research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of TlMgCl3 from 290 K to 725 K

CROSSMARK_Color_square_no_text.svg

aLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, and bLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: DOnken@lbl.gov

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 September 2020; accepted 29 September 2020; online 6 October 2020)

The title compound, thallium magnesium trichloride, has been identified as a scintillator with both moderate gamma-stopping power and moderate light yield. Knowledge of its crystal structure is needed for further development. This work determines the crystal structure of TlMgCl3 to be hexa­gonal P63/mmc (No. 194) and isostructural with RbMgCl3, contrary to previously reported data. This structure was obtained by single-crystal X-ray diffraction and was further confirmed by neutron diffraction measurements. Extending neutron diffraction measurements to high temperature, the data show that TlMgCl3 maintains this crystal structure from 290 K up through 725 K, approaching the melting point of 770 K. Anisotropic thermal expansion coefficients increase over this temperature range, from 31 to 38 × 10−6 K−1 along the a axis and from 19 to 34 × 10−6 K−1 along the c axis.

1. Chemical context

In the ongoing search for inorganic scintillators with high gamma-stopping power, TlMgCl3 has been identified. As a result of the presence of thallium, TlMgCl3 has a high effective atomic number, Zeff = 67 [calculation methodology (Derenzo & Choong, 2009[Derenzo, S. E. & Choong, W.-S. (2009). IEEE Nucl. Sci. Sym. Conf. R. pp. 1-6.]) in the supporting information], and a moderate density, ρ = 4.47 g cm−3 (determined in this work). A pair of initial crystal growths of TlMgCl3 have been conducted to assess the scintillation properties: Fujimoto et al. (2016[Fujimoto, Y., Koshimizu, M., Yanagida, T., Okada, G., Saeki, K. & Asai, K. (2016). Jpn J. Appl. Phys. 55, 090301.]) measured 46,000 ph MeV−1 light yield with 5% energy resolution at 662 keV, and Hawrami et al. (2017[Hawrami, R., Ariesanti, E., Wei, H., Finkelstein, J., Glodo, J. & Shah, K. S. (2017). J. Cryst. Growth, 475, 216-219.]) measured 30,600 ph MeV−1 light yield with 3.7% energy resolution at 662 keV.

To develop this compound further, a precise determination of the crystal structure is necessary. This will enable first-principles calculations of the electronic configuration and may be useful in assessing challenges that arise during synthesis (e.g. from thermal stresses). This work reports the crystal structure of TlMgCl3 between 290 K and 725 K, approaching the melting point of 770 K. Previous work on TlMgCl3 by Beznosikov (1978[Beznosikov, B. V. (1978). Sov. Phys. Crystallogr. (translated from Kristallografia), 23, 61-63.]) used powder diffraction to report the space group at room temperature as ortho­rhom­bic (a = 6.54, b = 9.22, c = 6.99 Å). However, despite using the same synthesis procedure, the structure reported by Beznosikov does not fit the diffraction data reported herein. Arai et al. (2020[Arai, M., Fujimoto, Y., Koshimizu, M., Yanagida, T. & Asai, K. (2020). J. Alloy Compd. 823, 3-7.]) published diffraction data but did not provide information on the crystal structure.

2. Structural commentary

Single crystal X-ray diffraction (SC-XRD) determined TlMgCl3 to have a hexa­gonal structure (space group P63/mmc, No. 194) with lattice parameters a = 7.0228 (4), c = 17.4934 (15) Å at 290 K. Fig. 1[link] visualizes the unit cell, which shows a three-dimensional corner- and face-sharing framework of six-coordinated Mg atoms encapsulating the 12-coordinated Tl atoms. There are six formula units in the unit cell. There are two thallium, two magnesium and two chlorine atoms in the asymmetric unit of TlMgCl3, with site symmetries of [\overline{6}]m2 and 3m; 3m and [\overline{3}]m; mm2 and m, respectively; key bond distances and angles are listed in Table 1[link]. Pairs of Mg2-centered octa­hedra share faces (via 3 × Cl1) and these octa­hedral pairs share corners (via Cl2) with the Mg1 octa­hedra to generate an ABACBC hexa­gonal stacking sequence of the chloride ions in the c-axis direction with the thallium cations occupying the vacant 12-coordinate sites. The coordination polyhedra of the chloride ions are distorted ClMg2Tl4 octa­hedra with the Mg2+ ions in a cis disposition for Cl1 and a trans disposition for Cl2. The title compound is isostructural with RbMgCl3 as reported by Devaney et al. (1981[Devaney, K. O., Freedman, M. R., McPherson, G. L. & Atwood, J. L. (1981). Inorg. Chem. 20, 140-145.]) and RbMnCl3 as reported by Goodyear et al. (1977[Goodyear, J., Steigmann, G. A. & Ali, E. M. (1977). Acta Cryst. B33, 256-258.]), who describe the structure in more detail. This structure is more complex than that of CsMgCl3 (McPherson et al., 1970[McPherson, G. L., Kistenmacher, T. J. & Stucky, G. D. (1970). J. Chem. Phys. 52, 815-824.]), which also has space group P63/mmc but only requires two formula units per unit cell and has an AB hexa­gonal stacking sequence of the chloride ions in the c-axis direction.

