C134—C135—C136—C1310.1 (5)C21—C22—C221—C32163 (27)
C132—C131—C136—C1350.6 (5)C244—C221—C231—C23629.3 (4)
C121—C131—C136—C135179.5 (3)C32—C221—C231—C23693.8 (13)
O143—C143—C144—C145177.9 (3)C22—C221—C231—C23693.7 (6)
N142—C143—C144—C1451.1 (3)C244—C221—C231—C232151.1 (3)
O143—C143—C144—C1211.4 (5)C32—C221—C231—C23285.8 (13)
N142—C143—C144—C121177.6 (2)C22—C221—C231—C23285.9 (6)
C131—C121—C144—C145117.6 (3)C236—C231—C232—C2333.1 (5)
C12—C121—C144—C145114.7 (3)C221—C231—C232—C233176.5 (3)
C131—C121—C144—C14366.6 (3)C231—C232—C233—C2340.9 (6)
C12—C121—C144—C14361.1 (3)C232—C233—C234—C2354.2 (6)
N142—N141—C145—C1441.3 (3)C232—C233—C234—Cl24175.9 (3)
N142—N141—C145—C146178.7 (3)C233—C234—C235—C2363.5 (6)
C143—C144—C145—N1410.1 (3)Cl24—C234—C235—C236176.7 (3)
C121—C144—C145—N141176.3 (2)C232—C231—C236—C2353.9 (5)
C143—C144—C145—C146179.9 (3)C221—C231—C236—C235175.7 (3)
C121—C144—C145—C1463.7 (5)C234—C235—C236—C2310.7 (6)
C145—N141—N142—C1432.0 (3)C245—N241—N242—C2434.8 (3)
C145—N141—N142—C151168.0 (6)C245—N241—N242—C251168.2 (3)
O143—C143—N142—N141177.2 (2)N241—N242—C243—O243176.3 (3)
C144—C143—N142—N1411.8 (3)C251—N242—C243—O24314.5 (5)
O143—C143—N142—C15114.2 (7)N241—N242—C243—C2443.1 (3)
C144—C143—N142—C151164.8 (6)C251—N242—C243—C244165.0 (3)
N141—N142—C151—C15624.1 (12)O243—C243—C244—C245179.0 (4)
C143—N142—C151—C156137.7 (7)N242—C243—C244—C2450.3 (4)
N141—N142—C151—C152157.6 (7)O243—C243—C244—C2210.8 (6)
C143—N142—C151—C15240.6 (13)N242—C243—C244—C221179.9 (3)
C156—C151—C152—C1531.6 (14)C231—C221—C244—C24599.7 (4)
N142—C151—C152—C153176.7 (8)C32—C221—C244—C245136.1 (9)
C151—C152—C153—C1543.3 (11)C22—C221—C244—C245133.1 (5)
C152—C153—C154—C1552.2 (10)C231—C221—C244—C24380.0 (4)
C153—C154—C155—C1560.7 (9)C32—C221—C244—C24344.2 (9)
C152—C151—C156—C1551.2 (13)C22—C221—C244—C24347.2 (5)
N142—C151—C156—C155179.5 (8)N242—N241—C245—C2444.6 (3)
C154—C155—C156—C1512.4 (10)N242—N241—C245—C246174.4 (3)
C166—C161—C162—C1631 (3)C243—C244—C245—N2412.6 (4)
C161—C162—C163—C1641 (2)C221—C244—C245—N241177.1 (3)
C162—C163—C164—C1651.0 (18)C243—C244—C245—C246176.2 (3)
C163—C164—C165—C1660.2 (19)C221—C244—C245—C2464.0 (6)
C162—C161—C166—C1651 (3)C243—N242—C251—C256130.0 (3)
C164—C165—C166—C1611 (2)N241—N242—C251—C25630.0 (4)
O21—C21—C22—C23106.7 (12)C243—N242—C251—C25248.7 (5)
O22—C21—C22—C2367.0 (12)N241—N242—C251—C252151.4 (3)
O21—C21—C22—C22115.3 (15)C256—C251—C252—C2530.2 (5)
O22—C21—C22—C221171.0 (9)N242—C251—C252—C253178.4 (3)
C21—C22—C23—O2342 (2)C251—C252—C253—C2540.3 (6)
C221—C22—C23—O2384.4 (18)C252—C253—C254—C2551.1 (6)
C21—C22—C23—O24126.5 (11)C253—C254—C255—C2561.3 (6)
C221—C22—C23—O24107.5 (15)C254—C255—C256—C2510.8 (5)
O21—C21—O22—C244.5 (14)C252—C251—C256—C2550.0 (5)
C22—C21—O22—C24178.5 (7)N242—C251—C256—C255178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N141—H141···O2430.83 (3)1.90 (3)2.692 (3)160 (3)
N241—H241···O143i0.85 (3)1.86 (3)2.704 (3)171 (3)
C14—H14A···O21ii0.992.353.322 (11)166
C132—H132···O13iii0.952.583.416 (4)148
C235—H235···Cg10.952.713.406 (5)131
C235—H235···Cg20.952.723.444 (7)133
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z+1.
Selected torsional angles (°) top
Parameter(I), mol 1(I), mol 2(II), mol 1(II), mol 2
x =1212
Cx1—Cx2—Cx21—Cx31179.2 (3)-165.2 (4)180.0 (2)-164.7 (6)
Cx3—Cx2—Cx21—Cx44170.2 (3)-170.4 (3)170.2 (2)-171.1 (4)
Hx2—Cx2—Cx21—Hx21177-167178-168
C31—C32—C221—C231166.6 (13)
C33—C32—C221—C244-171.1 (4)
H32—C32—C221—H221-166
Cx21—Cx2—Cx1—Ox266.6 (5)-167.1 (4)67.4 (3)-169.0 (4)
Cx2—Cx1—Ox2—Cx4176.1 (4)-178.7 (5)175.9 (3)178.5 (7)
Cx1—Ox2—Cx4—Cx5-83.1 (6)-95.2 (8)-83.5 (5)-87.7 (9)
C221—C22—C31—O32-150.2 (13)
C22—C31—O32—C34-170.0 (11)
C31—O32—C34—C35158.1 (14)
Cx21—Cx2—Cx3—Ox4164.5 (3)102.9 (4)163.3 (2)111.7 (13)
Cx2—Cx3—Ox4—Cx6177.3 (4)-176.5 (4)177.8 (2)-179.1 (7)
Cx3—Ox4—Cx6—Cx7175.9 (5)154.1 (5)177.7 (3)150.7 (13)
C221—C22—C33—O3495.3 (16)
C22—C33—O34—C36-174 (2)
C33—O34—C36—C3796 (2)
Cx2—Cx21—Cx31—Cx32155.9 (4)86.7 (5)155.0 (2)85.9 (6)
Cx2—Cx21—Cx44—Cx45-113.8 (5)-135.8 (4)-117.6 (3)-133.1 (5)
Nx41—Nx42—Cx51—Cx52-159.2 (4)151.4 (4)-157.6 (7)151.4 (3)
Nx41—Nx42—Cx61—Cx62-157 (2)
Hydrogen bond parameters (Å, °) top
Cg1 and Cg2 represent the centroids of the rings (C151–C156) and (C161–C166).
CompoundD—H···AD—HH···AD···AD—H···A
(I)N141—H141···O2430.86 (5)1.85 (5)2.678 (5)162 (4)
N241—H241···O143i0.95 (4)1.74 (4)2.690 (5)175 (4)
C14—H14···O21ii0.992.323.288 (7)166
C132—H132···O13iii0.952.553.359 (5)144
C235—H235···Cg10.952.643.372 (6)134
(II)N141—H141···O2430.85 (3)1.89 (3)2.692 (3)159 (3)
N241—H241···O143i0.86 (3)1.85 (3)2.703 (3)172 (3)
C14—H14···O21ii0.992.383.346 (10)166
C132—H132···O13iii0.952.583.416 (5)147
C235—H235···Cg10.952.723.439 (9)133
C235—H235···Cg20.952.723.439 (9)133
Symmetry codes: (i) -1/2 + x, 3/2 - y, -1/2 + z; (ii) 1/2 + x, 3/2 - y, 1/2 + z; (iii) 1 - x, 1 - y, 1 - z.
 

Acknowledgements

TKS is grateful to Mangalore University for research facilities. HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

Funding information

Funding for this research was provided by: University Grants Commission, New Delhi .

References

First citationAcosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnsari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.  Web of Science CrossRef CAS Google Scholar
First citationAsma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783–1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHofmann, D. W. M. (2002). Acta Cryst. B58, 489–493.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJiang, H., Sun, X.-L., Zhu, C.-Y., Dai, L.-X. & Tang, Y. (2008). Tetrahedron, 64, 5032–5035.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–210.  Web of Science CrossRef Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 683–691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeskini, I., Daoudi, M., Daran, J.-C., Kerbal, A. & Zouihri, H. (2010). Acta Cryst. E66, o1965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeskini, I., Daoudi, M., Daran, J.-C., Zouihri, H. & Ben Hadda, T. (2010). Acta Cryst. E66, o1014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeskini, I., Toupet, L., Daoudi, M., Kerbal, A., Akkurt, M., Chohan, Z. H. & Hadda, T. B. (2010). J. Chem. Crystallogr. 40, 812–815.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360–365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 48–52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVogel, A. I., Tachell, A. R., Furnis, B. S., Hannaford, A. J. & Smith, P. W. G. (2000). A Textbook of Practical Organic Chemistry, 5th ed. New York: Prentice Hall.  Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationYépes, A. F., Palma, A., Marchal, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o199–o203.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds