research communications
catena-poly[[gold(I)-μ-1,2-bis(diphenylphosphinothioyl)ethane-κ2S:S′] dibromidoaurate(I)]1
of the unusual coordination polymeraInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, {[Au(C26H24P2S2)][AuBr2]}n, the gold(I) centres of the cation are coordinated by the P=S groups of the disulfide ligands to form a chain polymer parallel to the c axis. Both independent gold atoms lie on the same twofold axis, and the midpoint of the H2C—CH2 bond lies on an inversion centre. The anions flank the polymeric chain; they are connected to it by short aurophilic interactions and C—H⋯Br contacts, and to each other by Br⋯Br contacts.
Keywords: crystal structure; polymer; phosphine sulfide; gold.
CCDC reference: 2036798
1. Chemical context
Although phosphane ConQuest 2.0.5) revealed only three structures involving the cation [(Ph3P=S)2Au]+; the PO2F2− salt (LeBlank et al., 1997), the nitrate (Jones & Geissler, 2016a) and a bis(methylsulfonyl)amide salt (Jones & Geissler, 2016b). Cationic 1:1 complexes of gold(I) with diphosphane disulfides can only be achieved if the ligand geometry allows for linear coordination at the gold atom, which is not generally the case unless suitable spacers, such as ferrocene units or other metal centres, are present (Gimeno et al., 2000, and references therein; Parkanyi & Besenyei, 2017; Wang & Fackler, 1990).
are known to act as ligands towards gold(I) centres, not many complexes have been structurally characterized in which two such ligands coordinate to gold(I). A search of the Cambridge Database (2019 Version,In the course of our studies of phosphane chalcogenide complexes of gold (Upmann et al., 2019, and references therein) we planned to study complexes of the diphosphane disulfides 1,2-bis(diphenylphosphinothioyl)ethane [previously known as 1,2-bis(diphenylphosphino)ethane disulfide; dppeS2] and bis(diphenylthiophosphinoyl)methane [previously known as bis(diphenylphosphino)methane disulfide; dppmS2] with gold(I) halide fragments AuBr and AuCl, with particular attention to the mononuclear complexes. This succeeded to some extent; we were able to isolate and determine the structure of dppmS2AuCl, the isotypic dppmS2AuBr and its oxidation product with bromine [(dppmS2)AuBr2]+ [AuBr4]− (Jones et al., 2020a,b,c, respectively), but yields were poor and it was clear that scrambling reactions were a problem. With dppeS2 even less was achieved, but a few thin needles, isolated from the attempted synthesis of dppeS2AuBr, proved to be an unusual coordination polymer [(dppeS2)Au]nn+·n[AuBr2]−, the structure of which we report here.
2. Structural commentary
The title compound is shown in Fig. 1. The cation has the stoichiometry [dppeS2Au]+, and forms a chain polymer (⋯Au—S=PCH2CH2P=S⋯)n parallel to the c axis; the anion is [AuBr2]−. Both gold atoms lie on twofold axes , y, and show the linear coordination geometry expected for AuI; the midpoint of the central H2C—CH2 bond lies on the inversion centre , , . Bond lengths and angles may be considered normal; for a selection, see Table 1. Coordination polymers are scarce for diphosphane disulfide ligands (see below).
3. Supramolecular features
The gold atoms of the cation and anion are connected via a short aurophilic contact of 2.9622 (3) Å, and the anions thus flank the cation polymer (Fig. 2). Neighbouring anions are connected by short Br⋯Br contacts of 3.7424 (8) Å (operator 1 − x, 2 − y, 1 − z), and also provide links to adjacent polymers (not shown in Fig. 2). We have previously noted an example of short contacts between dibromoaurate(I) anions (Döring & Jones, 2013); for a further example, see Beno et al. (1990). We have also described Br⋯Br and Cl⋯Cl contacts in a series of tetrabromidoaurate(III) and tetrachloridoaurate(III) salts (Döring & Jones, 2016).
Two C—H⋯Br contacts between cation and anions are sufficiently short and linear to be considered `weak' hydrogen bonds (Table 2), and thus to contribute further cohesion to the structure, but are omitted from Fig. 2 for clarity.
4. Database survey
A database search (CSD 2019 Version, ConQuest 2.0.5) found 11 hits for systems involving two P=S units bonded to AuI. The P=S bond lengths range from 1.985–2.039, av. 2.018 Å, and the S—Au bond lengths from 2.275–2.317, av. 2.296 Å. The only other coordination polymer found for a diphosphane disulfide was [(CuCN)2(dppeS2)]n (Zhou et al., 2006), a two-dimensional polymer involving four-coordinate Cu centres.
5. Synthesis and crystallization
The compound arose from an attempt to synthesize dppeS2AuBr. A solution of thtAuBr (tht = tetrahydrothiophene; 0.775 g, 2.12 mmol) in CH2Cl2 (50 ml) was added to dppeS2 (0.981 g, 2.12 mmol) dissolved in CH2Cl2 (50 ml). After stirring for 1 h, the solvent was removed, and the solid thus obtained was dried under vacuum and recrystallized from dichloromethane/n-pentane. The elemental analysis was approximately correct for the expected stoichiometry: calculated, C 42.23%, H 3.27%, S 8.67%; found, C 43.22%, H 3.87%, S 8.19%. However, attempts to obtain crystals suitable for X-ray structure analysis (by evaporation from a solution in CH2Cl2) led only to a few very thin needles of the title compound, with overall stoichiometry dppeS2(AuBr)2.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethylene = 0.99 Å). The Uiso(H) values were fixed at 1.2 times the equivalent Uiso value of the parent carbon atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2036798
https://doi.org/10.1107/S2056989020013675/ex2037sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020013675/ex2037Isup2.hkl
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).[Au(C26H24P2S2)][AuBr2] | F(000) = 1880 |
Mr = 1016.26 | Dx = 2.437 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 21.4112 (8) Å | Cell parameters from 17272 reflections |
b = 11.9708 (2) Å | θ = 4.1–75.8° |
c = 13.7726 (4) Å | µ = 25.63 mm−1 |
β = 128.316 (7)° | T = 100 K |
V = 2769.7 (3) Å3 | Needle, colourless |
Z = 4 | 0.12 × 0.01 × 0.01 mm |
Oxford Diffraction Xcalibur, Atlas, Nova diffractometer | 2873 independent reflections |
Radiation source: Nova (Cu) X-ray Source | 2630 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.3543 pixels mm-1 | θmax = 76.0°, θmin = 4.5° |
ω scans | h = −26→26 |
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2010) | k = −14→15 |
Tmin = 0.387, Tmax = 1.000 | l = −17→16 |
27632 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0283P)2 + 12.9976P] where P = (Fo2 + 2Fc2)/3 |
2873 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 1.42 e Å−3 |
0 restraints | Δρmin = −0.99 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.500000 | 0.61954 (2) | 0.250000 | 0.01687 (7) | |
Au2 | 0.500000 | 0.86699 (2) | 0.250000 | 0.01950 (7) | |
Br1 | 0.47685 (3) | 0.87807 (3) | 0.39751 (4) | 0.03124 (11) | |
P1 | 0.60133 (5) | 0.46450 (7) | 0.49985 (8) | 0.01384 (16) | |
S1 | 0.61453 (5) | 0.61690 (7) | 0.45351 (8) | 0.01915 (17) | |
C1 | 0.50616 (19) | 0.4520 (3) | 0.4701 (3) | 0.0162 (7) | |
H1A | 0.462644 | 0.452353 | 0.379701 | 0.019* | |
H1B | 0.504140 | 0.380043 | 0.503474 | 0.019* | |
C11 | 0.6769 (2) | 0.4432 (3) | 0.6634 (3) | 0.0167 (7) | |
C12 | 0.7460 (2) | 0.5083 (3) | 0.7329 (4) | 0.0214 (8) | |
H12 | 0.752518 | 0.568996 | 0.695455 | 0.026* | |
C13 | 0.8047 (2) | 0.4839 (4) | 0.8566 (4) | 0.0290 (9) | |
H13 | 0.851649 | 0.528125 | 0.903677 | 0.035* | |
C14 | 0.7962 (2) | 0.3962 (4) | 0.9128 (4) | 0.0267 (8) | |
H14 | 0.836922 | 0.380547 | 0.997887 | 0.032* | |
C15 | 0.7280 (2) | 0.3310 (3) | 0.8446 (3) | 0.0227 (7) | |
H15 | 0.721865 | 0.270674 | 0.882930 | 0.027* | |
C16 | 0.6684 (2) | 0.3542 (3) | 0.7197 (3) | 0.0198 (7) | |
H16 | 0.621780 | 0.309224 | 0.672798 | 0.024* | |
C21 | 0.61000 (19) | 0.3529 (3) | 0.4211 (3) | 0.0154 (6) | |
C22 | 0.6509 (2) | 0.3700 (3) | 0.3737 (4) | 0.0220 (7) | |
H22 | 0.670919 | 0.441911 | 0.377148 | 0.026* | |
C23 | 0.6622 (3) | 0.2805 (4) | 0.3212 (4) | 0.0287 (8) | |
H23 | 0.689530 | 0.291899 | 0.287999 | 0.034* | |
C24 | 0.6338 (2) | 0.1754 (3) | 0.3171 (4) | 0.0274 (8) | |
H24 | 0.641465 | 0.114817 | 0.280842 | 0.033* | |
C25 | 0.5943 (2) | 0.1586 (3) | 0.3657 (4) | 0.0264 (8) | |
H25 | 0.575405 | 0.086098 | 0.363559 | 0.032* | |
C26 | 0.5819 (3) | 0.2461 (3) | 0.4176 (4) | 0.0237 (8) | |
H26 | 0.554451 | 0.233937 | 0.450538 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.01921 (11) | 0.01291 (10) | 0.01950 (11) | 0.000 | 0.01250 (9) | 0.000 |
Au2 | 0.01812 (11) | 0.01358 (10) | 0.02586 (12) | 0.000 | 0.01316 (9) | 0.000 |
Br1 | 0.0371 (2) | 0.0274 (2) | 0.0408 (3) | −0.00694 (16) | 0.0299 (2) | −0.00832 (17) |
P1 | 0.0127 (4) | 0.0131 (4) | 0.0155 (4) | −0.0004 (3) | 0.0086 (3) | −0.0009 (3) |
S1 | 0.0192 (4) | 0.0151 (4) | 0.0211 (4) | −0.0024 (3) | 0.0115 (4) | −0.0003 (3) |
C1 | 0.0129 (15) | 0.0177 (16) | 0.0170 (16) | −0.0012 (12) | 0.0088 (13) | −0.0015 (13) |
C11 | 0.0153 (15) | 0.0178 (16) | 0.0192 (17) | 0.0005 (12) | 0.0117 (14) | −0.0041 (13) |
C12 | 0.0180 (17) | 0.0258 (19) | 0.0236 (19) | −0.0060 (14) | 0.0144 (16) | −0.0051 (15) |
C13 | 0.0168 (17) | 0.041 (2) | 0.022 (2) | −0.0063 (16) | 0.0087 (16) | −0.0067 (17) |
C14 | 0.0164 (17) | 0.040 (2) | 0.0161 (18) | 0.0064 (15) | 0.0063 (15) | −0.0014 (16) |
C15 | 0.0236 (18) | 0.0245 (18) | 0.0183 (18) | 0.0060 (14) | 0.0121 (15) | 0.0027 (14) |
C16 | 0.0170 (16) | 0.0182 (16) | 0.0197 (18) | 0.0009 (13) | 0.0091 (14) | −0.0008 (13) |
C21 | 0.0139 (15) | 0.0147 (15) | 0.0160 (16) | 0.0032 (12) | 0.0085 (14) | 0.0022 (12) |
C22 | 0.0235 (18) | 0.0204 (17) | 0.0269 (19) | 0.0039 (13) | 0.0181 (16) | 0.0025 (14) |
C23 | 0.033 (2) | 0.032 (2) | 0.035 (2) | 0.0043 (17) | 0.0276 (19) | 0.0005 (18) |