Table 1
Selected geometric parameters (Å, °)

Tl1—Cl1 3.5126 (2) Tl2—Cl2iv 3.622 (5)
Tl1—Cl2i 3.576 (5) Mg1—Cl2 2.448 (6)
Tl2—Cl1ii 3.510 (3) Mg1—Cl1 2.499 (6)
Tl2—Cl2iii 3.5146 (3) Mg2—Cl2 2.476 (4)
       
Mg1v—Cl1—Mg1 78.5 (3) Mg1—Cl2—Mg2 178.8 (3)
Symmetry codes: (i) -y+1, x-y, z; (ii) -y, x-y, z; (iii) [x-1, y, -z+{\script{1\over 2}}]; (iv) [x-y, x, z-{\script{1\over 2}}]; (v) [x, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The unit cell of TlMgCl3, with the MgCl6 octa­hedra shown in polyhedral representation.

Neutron diffraction (ND) conducted on powder samples produced diffraction patterns that were in agreement with the crystal structure determined by SC-XRD. Neutron diffraction was conducted at temperatures ranging from 300 K to 725 K. TlMgCl3 maintains the same P63/mmc crystal structure over this measured temperature range (see supporting information for more details on the powder ND data and fits). Fig. 2[link] shows the lattice parameters as a function of temperature. From these data, the thermal expansion along each axis is calculated (Fig. 3[link]). The thermal expansion is greater along the a axis than the c axis. Besides the anisotropy in the lattice parameters, the atomic positions did not vary significantly with temperature, and therefore the bond lengths change with temperature as dictated by the lattice parameters alone.

[Figure 2]
Figure 2
The hexa­gonal lattice parameters of TlMgCl3 as a function of temperature, from neutron diffraction data. Vertical error bars from Rietveld fitting are within the size of the symbols and are omitted. The dashed lines are second-order polynomial fits to the data.
[Figure 3]
Figure 3
Thermal expansion coefficients as a function of temperature, calculated from the second-order polynomial fit of the lattice parameters in Fig. 2[link].

3. Synthesis and crystallization

Crystals of TlMgCl3 were grown from the melt using the vertical Bridgman method. High purity beads of TlCl and MgCl2 were combined in a stoichiometric ratio and sealed in a quartz ampoule under vacuum (10−6 Torr). The crystal was grown with a translation speed of 0.5 mm h−1 and was cooled over 72 h. To protect the moisture-sensitive reactants and products, all preparations before and after synthesis were conducted inside an argon-filled glove box.

4. Refinement

SC-XRD was conducted on a Bruker Kappa APEXII CCD diffractometer. The crystal was protected from moisture by oil during mounting and by an Oxford dry nitro­gen gas cryostream system during data collection at 290 K. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula TlMgCl3
Mr 335.03
Crystal system, space group Hexagonal, P63/mmc
Temperature (K) 290
a, c (Å) 7.0228 (4), 17.4934 (15)
V3) 747.18 (11)
Z 6
Radiation type Mo Kα
μ (mm−1) 33.97
Crystal size (mm) 0.10 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.578, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4109, 489, 387
Rint 0.047
(sin θ/λ)max−1) 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.42
No. of reflections 489
No. of parameters 21
Δρmax, Δρmin (e Å−3) 1.88, −2.11
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Powder high-temperature ND measurements were obtained using the high-pressure preferred orientation (HIPPO) neutron diffractometer at the short-pulsed spallation neutron source of the Lujan Neutron Scattering Center at Los Alamos National Laboratory (Wenk et al., 2003[Wenk, H.-R., Lutterotti, L. & Vogel, S. (2003). Nucl. Instrum. Methods Phys. Res. A, 515, 575-588.]; Vogel et al., 2004[Vogel, S. C., Hartig, C., Lutterotti, L., Von Dreele, R. B., Wenk, H.-R. & Williams, D. J. (2004). Powder Diffr. 19, 65-68.]). Powder samples were sealed under argon in vanadium tubes to protect from moisture during data collection. Time-of-flight data were collected with HIPPO detector panels of 3He detector tubes arranged on five rings with nominal diffraction angles of 2θ = 39, 60, 90, 120, and 144°. Count times were 90 minutes per dwell time. ND data were analyzed for all five rings simultaneously using the Rietveld method implemented in the GSAS code (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]) and automated by scripts through gsaslanguage (Vogel, 2011[Vogel, S. C. (2011). J. Appl. Cryst. 44, 873-877.]). To yield reliable absolute lattice parameters, the DIFC instrument calibration parameters were fitted for the room-temperature data using the lattice parameters from SC-XRD and were kept constant for the rest of the ND data at higher temperatures. For more details on the data collection and refinement of these neutron diffraction data, see Onken et al. (2018[Onken, D. R., Williams, R. T., Perrodin, D., Shalapska, T., Bourret, E. D., Tremsin, A. S. & Vogel, S. C. (2018). J. Appl. Cryst. 51, 498-504.]).

The thermal expansion tensor was generated using a quadratic fit to the lattice parameters (R2 = 0.999), using the Thermal Expansion Visualization (TEV) program (Langreiter & Kahlenberg, 2015[Langreiter, T. & Kahlenberg, V. (2015). Crystals, 5, 143-153.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

Thallium magnesium trichloride top
Crystal data top
TlMgCl3Dx = 4.467 Mg m3
Mr = 335.03Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1053 reflections
a = 7.0228 (4) Åθ = 3.6–28.2°
c = 17.4934 (15) ŵ = 33.97 mm1
V = 747.18 (11) Å3T = 290 K
Z = 6Block, colorless
F(000) = 8640.10 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
387 reflections with I > 2σ(I)
ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 30.7°, θmin = 2.3°
Tmin = 0.578, Tmax = 0.746h = 89
4109 measured reflectionsk = 88
489 independent reflectionsl = 2325
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + 23.1798P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.42Δρmax = 1.88 e Å3
489 reflectionsΔρmin = 2.11 e Å3
21 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.0000000.0000000.2500000.0375 (5)
Tl20.3333330.6666670.09002 (7)0.0395 (4)
Mg10.6666670.3333330.3404 (4)0.0115 (14)
Mg21.0000001.0000000.5000000.017 (2)
Cl10.5075 (4)0.0150 (8)0.2500000.0211 (9)
Cl20.8336 (4)0.6671 (9)0.4185 (2)0.0379 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.0378 (7)0.0378 (7)0.0369 (8)0.0189 (3)0.0000.000
Tl20.0353 (5)0.0353 (5)0.0479 (7)0.0176 (2)0.0000.000
Mg10.011 (2)0.011 (2)0.013 (3)0.0053 (11)0.0000.000
Mg20.019 (4)0.019 (4)0.014 (5)0.0094 (19)0.0000.000
Cl10.0224 (18)0.011 (2)0.0261 (19)0.0055 (10)0.0000.000
Cl20.0418 (18)0.027 (2)0.0399 (18)0.0135 (10)0.0123 (9)0.0246 (18)
Geometric parameters (Å, º) top
Tl1—Cl1i3.5126 (2)Tl2—Cl2x3.5146 (3)
Tl1—Cl1ii3.5126 (2)Tl2—Cl2xvi3.5146 (3)
Tl1—Cl1iii3.5126 (2)Tl2—Cl2xvii3.622 (5)
Tl1—Cl13.5126 (2)Tl2—Cl2xviii3.622 (5)
Tl1—Cl1iv3.5126 (2)Tl2—Cl2xix3.622 (5)
Tl1—Cl1v3.5126 (2)Mg1—Cl22.448 (6)
Tl1—Cl2vi3.576 (5)Mg1—Cl2ii2.448 (6)
Tl1—Cl2vii3.576 (5)Mg1—Cl2vii2.448 (6)
Tl1—Cl2viii3.576 (5)Mg1—Cl1vii2.499 (6)
Tl1—Cl2ix3.576 (5)Mg1—Cl12.499 (6)
Tl1—Cl2x3.576 (5)Mg1—Cl1ii2.499 (6)
Tl1—Cl2xi3.576 (5)Mg1—Mg1xvi3.162 (13)
Tl2—Cl1ii3.510 (3)Mg2—Cl2xx2.476 (4)
Tl2—Cl1xii3.510 (3)Mg2—Cl2xxi2.476 (4)
Tl2—Cl1iv3.510 (3)Mg2—Cl2xxii2.476 (4)
Tl2—Cl2xiii3.5146 (3)Mg2—Cl2xxiii2.476 (4)
Tl2—Cl2xiv3.5146 (3)Mg2—Cl2xxiv2.476 (4)
Tl2—Cl2viii3.5146 (3)Mg2—Cl22.476 (4)
Tl2—Cl2xv3.5146 (3)
Cl1i—Tl1—Cl1ii120.0Cl1iv—Tl2—Cl2xvi123.81 (8)
Cl1i—Tl1—Cl1iii57.02 (16)Cl2xiii—Tl2—Cl2xvi175.12 (14)
Cl1ii—Tl1—Cl1iii177.02 (16)Cl2xiv—Tl2—Cl2xvi119.820 (11)
Cl1i—Tl1—Cl162.98 (16)Cl2viii—Tl2—Cl2xvi119.820 (10)
Cl1ii—Tl1—Cl157.02 (16)Cl2xv—Tl2—Cl2xvi59.85 (17)
Cl1iii—Tl1—Cl1120.0Cl2x—Tl2—Cl2xvi60.03 (17)
Cl1i—Tl1—Cl1iv177.02 (16)Cl1ii—Tl2—Cl2xvii176.96 (10)
Cl1ii—Tl1—Cl1iv62.98 (16)Cl1xii—Tl2—Cl2xvii119.42 (7)
Cl1iii—Tl1—Cl1iv120.0Cl1iv—Tl2—Cl2xvii119.42 (7)
