research communications
The 3 from 290 K to 725 K
of TlMgClaLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, and bLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: DOnken@lbl.gov
The title compound, thallium magnesium trichloride, has been identified as a scintillator with both moderate gamma-stopping power and moderate light yield. Knowledge of its 3 to be hexagonal P63/mmc (No. 194) and isostructural with RbMgCl3, contrary to previously reported data. This structure was obtained by single-crystal X-ray diffraction and was further confirmed by neutron diffraction measurements. Extending neutron diffraction measurements to high temperature, the data show that TlMgCl3 maintains this from 290 K up through 725 K, approaching the melting point of 770 K. Anisotropic coefficients increase over this temperature range, from 31 to 38 × 10−6 K−1 along the a axis and from 19 to 34 × 10−6 K−1 along the c axis.
is needed for further development. This work determines the of TlMgClCCDC reference: 2034695
1. Chemical context
In the ongoing search for inorganic scintillators with high gamma-stopping power, TlMgCl3 has been identified. As a result of the presence of thallium, TlMgCl3 has a high effective Zeff = 67 [calculation methodology (Derenzo & Choong, 2009) in the supporting information], and a moderate density, ρ = 4.47 g cm−3 (determined in this work). A pair of initial crystal growths of TlMgCl3 have been conducted to assess the scintillation properties: Fujimoto et al. (2016) measured 46,000 ph MeV−1 light yield with 5% energy resolution at 662 keV, and Hawrami et al. (2017) measured 30,600 ph MeV−1 light yield with 3.7% energy resolution at 662 keV.
To develop this compound further, a precise determination of the e.g. from thermal stresses). This work reports the of TlMgCl3 between 290 K and 725 K, approaching the melting point of 770 K. Previous work on TlMgCl3 by Beznosikov (1978) used powder diffraction to report the at room temperature as orthorhombic (a = 6.54, b = 9.22, c = 6.99 Å). However, despite using the same synthesis procedure, the structure reported by Beznosikov does not fit the diffraction data reported herein. Arai et al. (2020) published diffraction data but did not provide information on the crystal structure.
is necessary. This will enable first-principles calculations of the and may be useful in assessing challenges that arise during synthesis (2. Structural commentary
Single crystal X-ray diffraction (SC-XRD) determined TlMgCl3 to have a hexagonal structure (space group P63/mmc, No. 194) with lattice parameters a = 7.0228 (4), c = 17.4934 (15) Å at 290 K. Fig. 1 visualizes the which shows a three-dimensional corner- and face-sharing framework of six-coordinated Mg atoms encapsulating the 12-coordinated Tl atoms. There are six formula units in the There are two thallium, two magnesium and two chlorine atoms in the of TlMgCl3, with site symmetries of m2 and 3m; 3m and m; mm2 and m, respectively; key bond distances and angles are listed in Table 1. Pairs of Mg2-centered octahedra share faces (via 3 × Cl1) and these octahedral pairs share corners (via Cl2) with the Mg1 octahedra to generate an ABACBC hexagonal stacking sequence of the chloride ions in the c-axis direction with the thallium cations occupying the vacant 12-coordinate sites. The coordination polyhedra of the chloride ions are distorted ClMg2Tl4 octahedra with the Mg2+ ions in a cis disposition for Cl1 and a trans disposition for Cl2. The title compound is isostructural with RbMgCl3 as reported by Devaney et al. (1981) and RbMnCl3 as reported by Goodyear et al. (1977), who describe the structure in more detail. This structure is more complex than that of CsMgCl3 (McPherson et al., 1970), which also has P63/mmc but only requires two formula units per and has an AB hexagonal stacking sequence of the chloride ions in the c-axis direction.
Neutron diffraction (ND) conducted on powder samples produced diffraction patterns that were in agreement with the 3 maintains the same P63/mmc over this measured temperature range (see supporting information for more details on the powder ND data and fits). Fig. 2 shows the lattice parameters as a function of temperature. From these data, the along each axis is calculated (Fig. 3). The is greater along the a axis than the c axis. Besides the anisotropy in the lattice parameters, the atomic positions did not vary significantly with temperature, and therefore the bond lengths change with temperature as dictated by the lattice parameters alone.
determined by SC-XRD. Neutron diffraction was conducted at temperatures ranging from 300 K to 725 K. TlMgCl3. Synthesis and crystallization
Crystals of TlMgCl3 were grown from the melt using the vertical Bridgman method. High purity beads of TlCl and MgCl2 were combined in a stoichiometric ratio and sealed in a quartz ampoule under vacuum (10−6 Torr). The crystal was grown with a translation speed of 0.5 mm h−1 and was cooled over 72 h. To protect the moisture-sensitive reactants and products, all preparations before and after synthesis were conducted inside an argon-filled glove box.
4. Refinement
SC-XRD was conducted on a Bruker Kappa APEXII CCD diffractometer. The crystal was protected from moisture by oil during mounting and by an Oxford dry nitrogen gas cryostream system during data collection at 290 K. Crystal data, data collection and structure .
details are summarized in Table 2
|
Powder high-temperature ND measurements were obtained using the high-pressure et al., 2003; Vogel et al., 2004). Powder samples were sealed under argon in vanadium tubes to protect from moisture during data collection. Time-of-flight data were collected with HIPPO detector panels of 3He detector tubes arranged on five rings with nominal diffraction angles of 2θ = 39, 60, 90, 120, and 144°. Count times were 90 minutes per dwell time. ND data were analyzed for all five rings simultaneously using the implemented in the GSAS code (Larson & Von Dreele, 2004) and automated by scripts through gsaslanguage (Vogel, 2011). To yield reliable absolute lattice parameters, the DIFC instrument calibration parameters were fitted for the room-temperature data using the lattice parameters from SC-XRD and were kept constant for the rest of the ND data at higher temperatures. For more details on the data collection and of these neutron diffraction data, see Onken et al. (2018).
(HIPPO) neutron diffractometer at the short-pulsed spallation neutron source of the Lujan Neutron Scattering Center at Los Alamos National Laboratory (WenkThe R2 = 0.999), using the Thermal Expansion Visualization (TEV) program (Langreiter & Kahlenberg, 2015).
tensor was generated using a quadratic fit to the lattice parameters (Supporting information
CCDC reference: 2034695
https://doi.org/10.1107/S2056989020013201/hb7945sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020013201/hb7945Isup2.hkl
Supporting information includes additional details, plots, and tables describing the high-temperature neutron diffraction data and refinements. DOI: https://doi.org/10.1107/S2056989020013201/hb7945sup3.odt
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).TlMgCl3 | Dx = 4.467 Mg m−3 |
Mr = 335.03 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63/mmc | Cell parameters from 1053 reflections |
a = 7.0228 (4) Å | θ = 3.6–28.2° |
c = 17.4934 (15) Å | µ = 33.97 mm−1 |
V = 747.18 (11) Å3 | T = 290 K |
Z = 6 | Block, colorless |
F(000) = 864 | 0.10 × 0.10 × 0.10 mm |
Bruker Kappa APEXII CCD diffractometer | 387 reflections with I > 2σ(I) |
ω scans | Rint = 0.047 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 30.7°, θmin = 2.3° |
Tmin = 0.578, Tmax = 0.746 | h = −8→9 |
4109 measured reflections | k = −8→8 |
489 independent reflections | l = −23→25 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + 23.1798P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max < 0.001 |
S = 1.42 | Δρmax = 1.88 e Å−3 |
489 reflections | Δρmin = −2.11 e Å−3 |
21 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Tl1 | 0.000000 | 0.000000 | 0.250000 | 0.0375 (5) | |
Tl2 | 0.333333 | 0.666667 | 0.09002 (7) | 0.0395 (4) | |
Mg1 | 0.666667 | 0.333333 | 0.3404 (4) | 0.0115 (14) | |
Mg2 | 1.000000 | 1.000000 | 0.500000 | 0.017 (2) | |
Cl1 | 0.5075 (4) | 0.0150 (8) | 0.250000 | 0.0211 (9) | |
Cl2 | 0.8336 (4) | 0.6671 (9) | 0.4185 (2) | 0.0379 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tl1 | 0.0378 (7) | 0.0378 (7) | 0.0369 (8) | 0.0189 (3) | 0.000 | 0.000 |
Tl2 | 0.0353 (5) | 0.0353 (5) | 0.0479 (7) | 0.0176 (2) | 0.000 | 0.000 |
Mg1 | 0.011 (2) | 0.011 (2) | 0.013 (3) | 0.0053 (11) | 0.000 | 0.000 |
Mg2 | 0.019 (4) | 0.019 (4) | 0.014 (5) | 0.0094 (19) | 0.000 | 0.000 |
Cl1 | 0.0224 (18) | 0.011 (2) | 0.0261 (19) | 0.0055 (10) | 0.000 | 0.000 |
Cl2 | 0.0418 (18) | 0.027 (2) | 0.0399 (18) | 0.0135 (10) | −0.0123 (9) | −0.0246 (18) |
Tl1—Cl1i | 3.5126 (2) | Tl2—Cl2x | 3.5146 (3) |
Tl1—Cl1ii | 3.5126 (2) | Tl2—Cl2xvi | 3.5146 (3) |
Tl1—Cl1iii | 3.5126 (2) | Tl2—Cl2xvii | 3.622 (5) |
Tl1—Cl1 | 3.5126 (2) | Tl2—Cl2xviii | 3.622 (5) |
Tl1—Cl1iv | 3.5126 (2) | Tl2—Cl2xix | 3.622 (5) |
Tl1—Cl1v | 3.5126 (2) | Mg1—Cl2 | 2.448 (6) |
Tl1—Cl2vi | 3.576 (5) | Mg1—Cl2ii | 2.448 (6) |
Tl1—Cl2vii | 3.576 (5) | Mg1—Cl2vii | 2.448 (6) |
Tl1—Cl2viii | 3.576 (5) | Mg1—Cl1vii | 2.499 (6) |
Tl1—Cl2ix | 3.576 (5) | Mg1—Cl1 | 2.499 (6) |
Tl1—Cl2x | 3.576 (5) | Mg1—Cl1ii | 2.499 (6) |
Tl1—Cl2xi | 3.576 (5) | Mg1—Mg1xvi | 3.162 (13) |
Tl2—Cl1ii | 3.510 (3) | Mg2—Cl2xx | 2.476 (4) |
Tl2—Cl1xii | 3.510 (3) | Mg2—Cl2xxi | 2.476 (4) |
Tl2—Cl1iv | 3.510 (3) | Mg2—Cl2xxii | 2.476 (4) |
Tl2—Cl2xiii | 3.5146 (3) | Mg2—Cl2xxiii | 2.476 (4) |
Tl2—Cl2xiv | 3.5146 (3) | Mg2—Cl2xxiv | 2.476 (4) |
Tl2—Cl2viii | 3.5146 (3) | Mg2—Cl2 | 2.476 (4) |
Tl2—Cl2xv | 3.5146 (3) | ||
Cl1i—Tl1—Cl1ii | 120.0 | Cl1iv—Tl2—Cl2xvi | 123.81 (8) |
Cl1i—Tl1—Cl1iii | 57.02 (16) | Cl2xiii—Tl2—Cl2xvi | 175.12 (14) |
Cl1ii—Tl1—Cl1iii | 177.02 (16) | Cl2xiv—Tl2—Cl2xvi | 119.820 (11) |
Cl1i—Tl1—Cl1 | 62.98 (16) | Cl2viii—Tl2—Cl2xvi | 119.820 (10) |
Cl1ii—Tl1—Cl1 | 57.02 (16) | Cl2xv—Tl2—Cl2xvi | 59.85 (17) |
Cl1iii—Tl1—Cl1 | 120.0 | Cl2x—Tl2—Cl2xvi | 60.03 (17) |
Cl1i—Tl1—Cl1iv | 177.02 (16) | Cl1ii—Tl2—Cl2xvii | 176.96 (10) |
Cl1ii—Tl1—Cl1iv | 62.98 (16) | Cl1xii—Tl2—Cl2xvii | 119.42 (7) |
Cl1iii—Tl1—Cl1iv | 120.0 | Cl1iv—Tl2—Cl2xvii | 119.42 (7) |
Cl1—Tl1—Cl1iv | 120.000 (1) | Cl2xiii—Tl2—Cl2xvii | 58.64 (11) |
Cl1i—Tl1—Cl1v | 120.000 (1) | Cl2xiv—Tl2—Cl2xvii | 58.64 (11) |
Cl1ii—Tl1—Cl1v | 119.999 (1) | Cl2viii—Tl2—Cl2xvii | 88.00 (9) |
Cl1iii—Tl1—Cl1v | 62.98 (16) | Cl2xv—Tl2—Cl2xvii | 88.00 (9) |
Cl1—Tl1—Cl1v | 177.02 (16) | Cl2x—Tl2—Cl2xvii | 116.71 (6) |
Cl1iv—Tl1—Cl1v | 57.02 (16) | Cl2xvi—Tl2—Cl2xvii | 116.71 (6) |
Cl1i—Tl1—Cl2vi | 60.17 (6) | Cl1ii—Tl2—Cl2xviii | 119.42 (7) |
Cl1ii—Tl1—Cl2vi | 118.86 (6) | Cl1xii—Tl2—Cl2xviii | 176.96 (10) |
Cl1iii—Tl1—Cl2vi | 60.17 (6) | Cl1iv—Tl2—Cl2xviii | 119.42 (7) |
Cl1—Tl1—Cl2vi | 90.84 (4) | Cl2xiii—Tl2—Cl2xviii | 88.00 (9) |
Cl1iv—Tl1—Cl2vi | 118.86 (6) | Cl2xiv—Tl2—Cl2xviii | 116.71 (6) |
Cl1v—Tl1—Cl2vi | 90.84 (5) | Cl2viii—Tl2—Cl2xviii | 58.64 (11) |
Cl1i—Tl1—Cl2vii | 90.84 (4) | Cl2xv—Tl2—Cl2xviii | 116.71 (6) |
Cl1ii—Tl1—Cl2vii | 60.17 (6) | Cl2x—Tl2—Cl2xviii | 58.64 (11) |
Cl1iii—Tl1—Cl2vii | 118.86 (6) | Cl2xvi—Tl2—Cl2xviii | 88.00 (9) |
Cl1—Tl1—Cl2vii | 60.17 (6) | Cl2xvii—Tl2—Cl2xviii | 58.07 (11) |
Cl1iv—Tl1—Cl2vii | 90.84 (4) | Cl1ii—Tl2—Cl2xix | 119.42 (7) |
Cl1v—Tl1—Cl2vii | 118.86 (6) | Cl1xii—Tl2—Cl2xix | 119.42 (8) |
Cl2vi—Tl1—Cl2vii | 147.12 (6) | Cl1iv—Tl2—Cl2xix | 176.96 (10) |
Cl1i—Tl1—Cl2viii | 118.86 (6) | Cl2xiii—Tl2—Cl2xix | 116.71 (6) |
Cl1ii—Tl1—Cl2viii | 90.84 (5) | Cl2xiv—Tl2—Cl2xix | 88.00 (9) |
Cl1iii—Tl1—Cl2viii | 90.84 (5) | Cl2viii—Tl2—Cl2xix | 116.71 (6) |
Cl1—Tl1—Cl2viii | 118.86 (6) | Cl2xv—Tl2—Cl2xix | 58.64 (11) |
Cl1iv—Tl1—Cl2viii | 60.17 (6) | Cl2x—Tl2—Cl2xix | 88.00 (9) |
Cl1v—Tl1—Cl2viii | 60.17 (6) | Cl2xvi—Tl2—Cl2xix | 58.64 (11) |
Cl2vi—Tl1—Cl2viii | 58.71 (11) | Cl2xvii—Tl2—Cl2xix | 58.07 (11) |
Cl2vii—Tl1—Cl2viii | 147.12 (6) | Cl2xviii—Tl2—Cl2xix | 58.07 (11) |
Cl1i—Tl1—Cl2ix | 118.86 (6) | Cl2—Mg1—Cl2ii | 91.8 (2) |
Cl1ii—Tl1—Cl2ix | 90.84 (5) | Cl2—Mg1—Cl2vii | 91.8 (2) |
Cl1iii—Tl1—Cl2ix | 90.84 (5) | Cl2ii—Mg1—Cl2vii | 91.8 (2) |
Cl1—Tl1—Cl2ix | 118.86 (6) | Cl2—Mg1—Cl1vii | 91.84 (10) |
Cl1iv—Tl1—Cl2ix | 60.17 (6) | Cl2ii—Mg1—Cl1vii | 91.84 (10) |
Cl1v—Tl1—Cl2ix | 60.17 (6) | Cl2vii—Mg1—Cl1vii | 174.7 (3) |
Cl2vi—Tl1—Cl2ix | 147.12 (6) | Cl2—Mg1—Cl1 | 174.7 (3) |
Cl2vii—Tl1—Cl2ix | 58.71 (11) | Cl2ii—Mg1—Cl1 | 91.84 (10) |
Cl2viii—Tl1—Cl2ix | 111.04 (14) | Cl2vii—Mg1—Cl1 | 91.84 (10) |
Cl1i—Tl1—Cl2x | 90.84 (4) | Cl1vii—Mg1—Cl1 | 84.3 (2) |
Cl1ii—Tl1—Cl2x | 60.17 (6) | Cl2—Mg1—Cl1ii | 91.84 (10) |
Cl1iii—Tl1—Cl2x | 118.86 (6) | Cl2ii—Mg1—Cl1ii | 174.7 (3) |
Cl1—Tl1—Cl2x | 60.17 (6) | Cl2vii—Mg1—Cl1ii | 91.84 (10) |
Cl1iv—Tl1—Cl2x | 90.84 (5) | Cl1vii—Mg1—Cl1ii | 84.3 (2) |
Cl1v—Tl1—Cl2x | 118.86 (6) | Cl1—Mg1—Cl1ii | 84.3 (2) |
Cl2vi—Tl1—Cl2x | 58.71 (11) | Cl2xx—Mg2—Cl2xxi | 90.17 (16) |
Cl2vii—Tl1—Cl2x | 111.04 (14) | Cl2xx—Mg2—Cl2xxii | 89.83 (16) |
Cl2viii—Tl1—Cl2x | 58.71 (11) | Cl2xxi—Mg2—Cl2xxii | 180.0 |
Cl2ix—Tl1—Cl2x | 147.12 (6) | Cl2xx—Mg2—Cl2xxiii | 90.17 (16) |
Cl1i—Tl1—Cl2xi | 60.17 (6) | Cl2xxi—Mg2—Cl2xxiii | 90.17 (17) |
Cl1ii—Tl1—Cl2xi | 118.86 (6) | Cl2xxii—Mg2—Cl2xxiii | 89.83 (17) |
Cl1iii—Tl1—Cl2xi | 60.17 (6) | Cl2xx—Mg2—Cl2xxiv | 89.83 (16) |
Cl1—Tl1—Cl2xi | 90.84 (4) | Cl2xxi—Mg2—Cl2xxiv | 89.83 (17) |
Cl1iv—Tl1—Cl2xi | 118.86 (6) | Cl2xxii—Mg2—Cl2xxiv | 90.17 (17) |
Cl1v—Tl1—Cl2xi | 90.84 (5) | Cl2xxiii—Mg2—Cl2xxiv | 180.0 |
Cl2vi—Tl1—Cl2xi | 111.04 (14) | Cl2xx—Mg2—Cl2 | 180.0 |
Cl2vii—Tl1—Cl2xi | 58.71 (11) | Cl2xxi—Mg2—Cl2 | 89.83 (17) |
Cl2viii—Tl1—Cl2xi | 147.12 (6) | Cl2xxii—Mg2—Cl2 | 90.17 (17) |
Cl2ix—Tl1—Cl2xi | 58.71 (11) | Cl2xxiii—Mg2—Cl2 | 89.83 (16) |
Cl2x—Tl1—Cl2xi | 147.12 (6) | Cl2xxiv—Mg2—Cl2 | 90.17 (16) |
Cl1ii—Tl2—Cl1xii | 63.03 (10) | Mg1xvi—Cl1—Mg1 | 78.5 (3) |
Cl1ii—Tl2—Cl1iv | 63.03 (10) | Mg1xvi—Cl1—Tl2xxv | 87.89 (12) |
Cl1xii—Tl2—Cl1iv | 63.03 (10) | Mg1—Cl1—Tl2xxv | 166.36 (18) |
Cl1ii—Tl2—Cl2xiii | 123.81 (8) | Mg1xvi—Cl1—Tl2xxvi | 166.36 (18) |
Cl1xii—Tl2—Cl2xiii | 91.92 (9) | Mg1—Cl1—Tl2xxvi | 87.89 (12) |
Cl1iv—Tl2—Cl2xiii | 60.79 (8) | Tl2xxv—Cl1—Tl2xxvi | 105.74 (13) |
Cl1ii—Tl2—Cl2xiv | 123.81 (8) | Mg1xvi—Cl1—Tl1xxvii | 91.16 (6) |
Cl1xii—Tl2—Cl2xiv | 60.79 (8) | Mg1—Cl1—Tl1xxvii | 91.15 (6) |
Cl1iv—Tl2—Cl2xiv | 91.92 (9) | Tl2xxv—Cl1—Tl1xxvii | 89.10 (5) |
Cl2xiii—Tl2—Cl2xiv | 59.85 (17) | Tl2xxvi—Cl1—Tl1xxvii | 89.10 (5) |
Cl1ii—Tl2—Cl2viii | 91.92 (9) | Mg1xvi—Cl1—Tl1 | 91.15 (6) |
Cl1xii—Tl2—Cl2viii | 123.81 (8) | Mg1—Cl1—Tl1 | 91.15 (6) |
Cl1iv—Tl2—Cl2viii | 60.79 (8) | Tl2xxv—Cl1—Tl1 | 89.10 (5) |
Cl2xiii—Tl2—Cl2viii | 60.03 (17) | Tl2xxvi—Cl1—Tl1 | 89.10 (5) |
Cl2xiv—Tl2—Cl2viii | 119.820 (10) | Tl1xxvii—Cl1—Tl1 | 177.02 (16) |
Cl1ii—Tl2—Cl2xv | 91.92 (9) | Mg1—Cl2—Mg2 | 178.8 (3) |
Cl1xii—Tl2—Cl2xv | 60.79 (8) | Mg1—Cl2—Tl2xvi | 88.60 (7) |
Cl1iv—Tl2—Cl2xv | 123.81 (8) | Mg2—Cl2—Tl2xvi | 91.44 (7) |
Cl2xiii—Tl2—Cl2xv | 119.820 (10) | Mg1—Cl2—Tl2xxviii | 88.60 (7) |
Cl2xiv—Tl2—Cl2xv | 60.03 (17) | Mg2—Cl2—Tl2xxviii | 91.44 (7) |
Cl2viii—Tl2—Cl2xv | 175.12 (14) | Tl2xvi—Cl2—Tl2xxviii | 175.12 (14) |
Cl1ii—Tl2—Cl2x | 60.79 (8) | Mg1—Cl2—Tl1xxix | 90.52 (17) |
Cl1xii—Tl2—Cl2x | 123.81 (8) | Mg2—Cl2—Tl1xxix | 90.67 (16) |
Cl1iv—Tl2—Cl2x | 91.92 (9) | Tl2xvi—Cl2—Tl1xxix | 88.02 (8) |
Cl2xiii—Tl2—Cl2x | 119.820 (11) | Tl2xxviii—Cl2—Tl1xxix | 88.02 (8) |
Cl2xiv—Tl2—Cl2x | 175.12 (14) | Mg1—Cl2—Tl2xxx | 89.9 (2) |
Cl2viii—Tl2—Cl2x | 59.85 (17) | Mg2—Cl2—Tl2xxx | 88.94 (11) |
Cl2xv—Tl2—Cl2x | 119.820 (11) | Tl2xvi—Cl2—Tl2xxx | 91.99 (9) |
Cl1ii—Tl2—Cl2xvi | 60.79 (8) | Tl2xxviii—Cl2—Tl2xxx | 91.99 (9) |
Cl1xii—Tl2—Cl2xvi | 91.92 (9) | Tl1xxix—Cl2—Tl2xxx | 179.61 (13) |
Symmetry codes: (i) −y, x−y−1, z; (ii) −x+y+1, −x+1, z; (iii) −x+y, −x, z; (iv) −y, x−y, z; (v) x−1, y, z; (vi) x−1, y−1, −z+1/2; (vii) −y+1, x−y, z; (viii) −x+y, −x+1, −z+1/2; (ix) −x+y, −x+1, z; (x) −y+1, x−y, −z+1/2; (xi) x−1, y−1, z; (xii) x, y+1, z; (xiii) x−1, y, −z+1/2; (xiv) −y+1, x−y+1, −z+1/2; (xv) −x+y+1, −x+2, −z+1/2; (xvi) x, y, −z+1/2; (xvii) x−y, x, z−1/2; (xviii) −x+1, −y+1, z−1/2; (xix) y, −x+y+1, z−1/2; (xx) −x+2, −y+2, −z+1; (xxi) x−y+1, x, −z+1; (xxii) −x+y+1, −x+2, z; (xxiii) y, −x+y+1, −z+1; (xxiv) −y+2, x−y+1, z; (xxv) x, y−1, z; (xxvi) x, y−1, −z+1/2; (xxvii) x+1, y, z; (xxviii) x+1, y, −z+1/2; (xxix) x+1, y+1, z; (xxx) −x+1, −y+1, z+1/2. |
Acknowledgements
The single-crystal
was provided by the X-ray Analytical Facility at the University of California, Santa Barbara (Dr Guang Wu, Lab Manager).Funding information
Funding for this research was provided by: U.S. Defense Threat Reduction Agency (DTRA) [contract No. HDTRA19-31194 to Lawrence Berkeley National Laboratory (LBNL) authors]; U.S. Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation (DNN) (contract No. AC02-05CH11231 to LBNL authors); U.S. Department of Energy, NNSA [contract No. 89233218NCA000001 to Los Alamos National Laboratory (LANL)].
References
Arai, M., Fujimoto, Y., Koshimizu, M., Yanagida, T. & Asai, K. (2020). J. Alloy Compd. 823, 3–7. Web of Science CrossRef Google Scholar
Beznosikov, B. V. (1978). Sov. Phys. Crystallogr. (translated from Kristallografia), 23, 61–63. Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Derenzo, S. E. & Choong, W.-S. (2009). IEEE Nucl. Sci. Sym. Conf. R. pp. 1–6. Google Scholar
Devaney, K. O., Freedman, M. R., McPherson, G. L. & Atwood, J. L. (1981). Inorg. Chem. 20, 140–145. CrossRef ICSD CAS Web of Science Google Scholar
Fujimoto, Y., Koshimizu, M., Yanagida, T., Okada, G., Saeki, K. & Asai, K. (2016). Jpn J. Appl. Phys. 55, 090301. Web of Science CrossRef Google Scholar
Goodyear, J., Steigmann, G. A. & Ali, E. M. (1977). Acta Cryst. B33, 256–258. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Hawrami, R., Ariesanti, E., Wei, H., Finkelstein, J., Glodo, J. & Shah, K. S. (2017). J. Cryst. Growth, 475, 216–219. Web of Science CrossRef CAS Google Scholar
Langreiter, T. & Kahlenberg, V. (2015). Crystals, 5, 143–153. Web of Science CrossRef Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA. Google Scholar
McPherson, G. L., Kistenmacher, T. J. & Stucky, G. D. (1970). J. Chem. Phys. 52, 815–824. CrossRef ICSD CAS Web of Science Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Onken, D. R., Williams, R. T., Perrodin, D., Shalapska, T., Bourret, E. D., Tremsin, A. S. & Vogel, S. C. (2018). J. Appl. Cryst. 51, 498–504. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vogel, S. C. (2011). J. Appl. Cryst. 44, 873–877. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vogel, S. C., Hartig, C., Lutterotti, L., Von Dreele, R. B., Wenk, H.-R. & Williams, D. J. (2004). Powder Diffr. 19, 65–68. Web of Science CrossRef CAS Google Scholar
Wenk, H.-R., Lutterotti, L. & Vogel, S. (2003). Nucl. Instrum. Methods Phys. Res. A, 515, 575–588. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.