C24 | 0.032 (2) | 0.0236 (19) | 0.026 (2) | 0.0078 (16) | 0.0173 (17) | −0.0010 (15) |
C25 | 0.034 (2) | 0.0164 (17) | 0.028 (2) | −0.0033 (15) | 0.0186 (18) | −0.0053 (15) |
C26 | 0.028 (2) | 0.0203 (19) | 0.026 (2) | −0.0037 (13) | 0.0187 (18) | −0.0027 (14) |
Au1—S1 | 2.3125 (9) | C13—H13 | 0.9500 |
Au1—S1i | 2.3125 (9) | C14—C15 | 1.387 (6) |
Au1—Au2 | 2.9622 (3) | C14—H14 | 0.9500 |
Au2—Br1 | 2.3746 (5) | C15—C16 | 1.393 (5) |
Au2—Br1i | 2.3746 (5) | C15—H15 | 0.9500 |
Br1—Br1ii | 3.7424 (8) | C16—H16 | 0.9500 |
P1—C11 | 1.800 (4) | C21—C22 | 1.394 (5) |
P1—C21 | 1.801 (4) | C21—C26 | 1.401 (5) |
P1—C1 | 1.819 (3) | C22—C23 | 1.394 (5) |
P1—S1 | 2.0097 (12) | C22—H22 | 0.9500 |
C1—C1iii | 1.528 (6) | C23—C24 | 1.384 (6) |
C1—H1A | 0.9900 | C23—H23 | 0.9500 |
C1—H1B | 0.9900 | C24—C25 | 1.381 (6) |
C11—C16 | 1.395 (5) | C24—H24 | 0.9500 |
C11—C12 | 1.399 (5) | C25—C26 | 1.384 (5) |
C12—C13 | 1.382 (6) | C25—H25 | 0.9500 |
C12—H12 | 0.9500 | C26—H26 | 0.9500 |
C13—C14 | 1.383 (6) | ||
S1—Au1—S1i | 178.43 (4) | C14—C13—H13 | 119.5 |
S1—Au1—Au2 | 90.78 (2) | C13—C14—C15 | 119.9 (4) |
S1i—Au1—Au2 | 90.78 (2) | C13—C14—H14 | 120.1 |
Br1—Au2—Br1i | 173.60 (2) | C15—C14—H14 | 120.1 |
Br1—Au2—Au1 | 93.201 (11) | C14—C15—C16 | 119.9 (4) |
Br1i—Au2—Au1 | 93.201 (11) | C14—C15—H15 | 120.1 |
Au2—Br1—Br1ii | 126.21 (2) | C16—C15—H15 | 120.1 |
C11—P1—C21 | 107.45 (15) | C15—C16—C11 | 120.2 (3) |
C11—P1—C1 | 106.44 (16) | C15—C16—H16 | 119.9 |
C21—P1—C1 | 108.84 (15) | C11—C16—H16 | 119.9 |
C11—P1—S1 | 109.38 (12) | C22—C21—C26 | 119.9 (3) |
C21—P1—S1 | 113.24 (12) | C22—C21—P1 | 120.2 (3) |
C1—P1—S1 | 111.20 (12) | C26—C21—P1 | 119.7 (3) |
P1—S1—Au1 | 98.34 (4) | C21—C22—C23 | 119.4 (4) |
C1iii—C1—P1 | 111.1 (3) | C21—C22—H22 | 120.3 |
C1iii—C1—H1A | 109.4 | C23—C22—H22 | 120.3 |
P1—C1—H1A | 109.4 | C24—C23—C22 | 120.5 (4) |
C1iii—C1—H1B | 109.4 | C24—C23—H23 | 119.8 |
P1—C1—H1B | 109.4 | C22—C23—H23 | 119.8 |
H1A—C1—H1B | 108.0 | C25—C24—C23 | 119.8 (4) |
C16—C11—C12 | 119.5 (3) | C25—C24—H24 | 120.1 |
C16—C11—P1 | 118.5 (3) | C23—C24—H24 | 120.1 |
C12—C11—P1 | 121.8 (3) | C24—C25—C26 | 120.8 (4) |
C13—C12—C11 | 119.6 (4) | C24—C25—H25 | 119.6 |
C13—C12—H12 | 120.2 | C26—C25—H25 | 119.6 |
C11—C12—H12 | 120.2 | C25—C26—C21 | 119.5 (4) |
C12—C13—C14 | 121.0 (4) | C25—C26—H26 | 120.2 |
C12—C13—H13 | 119.5 | C21—C26—H26 | 120.2 |
S1—Au1—Au2—Br1 | −65.75 (3) | C11—C12—C13—C14 | −0.2 (6) |
S1i—Au1—Au2—Br1 | 114.25 (2) | C12—C13—C14—C15 | 0.2 (6) |
S1—Au1—Au2—Br1i | 114.24 (3) | C13—C14—C15—C16 | 0.1 (6) |
S1i—Au1—Au2—Br1i | −65.75 (3) | C14—C15—C16—C11 | −0.4 (6) |
Au1—Au2—Br1—Br1ii | 158.03 (3) | C12—C11—C16—C15 | 0.5 (5) |
C11—P1—S1—Au1 | −172.78 (12) | P1—C11—C16—C15 | 176.2 (3) |
C21—P1—S1—Au1 | 67.42 (12) | C11—P1—C21—C22 | −98.2 (3) |
C1—P1—S1—Au1 | −55.51 (12) | C1—P1—C21—C22 | 146.9 (3) |
Au2—Au1—S1—P1 | 156.28 (4) | S1—P1—C21—C22 | 22.7 (3) |
C11—P1—C1—C1iii | 67.1 (4) | C11—P1—C21—C26 | 76.0 (3) |
C21—P1—C1—C1iii | −177.3 (3) | C1—P1—C21—C26 | −38.9 (3) |
S1—P1—C1—C1iii | −51.9 (4) | S1—P1—C21—C26 | −163.1 (3) |
C21—P1—C11—C16 | −70.7 (3) | C26—C21—C22—C23 | 1.1 (6) |
C1—P1—C11—C16 | 45.7 (3) | P1—C21—C22—C23 | 175.3 (3) |
S1—P1—C11—C16 | 166.0 (2) | C21—C22—C23—C24 | −0.6 (6) |
C21—P1—C11—C12 | 104.9 (3) | C22—C23—C24—C25 | −0.3 (6) |
C1—P1—C11—C12 | −138.7 (3) | C23—C24—C25—C26 | 0.7 (6) |
S1—P1—C11—C12 | −18.4 (3) | C24—C25—C26—C21 | −0.2 (6) |
C16—C11—C12—C13 | −0.2 (5) | C22—C21—C26—C25 | −0.7 (6) |
P1—C11—C12—C13 | −175.7 (3) | P1—C21—C26—C25 | −174.9 (3) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···Br1iii | 0.95 | 2.81 | 3.712 (4) | 159 |
C26—H26···Br1iii | 0.95 | 2.89 | 3.775 (4) | 155 |
Symmetry code: (iii) −x+1, −y+1, −z+1. |
Acknowledgements
M. Calvo was supported by the Erasmus scheme.
References
Beno, M. A., Wang, H. H., Carlson, K. D., Kini, A. M., Frankenbach, G. M., Ferraro, J. R., Larson, N., McCabe, G. D., Thompson, J., Pumana, C., Vashon, M. & Williams, J. M. (1990). Mol. Cryst. Liq. Cryst. 181, 145–159. CAS Google Scholar
Döring, C. & Jones, P. G. (2013). Acta Cryst. C69, 709–711. CSD CrossRef IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936. Google Scholar
Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10–15. Web of Science CSD CrossRef CAS Google Scholar
Jones, P. G. & Geissler, N. (2016a). CSD Communication (CCDC code 1489550). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m000n. Google Scholar
Jones, P. G. & Geissler, N. (2016b). CSD Communication (CCDC code 1489551). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m001p. Google Scholar
Jones, P. G., Taouss, C. & Calvo, M. (2020a). CSD Communication (CCDC code 2025914). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26042g. Google Scholar
Jones, P. G., Taouss, C. & Calvo, M. (2020b). CSD Communication (CCDC code 2025915). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26043h. Google Scholar
Jones, P. G., Taouss, C. & Calvo, M. (2020c). CSD Communication (CCDC code 2025916). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26044j. Google Scholar
LeBlanc, D. J., Britten, J. F. & Lock, C. J. L. (1997). Acta Cryst. C53, 1204–1206. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parkanyi, L. & Besenyei, G. (2017). ). CSD Communication (CCDC code 1545895). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1nwmlr. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. Teil B, 74, 389–404. CSD CrossRef CAS Google Scholar
Wang, S. & Fackler, J. P. Jr (1990). Organometallics, 9, 111–115. CSD CrossRef CAS Google Scholar
Zhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435–2443. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.