Cl1—Tl1—Cl1iv120.000 (1)Cl2xiii—Tl2—Cl2xvii58.64 (11)
Cl1i—Tl1—Cl1v120.000 (1)Cl2xiv—Tl2—Cl2xvii58.64 (11)
Cl1ii—Tl1—Cl1v119.999 (1)Cl2viii—Tl2—Cl2xvii88.00 (9)
Cl1iii—Tl1—Cl1v62.98 (16)Cl2xv—Tl2—Cl2xvii88.00 (9)
Cl1—Tl1—Cl1v177.02 (16)Cl2x—Tl2—Cl2xvii116.71 (6)
Cl1iv—Tl1—Cl1v57.02 (16)Cl2xvi—Tl2—Cl2xvii116.71 (6)
Cl1i—Tl1—Cl2vi60.17 (6)Cl1ii—Tl2—Cl2xviii119.42 (7)
Cl1ii—Tl1—Cl2vi118.86 (6)Cl1xii—Tl2—Cl2xviii176.96 (10)
Cl1iii—Tl1—Cl2vi60.17 (6)Cl1iv—Tl2—Cl2xviii119.42 (7)
Cl1—Tl1—Cl2vi90.84 (4)Cl2xiii—Tl2—Cl2xviii88.00 (9)
Cl1iv—Tl1—Cl2vi118.86 (6)Cl2xiv—Tl2—Cl2xviii116.71 (6)
Cl1v—Tl1—Cl2vi90.84 (5)Cl2viii—Tl2—Cl2xviii58.64 (11)
Cl1i—Tl1—Cl2vii90.84 (4)Cl2xv—Tl2—Cl2xviii116.71 (6)
Cl1ii—Tl1—Cl2vii60.17 (6)Cl2x—Tl2—Cl2xviii58.64 (11)
Cl1iii—Tl1—Cl2vii118.86 (6)Cl2xvi—Tl2—Cl2xviii88.00 (9)
Cl1—Tl1—Cl2vii60.17 (6)Cl2xvii—Tl2—Cl2xviii58.07 (11)
Cl1iv—Tl1—Cl2vii90.84 (4)Cl1ii—Tl2—Cl2xix119.42 (7)
Cl1v—Tl1—Cl2vii118.86 (6)Cl1xii—Tl2—Cl2xix119.42 (8)
Cl2vi—Tl1—Cl2vii147.12 (6)Cl1iv—Tl2—Cl2xix176.96 (10)
Cl1i—Tl1—Cl2viii118.86 (6)Cl2xiii—Tl2—Cl2xix116.71 (6)
Cl1ii—Tl1—Cl2viii90.84 (5)Cl2xiv—Tl2—Cl2xix88.00 (9)
Cl1iii—Tl1—Cl2viii90.84 (5)Cl2viii—Tl2—Cl2xix116.71 (6)
Cl1—Tl1—Cl2viii118.86 (6)Cl2xv—Tl2—Cl2xix58.64 (11)
Cl1iv—Tl1—Cl2viii60.17 (6)Cl2x—Tl2—Cl2xix88.00 (9)
Cl1v—Tl1—Cl2viii60.17 (6)Cl2xvi—Tl2—Cl2xix58.64 (11)
Cl2vi—Tl1—Cl2viii58.71 (11)Cl2xvii—Tl2—Cl2xix58.07 (11)
Cl2vii—Tl1—Cl2viii147.12 (6)Cl2xviii—Tl2—Cl2xix58.07 (11)
Cl1i—Tl1—Cl2ix118.86 (6)Cl2—Mg1—Cl2ii91.8 (2)
Cl1ii—Tl1—Cl2ix90.84 (5)Cl2—Mg1—Cl2vii91.8 (2)
Cl1iii—Tl1—Cl2ix90.84 (5)Cl2ii—Mg1—Cl2vii91.8 (2)
Cl1—Tl1—Cl2ix118.86 (6)Cl2—Mg1—Cl1vii91.84 (10)
Cl1iv—Tl1—Cl2ix60.17 (6)Cl2ii—Mg1—Cl1vii91.84 (10)
Cl1v—Tl1—Cl2ix60.17 (6)Cl2vii—Mg1—Cl1vii174.7 (3)
Cl2vi—Tl1—Cl2ix147.12 (6)Cl2—Mg1—Cl1174.7 (3)
Cl2vii—Tl1—Cl2ix58.71 (11)Cl2ii—Mg1—Cl191.84 (10)
Cl2viii—Tl1—Cl2ix111.04 (14)Cl2vii—Mg1—Cl191.84 (10)
Cl1i—Tl1—Cl2x90.84 (4)Cl1vii—Mg1—Cl184.3 (2)
Cl1ii—Tl1—Cl2x60.17 (6)Cl2—Mg1—Cl1ii91.84 (10)
Cl1iii—Tl1—Cl2x118.86 (6)Cl2ii—Mg1—Cl1ii174.7 (3)
Cl1—Tl1—Cl2x60.17 (6)Cl2vii—Mg1—Cl1ii91.84 (10)
Cl1iv—Tl1—Cl2x90.84 (5)Cl1vii—Mg1—Cl1ii84.3 (2)
Cl1v—Tl1—Cl2x118.86 (6)Cl1—Mg1—Cl1ii84.3 (2)
Cl2vi—Tl1—Cl2x58.71 (11)Cl2xx—Mg2—Cl2xxi90.17 (16)
Cl2vii—Tl1—Cl2x111.04 (14)Cl2xx—Mg2—Cl2xxii89.83 (16)
Cl2viii—Tl1—Cl2x58.71 (11)Cl2xxi—Mg2—Cl2xxii180.0
Cl2ix—Tl1—Cl2x147.12 (6)Cl2xx—Mg2—Cl2xxiii90.17 (16)
Cl1i—Tl1—Cl2xi60.17 (6)Cl2xxi—Mg2—Cl2xxiii90.17 (17)
Cl1ii—Tl1—Cl2xi118.86 (6)Cl2xxii—Mg2—Cl2xxiii89.83 (17)
Cl1iii—Tl1—Cl2xi60.17 (6)Cl2xx—Mg2—Cl2xxiv89.83 (16)
Cl1—Tl1—Cl2xi90.84 (4)Cl2xxi—Mg2—Cl2xxiv89.83 (17)
Cl1iv—Tl1—Cl2xi118.86 (6)Cl2xxii—Mg2—Cl2xxiv90.17 (17)
Cl1v—Tl1—Cl2xi90.84 (5)Cl2xxiii—Mg2—Cl2xxiv180.0
Cl2vi—Tl1—Cl2xi111.04 (14)Cl2xx—Mg2—Cl2180.0
Cl2vii—Tl1—Cl2xi58.71 (11)Cl2xxi—Mg2—Cl289.83 (17)
Cl2viii—Tl1—Cl2xi147.12 (6)Cl2xxii—Mg2—Cl290.17 (17)
Cl2ix—Tl1—Cl2xi58.71 (11)Cl2xxiii—Mg2—Cl289.83 (16)
Cl2x—Tl1—Cl2xi147.12 (6)Cl2xxiv—Mg2—Cl290.17 (16)
Cl1ii—Tl2—Cl1xii63.03 (10)Mg1xvi—Cl1—Mg178.5 (3)
Cl1ii—Tl2—Cl1iv63.03 (10)Mg1xvi—Cl1—Tl2xxv87.89 (12)
Cl1xii—Tl2—Cl1iv63.03 (10)Mg1—Cl1—Tl2xxv166.36 (18)
Cl1ii—Tl2—Cl2xiii123.81 (8)Mg1xvi—Cl1—Tl2xxvi166.36 (18)
Cl1xii—Tl2—Cl2xiii91.92 (9)Mg1—Cl1—Tl2xxvi87.89 (12)
Cl1iv—Tl2—Cl2xiii60.79 (8)Tl2xxv—Cl1—Tl2xxvi105.74 (13)
Cl1ii—Tl2—Cl2xiv123.81 (8)Mg1xvi—Cl1—Tl1xxvii91.16 (6)
Cl1xii—Tl2—Cl2xiv60.79 (8)Mg1—Cl1—Tl1xxvii91.15 (6)
Cl1iv—Tl2—Cl2xiv91.92 (9)Tl2xxv—Cl1—Tl1xxvii89.10 (5)
Cl2xiii—Tl2—Cl2xiv59.85 (17)Tl2xxvi—Cl1—Tl1xxvii89.10 (5)
Cl1ii—Tl2—Cl2viii91.92 (9)Mg1xvi—Cl1—Tl191.15 (6)
Cl1xii—Tl2—Cl2viii123.81 (8)Mg1—Cl1—Tl191.15 (6)
Cl1iv—Tl2—Cl2viii60.79 (8)Tl2xxv—Cl1—Tl189.10 (5)
Cl2xiii—Tl2—Cl2viii60.03 (17)Tl2xxvi—Cl1—Tl189.10 (5)
Cl2xiv—Tl2—Cl2viii119.820 (10)Tl1xxvii—Cl1—Tl1177.02 (16)
Cl1ii—Tl2—Cl2xv91.92 (9)Mg1—Cl2—Mg2178.8 (3)
Cl1xii—Tl2—Cl2xv60.79 (8)Mg1—Cl2—Tl2xvi88.60 (7)
Cl1iv—Tl2—Cl2xv123.81 (8)Mg2—Cl2—Tl2xvi91.44 (7)
Cl2xiii—Tl2—Cl2xv119.820 (10)Mg1—Cl2—Tl2xxviii88.60 (7)
Cl2xiv—Tl2—Cl2xv60.03 (17)Mg2—Cl2—Tl2xxviii91.44 (7)
Cl2viii—Tl2—Cl2xv175.12 (14)Tl2xvi—Cl2—Tl2xxviii175.12 (14)
Cl1ii—Tl2—Cl2x60.79 (8)Mg1—Cl2—Tl1xxix90.52 (17)
Cl1xii—Tl2—Cl2x123.81 (8)Mg2—Cl2—Tl1xxix90.67 (16)
Cl1iv—Tl2—Cl2x91.92 (9)Tl2xvi—Cl2—Tl1xxix88.02 (8)
Cl2xiii—Tl2—Cl2x119.820 (11)Tl2xxviii—Cl2—Tl1xxix88.02 (8)
Cl2xiv—Tl2—Cl2x175.12 (14)Mg1—Cl2—Tl2xxx89.9 (2)
Cl2viii—Tl2—Cl2x59.85 (17)Mg2—Cl2—Tl2xxx88.94 (11)
Cl2xv—Tl2—Cl2x119.820 (11)Tl2xvi—Cl2—Tl2xxx91.99 (9)
Cl1ii—Tl2—Cl2xvi60.79 (8)Tl2xxviii—Cl2—Tl2xxx91.99 (9)
Cl1xii—Tl2—Cl2xvi91.92 (9)Tl1xxix—Cl2—Tl2xxx179.61 (13)
Symmetry codes: (i) y, xy1, z; (ii) x+y+1, x+1, z; (iii) x+y, x, z; (iv) y, xy, z; (v) x1, y, z; (vi) x1, y1, z+1/2; (vii) y+1, xy, z; (viii) x+y, x+1, z+1/2; (ix) x+y, x+1, z; (x) y+1, xy, z+1/2; (xi) x1, y1, z; (xii) x, y+1, z; (xiii) x1, y, z+1/2; (xiv) y+1, xy+1, z+1/2; (xv) x+y+1, x+2, z+1/2; (xvi) x, y, z+1/2; (xvii) xy, x, z1/2; (xviii) x+1, y+1, z1/2; (xix) y, x+y+1, z1/2; (xx) x+2, y+2, z+1; (xxi) xy+1, x, z+1; (xxii) x+y+1, x+2, z; (xxiii) y, x+y+1, z+1; (xxiv) y+2, xy+1, z; (xxv) x, y1, z; (xxvi) x, y1, z+1/2; (xxvii) x+1, y, z; (xxviii) x+1, y, z+1/2; (xxix) x+1, y+1, z; (xxx) x+1, y+1, z+1/2.
 

Acknowledgements

The single-crystal structure determination was provided by the X-ray Analytical Facility at the University of California, Santa Barbara (Dr Guang Wu, Lab Manager).

Funding information

Funding for this research was provided by: U.S. Defense Threat Reduction Agency (DTRA) [contract No. HDTRA19-31194 to Lawrence Berkeley National Laboratory (LBNL) authors]; U.S. Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation (DNN) (contract No. AC02-05CH11231 to LBNL authors); U.S. Department of Energy, NNSA [contract No. 89233218NCA000001 to Los Alamos National Laboratory (LANL)].

References

First citationArai, M., Fujimoto, Y., Koshimizu, M., Yanagida, T. & Asai, K. (2020). J. Alloy Compd. 823, 3–7.  Web of Science CrossRef Google Scholar
First citationBeznosikov, B. V. (1978). Sov. Phys. Crystallogr. (translated from Kristallografia), 23, 61–63.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerenzo, S. E. & Choong, W.-S. (2009). IEEE Nucl. Sci. Sym. Conf. R. pp. 1–6.  Google Scholar
First citationDevaney, K. O., Freedman, M. R., McPherson, G. L. & Atwood, J. L. (1981). Inorg. Chem. 20, 140–145.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFujimoto, Y., Koshimizu, M., Yanagida, T., Okada, G., Saeki, K. & Asai, K. (2016). Jpn J. Appl. Phys. 55, 090301.  Web of Science CrossRef Google Scholar
First citationGoodyear, J., Steigmann, G. A. & Ali, E. M. (1977). Acta Cryst. B33, 256–258.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationHawrami, R., Ariesanti, E., Wei, H., Finkelstein, J., Glodo, J. & Shah, K. S. (2017). J. Cryst. Growth, 475, 216–219.  Web of Science CrossRef CAS Google Scholar
First citationLangreiter, T. & Kahlenberg, V. (2015). Crystals, 5, 143–153.  Web of Science CrossRef Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMcPherson, G. L., Kistenmacher, T. J. & Stucky, G. D. (1970). J. Chem. Phys. 52, 815–824.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOnken, D. R., Williams, R. T., Perrodin, D., Shalapska, T., Bourret, E. D., Tremsin, A. S. & Vogel, S. C. (2018). J. Appl. Cryst. 51, 498–504.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVogel, S. C. (2011). J. Appl. Cryst. 44, 873–877.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, S. C., Hartig, C., Lutterotti, L., Von Dreele, R. B., Wenk, H.-R. & Williams, D. J. (2004). Powder Diffr. 19, 65–68.  Web of Science CrossRef CAS Google Scholar
First citationWenk, H.-R., Lutterotti, L. & Vogel, S. (2003). Nucl. Instrum. Methods Phys. Res. A, 515, 575–588.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds