research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the unusual coordination polymer catena-poly[[gold(I)-μ-1,2-bis­­(di­phenyl­phosphino­thio­yl)ethane-κ2S:S′] di­bromido­aurate(I)]1

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 30 September 2020; accepted 13 October 2020; online 20 October 2020)

In the title compound, {[Au(C26H24P2S2)][AuBr2]}n, the gold(I) centres of the cation are coordinated by the P=S groups of the di­sulfide ligands to form a chain polymer parallel to the c axis. Both independent gold atoms lie on the same twofold axis, and the midpoint of the H2C—CH2 bond lies on an inversion centre. The anions flank the polymeric chain; they are connected to it by short aurophilic inter­actions and C—H⋯Br contacts, and to each other by Br⋯Br contacts.

1. Chemical context

Although phosphane sulfides are known to act as ligands towards gold(I) centres, not many complexes have been structurally characterized in which two such ligands coordinate to gold(I). A search of the Cambridge Database (2019 Version, ConQuest 2.0.5) revealed only three structures involving the cation [(Ph3P=S)2Au]+; the PO2F2 salt (LeBlank et al., 1997[LeBlanc, D. J., Britten, J. F. & Lock, C. J. L. (1997). Acta Cryst. C53, 1204-1206.]), the nitrate (Jones & Geissler, 2016a[Jones, P. G. & Geissler, N. (2016a). CSD Communication (CCDC code 1489550). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m000n.]) and a bis­(methyl­sulfon­yl)amide salt (Jones & Geissler, 2016b[Jones, P. G. & Geissler, N. (2016b). CSD Communication (CCDC code 1489551). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m001p.]). Cationic 1:1 complexes of gold(I) with diphosphane di­sulfides can only be achieved if the ligand geometry allows for linear coordination at the gold atom, which is not generally the case unless suitable spacers, such as ferrocene units or other metal centres, are present (Gimeno et al., 2000[Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10-15.], and references therein; Parkanyi & Besenyei, 2017[Parkanyi, L. & Besenyei, G. (2017). ). CSD Communication (CCDC code 1545895). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1nwmlr.]; Wang & Fackler, 1990[Wang, S. & Fackler, J. P. Jr (1990). Organometallics, 9, 111-115.]).

[Scheme 1]

In the course of our studies of phosphane chalcogenide complexes of gold (Upmann et al., 2019[Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. Teil B, 74, 389-404.], and references therein) we planned to study complexes of the diphosphane di­sulfides 1,2-bis­(di­phenyl­phosphino­thio­yl)ethane [previously known as 1,2-bis­(di­phenyl­phosphino)ethane di­sulfide; dppeS2] and bis­(di­phenyl­thio­phosphino­yl)methane [prev­iously known as bis­(di­phenyl­phosphino)methane di­sulfide; dppmS2] with gold(I) halide fragments AuBr and AuCl, with particular attention to the mononuclear complexes. This succeeded to some extent; we were able to isolate and determine the structure of dppmS2AuCl, the isotypic dppmS2AuBr and its oxidation product with bromine [(dppmS2)AuBr2]+ [AuBr4] (Jones et al., 2020a[Jones, P. G., Taouss, C. & Calvo, M. (2020a). CSD Communication (CCDC code 2025914). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26042g.],b[Jones, P. G., Taouss, C. & Calvo, M. (2020b). CSD Communication (CCDC code 2025915). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26043h.],c[Jones, P. G., Taouss, C. & Calvo, M. (2020c). CSD Communication (CCDC code 2025916). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26044j.], respectively), but yields were poor and it was clear that scrambling reactions were a problem. With dppeS2 even less was achieved, but a few thin needles, isolated from the attempted synthesis of dppeS2AuBr, proved to be an unusual coordination polymer [(dppeS2)Au]nn+·n[AuBr2], the structure of which we report here.

2. Structural commentary

The title compound is shown in Fig. 1[link]. The cation has the stoichiometry [dppeS2Au]+, and forms a chain polymer (⋯Au—S=PCH2CH2P=S⋯)n parallel to the c axis; the anion is [AuBr2]. Both gold atoms lie on twofold axes [1\over2], y, [1\over4] and show the linear coordination geometry expected for AuI; the midpoint of the central H2C—CH2 bond lies on the inversion centre [1\over2], [1\over2], [1\over2]. Bond lengths and angles may be considered normal; for a selection, see Table 1[link]. Coordination polymers are scarce for diphosphane di­sulfide ligands (see below).

Table 1
Selected geometric parameters (Å, °)

Au1—S1 2.3125 (9) Br1⋯Br1i 3.7424 (8)
Au1⋯Au2 2.9622 (3) P1—S1 2.0097 (12)
Au2—Br1 2.3746 (5) C1—C1ii 1.528 (6)
       
S1—Au1—S1iii 178.43 (4) Br1—Au2⋯Au1 93.201 (11)
S1—Au1⋯Au2 90.78 (2) Au2—Br1⋯Br1i 126.21 (2)
Br1—Au2—Br1iii 173.60 (2) P1—S1—Au1 98.34 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Structure of the title complex in the crystal; the asymmetric unit is numbered. The aurophilic contact and the S—Au connections to the next gold atoms in the polymer are indicated by filled and open dashed bonds, respectively.

3. Supra­molecular features

The gold atoms of the cation and anion are connected via a short aurophilic contact of 2.9622 (3) Å, and the anions thus flank the cation polymer (Fig. 2[link]). Neighbouring anions are connected by short Br⋯Br contacts of 3.7424 (8) Å (operator 1 − x, 2 − y, 1 − z), and also provide links to adjacent polymers (not shown in Fig. 2[link]). We have previously noted an example of short contacts between di­bromo­aurate(I) anions (Döring & Jones, 2013[Döring, C. & Jones, P. G. (2013). Acta Cryst. C69, 709-711.]); for a further example, see Beno et al. (1990[Beno, M. A., Wang, H. H., Carlson, K. D., Kini, A. M., Frankenbach, G. M., Ferraro, J. R., Larson, N., McCabe, G. D., Thompson, J., Pumana, C., Vashon, M. & Williams, J. M. (1990). Mol. Cryst. Liq. Cryst. 181, 145-159.]). We have also described Br⋯Br and Cl⋯Cl contacts in a series of tetra­bromido­aurate(III) and tetra­chlorido­aurate(III) salts (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]).

[Figure 2]
Figure 2
The polymeric structure of the title compound, viewed perpendicular to the (101) plane. Aurophilic contacts are shown as thick bonds and Br⋯Br contacts as thin dashed bonds. Hydrogen atoms are omitted for clarity.

Two C—H⋯Br contacts between cation and anions are sufficiently short and linear to be considered `weak' hydrogen bonds (Table 2[link]), and thus to contribute further cohesion to the structure, but are omitted from Fig. 2[link] for clarity.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Br1ii 0.95 2.81 3.712 (4) 159
C26—H26⋯Br1ii 0.95 2.89 3.775 (4) 155
Symmetry code: (ii) -x+1, -y+1, -z+1.

4. Database survey

A database search (CSD 2019 Version, ConQuest 2.0.5) found 11 hits for systems involving two P=S units bonded to AuI. The P=S bond lengths range from 1.985–2.039, av. 2.018 Å, and the S—Au bond lengths from 2.275–2.317, av. 2.296 Å. The only other coordination polymer found for a diphosphane di­sulfide was [(CuCN)2(dppeS2)]n (Zhou et al., 2006[Zhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435-2443.]), a two-dimensional polymer involving four-coordinate Cu centres.

5. Synthesis and crystallization

The compound arose from an attempt to synthesize dppeS2AuBr. A solution of thtAuBr (tht = tetra­hydro­thio­phene; 0.775 g, 2.12 mmol) in CH2Cl2 (50 ml) was added to dppeS2 (0.981 g, 2.12 mmol) dissolved in CH2Cl2 (50 ml). After stirring for 1 h, the solvent was removed, and the solid thus obtained was dried under vacuum and recrystallized from di­chloro­methane/n-pentane. The elemental analysis was approximately correct for the expected stoichiometry: calculated, C 42.23%, H 3.27%, S 8.67%; found, C 43.22%, H 3.87%, S 8.19%. However, attempts to obtain crystals suitable for X-ray structure analysis (by evaporation from a solution in CH2Cl2) led only to a few very thin needles of the title compound, with overall stoichiometry dppeS2(AuBr)2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The Uiso(H) values were fixed at 1.2 times the equivalent Uiso value of the parent carbon atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Au(C26H24P2S2)][AuBr2]
Mr 1016.26
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 21.4112 (8), 11.9708 (2), 13.7726 (4)
β (°) 128.316 (7)
V3) 2769.7 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 25.63
Crystal size (mm) 0.12 × 0.005 × 0.005
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Atlas, Nova
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.387, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27632, 2873, 2630
Rint 0.037
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.06
No. of reflections 2873
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.42, −0.99
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

catena-Poly[[gold(I)-µ-1,2-bis(diphenylphosphinothioyl)ethane-κ2S:S'] dibromidoaurate(I)] top
Crystal data top
[Au(C26H24P2S2)][AuBr2]F(000) = 1880
Mr = 1016.26Dx = 2.437 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 21.4112 (8) ÅCell parameters from 17272 reflections
b = 11.9708 (2) Åθ = 4.1–75.8°
c = 13.7726 (4) ŵ = 25.63 mm1
β = 128.316 (7)°T = 100 K
V = 2769.7 (3) Å3Needle, colourless
Z = 40.12 × 0.01 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Atlas, Nova
diffractometer
2873 independent reflections
Radiation source: Nova (Cu) X-ray Source2630 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.3543 pixels mm-1θmax = 76.0°, θmin = 4.5°
ω scansh = 2626
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2010)
k = 1415
Tmin = 0.387, Tmax = 1.000l = 1716
27632 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0283P)2 + 12.9976P]
where P = (Fo2 + 2Fc2)/3
2873 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 0.99 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.61954 (2)0.2500000.01687 (7)
Au20.5000000.86699 (2)0.2500000.01950 (7)
Br10.47685 (3)0.87807 (3)0.39751 (4)0.03124 (11)
P10.60133 (5)0.46450 (7)0.49985 (8)0.01384 (16)
S10.61453 (5)0.61690 (7)0.45351 (8)0.01915 (17)
C10.50616 (19)0.4520 (3)0.4701 (3)0.0162 (7)
H1A0.4626440.4523530.3797010.019*
H1B0.5041400.3800430.5034740.019*
C110.6769 (2)0.4432 (3)0.6634 (3)0.0167 (7)
C120.7460 (2)0.5083 (3)0.7329 (4)0.0214 (8)
H120.7525180.5689960.6954550.026*
C130.8047 (2)0.4839 (4)0.8566 (4)0.0290 (9)
H130.8516490.5281250.9036770.035*
C140.7962 (2)0.3962 (4)0.9128 (4)0.0267 (8)
H140.8369220.3805470.9978870.032*
C150.7280 (2)0.3310 (3)0.8446 (3)0.0227 (7)
H150.7218650.2706740.8829300.027*
C160.6684 (2)0.3542 (3)0.7197 (3)0.0198 (7)
H160.6217800.3092240.6727980.024*
C210.61000 (19)0.3529 (3)0.4211 (3)0.0154 (6)
C220.6509 (2)0.3700 (3)0.3737 (4)0.0220 (7)
H220.6709190.4419110.3771480.026*
C230.6622 (3)0.2805 (4)0.3212 (4)0.0287 (8)
H230.6895300.2918990.2879990.034*
C240.6338 (2)0.1754 (3)0.3171 (4)0.0274 (8)
H240.6414650.1148170.2808420.033*
C250.5943 (2)0.1586 (3)0.3657 (4)0.0264 (8)
H250.5754050.0860980.3635590.032*
C260.5819 (3)0.2461 (3)0.4176 (4)0.0237 (8)
H260.5544510.2339370.4505380.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01921 (11)0.01291 (10)0.01950 (11)0.0000.01250 (9)0.000
Au20.01812 (11)0.01358 (10)0.02586 (12)0.0000.01316 (9)0.000
Br10.0371 (2)0.0274 (2)0.0408 (3)0.00694 (16)0.0299 (2)0.00832 (17)
P10.0127 (4)0.0131 (4)0.0155 (4)0.0004 (3)0.0086 (3)0.0009 (3)
S10.0192 (4)0.0151 (4)0.0211 (4)0.0024 (3)0.0115 (4)0.0003 (3)
C10.0129 (15)0.0177 (16)0.0170 (16)0.0012 (12)0.0088 (13)0.0015 (13)
C110.0153 (15)0.0178 (16)0.0192 (17)0.0005 (12)0.0117 (14)0.0041 (13)
C120.0180 (17)0.0258 (19)0.0236 (19)0.0060 (14)0.0144 (16)0.0051 (15)
C130.0168 (17)0.041 (2)0.022 (2)0.0063 (16)0.0087 (16)0.0067 (17)
C140.0164 (17)0.040 (2)0.0161 (18)0.0064 (15)0.0063 (15)0.0014 (16)
C150.0236 (18)0.0245 (18)0.0183 (18)0.0060 (14)0.0121 (15)0.0027 (14)
C160.0170 (16)0.0182 (16)0.0197 (18)0.0009 (13)0.0091 (14)0.0008 (13)
C210.0139 (15)0.0147 (15)0.0160 (16)0.0032 (12)0.0085 (14)0.0022 (12)
C220.0235 (18)0.0204 (17)0.0269 (19)0.0039 (13)0.0181 (16)0.0025 (14)
C230.033 (2)0.032 (2)0.035 (2)0.0043 (17)0.0276 (19)0.0005 (18)
C240.032 (2)0.0236 (19)0.026 (2)0.0078 (16)0.0173 (17)0.0010 (15)
C250.034 (2)0.0164 (17)0.028 (2)0.0033 (15)0.0186 (18)0.0053 (15)
C260.028 (2)0.0203 (19)0.026 (2)0.0037 (13)0.0187 (18)0.0027 (14)
Geometric parameters (Å, º) top
Au1—S12.3125 (9)C13—H130.9500
Au1—S1i2.3125 (9)C14—C151.387 (6)
Au1—Au22.9622 (3)C14—H140.9500
Au2—Br12.3746 (5)C15—C161.393 (5)
Au2—Br1i2.3746 (5)C15—H150.9500
Br1—Br1ii3.7424 (8)C16—H160.9500
P1—C111.800 (4)C21—C221.394 (5)
P1—C211.801 (4)C21—C261.401 (5)
P1—C11.819 (3)C22—C231.394 (5)
P1—S12.0097 (12)C22—H220.9500
C1—C1iii1.528 (6)C23—C241.384 (6)
C1—H1A0.9900C23—H230.9500
C1—H1B0.9900C24—C251.381 (6)
C11—C161.395 (5)C24—H240.9500
C11—C121.399 (5)C25—C261.384 (5)
C12—C131.382 (6)C25—H250.9500
C12—H120.9500C26—H260.9500
C13—C141.383 (6)
S1—Au1—S1i178.43 (4)C14—C13—H13119.5
S1—Au1—Au290.78 (2)C13—C14—C15119.9 (4)
S1i—Au1—Au290.78 (2)C13—C14—H14120.1
Br1—Au2—Br1i173.60 (2)C15—C14—H14120.1
Br1—Au2—Au193.201 (11)C14—C15—C16119.9 (4)
Br1i—Au2—Au193.201 (11)C14—C15—H15120.1
Au2—Br1—Br1ii126.21 (2)C16—C15—H15120.1
C11—P1—C21107.45 (15)C15—C16—C11120.2 (3)
C11—P1—C1106.44 (16)C15—C16—H16119.9
C21—P1—C1108.84 (15)C11—C16—H16119.9
C11—P1—S1109.38 (12)C22—C21—C26119.9 (3)
C21—P1—S1113.24 (12)C22—C21—P1120.2 (3)
C1—P1—S1111.20 (12)C26—C21—P1119.7 (3)
P1—S1—Au198.34 (4)C21—C22—C23119.4 (4)
C1iii—C1—P1111.1 (3)C21—C22—H22120.3
C1iii—C1—H1A109.4C23—C22—H22120.3
P1—C1—H1A109.4C24—C23—C22120.5 (4)
C1iii—C1—H1B109.4C24—C23—H23119.8
P1—C1—H1B109.4C22—C23—H23119.8
H1A—C1—H1B108.0C25—C24—C23119.8 (4)
C16—C11—C12119.5 (3)C25—C24—H24120.1
C16—C11—P1118.5 (3)C23—C24—H24120.1
C12—C11—P1121.8 (3)C24—C25—C26120.8 (4)
C13—C12—C11119.6 (4)C24—C25—H25119.6
C13—C12—H12120.2C26—C25—H25119.6
C11—C12—H12120.2C25—C26—C21119.5 (4)
C12—C13—C14121.0 (4)C25—C26—H26120.2
C12—C13—H13119.5C21—C26—H26120.2
S1—Au1—Au2—Br165.75 (3)C11—C12—C13—C140.2 (6)
S1i—Au1—Au2—Br1114.25 (2)C12—C13—C14—C150.2 (6)
S1—Au1—Au2—Br1i114.24 (3)C13—C14—C15—C160.1 (6)
S1i—Au1—Au2—Br1i65.75 (3)C14—C15—C16—C110.4 (6)
Au1—Au2—Br1—Br1ii158.03 (3)C12—C11—C16—C150.5 (5)
C11—P1—S1—Au1172.78 (12)P1—C11—C16—C15176.2 (3)
C21—P1—S1—Au167.42 (12)C11—P1—C21—C2298.2 (3)
C1—P1—S1—Au155.51 (12)C1—P1—C21—C22146.9 (3)
Au2—Au1—S1—P1156.28 (4)S1—P1—C21—C2222.7 (3)
C11—P1—C1—C1iii67.1 (4)C11—P1—C21—C2676.0 (3)
C21—P1—C1—C1iii177.3 (3)C1—P1—C21—C2638.9 (3)
S1—P1—C1—C1iii51.9 (4)S1—P1—C21—C26163.1 (3)
C21—P1—C11—C1670.7 (3)C26—C21—C22—C231.1 (6)
C1—P1—C11—C1645.7 (3)P1—C21—C22—C23175.3 (3)
S1—P1—C11—C16166.0 (2)C21—C22—C23—C240.6 (6)
C21—P1—C11—C12104.9 (3)C22—C23—C24—C250.3 (6)
C1—P1—C11—C12138.7 (3)C23—C24—C25—C260.7 (6)
S1—P1—C11—C1218.4 (3)C24—C25—C26—C210.2 (6)
C16—C11—C12—C130.2 (5)C22—C21—C26—C250.7 (6)
P1—C11—C12—C13175.7 (3)P1—C21—C26—C25174.9 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Br1iii0.952.813.712 (4)159
C26—H26···Br1iii0.952.893.775 (4)155
Symmetry code: (iii) x+1, y+1, z+1.
 

Footnotes

1Phosphane chalcogenides and their metal complexes, Part VI. Part V: Upmann et al. [(2019). Z. Naturforsch. Teil B, 74, 389–404].

Advanced practical student from the University of Valencia, Spain. Current address: Hikma Pharmaceuticals, Schiffgraben 23, 38690 Goslar, Germany.

Acknowledgements

M. Calvo was supported by the Erasmus scheme.

References

First citationBeno, M. A., Wang, H. H., Carlson, K. D., Kini, A. M., Frankenbach, G. M., Ferraro, J. R., Larson, N., McCabe, G. D., Thompson, J., Pumana, C., Vashon, M. & Williams, J. M. (1990). Mol. Cryst. Liq. Cryst. 181, 145–159.  CAS Google Scholar
First citationDöring, C. & Jones, P. G. (2013). Acta Cryst. C69, 709–711.  CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationGimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, P. G. & Geissler, N. (2016a). CSD Communication (CCDC code 1489550). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m000n.  Google Scholar
First citationJones, P. G. & Geissler, N. (2016b). CSD Communication (CCDC code 1489551). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m001p.  Google Scholar
First citationJones, P. G., Taouss, C. & Calvo, M. (2020a). CSD Communication (CCDC code 2025914). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26042g.  Google Scholar
First citationJones, P. G., Taouss, C. & Calvo, M. (2020b). CSD Communication (CCDC code 2025915). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26043h.  Google Scholar
First citationJones, P. G., Taouss, C. & Calvo, M. (2020c). CSD Communication (CCDC code 2025916). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26044j.  Google Scholar
First citationLeBlanc, D. J., Britten, J. F. & Lock, C. J. L. (1997). Acta Cryst. C53, 1204–1206.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParkanyi, L. & Besenyei, G. (2017). ). CSD Communication (CCDC code 1545895). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1nwmlr.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationUpmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. Teil B, 74, 389–404.  CSD CrossRef CAS Google Scholar
First citationWang, S. & Fackler, J. P. Jr (1990). Organometallics, 9, 111–115.  CSD CrossRef CAS Google Scholar
First citationZhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435–2443.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds